Abstrakt
The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated the intrusion detection system based on the in-vehicle system. We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior. In order to verify the accuracy and efficiency of the proposed model, it was evaluated using real vehicle data. The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior. The parameters of the model are self-iteratively updated using the time-based back propagation algorithm. We verified that the model proposed in this study can reach a nearly 96% accurate detection rate.
Cytowania
-
1 2
CrossRef
-
0
Web of Science
-
1 1
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
CMC-Computers Materials & Continua
nr 65,
strony 653 - 681,
ISSN: 1546-2218 - Język:
- angielski
- Rok wydania:
- 2020
- Opis bibliograficzny:
- Fei L., Jiayan Z., Jiaqi S., Szczerbicki E.: Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks// CMC-Computers Materials & Continua -Vol. 65,iss. 1 (2020), s.653-681
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.32604/cmc.2020.011264
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 289 razy
Publikacje, które mogą cię zainteresować
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
- S. S. Narayana Chintapalli,
- S. Prakash Singh,
- J. Frnda
- + 3 autorów
Multisensor System for the Protection of Critical Infrastructure of Seaport
- M. Kastek,
- R. Dulski,
- M. Życzkowski
- + 9 autorów
Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA
- F. Li,
- H. Zhang,
- J. Wang
- + 2 autorów