Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging - Publikacja - MOST Wiedzy

Wyszukiwarka

Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging

Abstrakt

Design of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations, or surrogates, of the system at hand. Notwithstanding, conventional models are severely affected by the curse of dimensionality. In practice, modelling of antenna structures described by no more than a few parameters over narrow parameter ranges is possible. In the context of the structural complexity of modern antennas, this is hardly acceptable. This paper presents a novel technique for cost-efficient design-oriented modelling of multi-band antennas. Our approach integrates a recently reported nested kriging framework and the response feature technology. This combination enables rendering of reliable surrogates valid within broad ranges of geometry parameters while using small training data sets. Benchmarking against conventional modelling methods demonstrates superiority of the proposed framework in terms of both the predictive power of the surrogate and its setup cost. Design applications for antenna optimization are discussed as well.

Cytowania

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 34 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS nr 120, strony 1 - 8,
ISSN: 1434-8411
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging// AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS -Vol. 120, (2020), s.1-8
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.aeue.2020.153202
Bibliografia: test
  1. Khai Nguyen, T.Q., Lizzi, L., Ferrero F.: 'Dual-matching for single resonance miniaturized antenna for IoT applications'. IEEE Int. Symp. Ant. Prop. (APS/URSI), Boston, MA, July 2018, pp. 793-794 otwiera się w nowej karcie
  2. Hong, W., Lim, S., Ko, S., Kim, Y.G.: 'Optically invisible antenna integrated within an OLED touch display panel for IoT applications', IEEE Trans. Ant. Prop., 2017, 65, (7), pp. 3750-3755 otwiera się w nowej karcie
  3. Varkiani, S.M.H., Afsahi, M.: 'Compact and ultra-wideband CPW-fed square slot antenna for wearable applications,' AEU -Int. J. Electr. Comm, 2019, 106, pp. 108-115
  4. Wong, H., Lin, W., Huitema, L., Arnaud, E.: 'Multi-polarization reconfigurable antenna for wireless biomedical system', IEEE Trans. Biomed. Circuits Syst., 2017, 11, (3), pp. 652-660 otwiera się w nowej karcie
  5. Siddiqui, J.Y., Saha, C., Antar, Y.M.M.: 'A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic', IEEE Ant. Wireless Propag. Lett., 2015, 14, pp. 974-977 otwiera się w nowej karcie
  6. Goswami, C., Ghatak, R., Poddar, D.R.: 'Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators', IET Microw. Ant. Prop., 2018, 12, (10), pp. 1719-1727 otwiera się w nowej karcie
  7. Singh, J., Stephan, R., Hein, M.A.: 'Low-profile penta-band automotive patch antenna using horizontal stacking and corner feeding', IEEE Access, 2019, 7, pp. 74198-74205 otwiera się w nowej karcie
  8. Altaf, A., Seo, M.: 'A tilted-D-shaped monopole antenna with wide dual-band dual- sense circular polarization', IEEE Ant. Wireless Propag. Lett., 2018, 17, (12), pp. 2464-2468 otwiera się w nowej karcie
  9. Kumar, P., Dwari, S., Saini, R.K., Mandal, M.K.: 'Dual-band dual-sense polarization reconfigurable circularly polarized antenna', IEEE Ant. Wireless Propag. Lett., 2019, 18, (1), pp. 64-68 otwiera się w nowej karcie
  10. Prabhu, P., Malarvizhi, S.: 'Novel double-side EBG based mutual coupling reduction for compact quad port UWB MIMO antenna,' AEU -Int. J. Electr. Comm., 2019, 109, 146-156 otwiera się w nowej karcie
  11. Nie, L.Y., Lin, X.Q., Yang, Z.Q., Zhang, J., Wang, B.: 'Structure-shared planar UWB MIMO antenna with high isolation for mobile platform', IEEE Trans. Ant. Prop., 2019, 67, (4), pp. 2735-2738 otwiera się w nowej karcie
  12. Wolosinski, G., Fusco, V., Naeem, U., Rulikowski, P.: 'Pre-matched eigenmode antenna with polarization and pattern diversity', IEEE Trans. Ant. Prop., 2019, 67, (8), pp. 5145-5153 otwiera się w nowej karcie
  13. Kumar, G., Kumar, R.: 'A survey on planar ultra-wideband antennas with band notch characteristics: Principle, design, and applications,' AEU -Int. J. Electr. Comm., 2019, 109, pp. 76-98 otwiera się w nowej karcie
  14. Koziel, S, Kurgan, P.: 'Selection of circuit geometry for miniaturized microwave components based on concurrent optimization of performance and layout area', AEU -Int. J. Electr. Comm., 2019, 109, pp. 287-294
  15. Ren, Z., Zhao, A., Wu, S.: 'MIMO Antenna with compact decoupled antenna pairs for 5G mobile terminals', IEEE Ant. Wireless Propag. Lett., 2019, 18, (7), pp. 1367-1371 otwiera się w nowej karcie
  16. Koziel, S., Pietrenko-Dabrowska, A.: 'Reduced-cost EM-driven optimization of antenna structures by means of trust-region gradient-search with sparse Jacobian updates', IET Microw. Ant. Prop., 2019, 13, (10), pp. 1646-1652 otwiera się w nowej karcie
  17. Bautista, A., Franc, A., Ferrari, P.: 'Accurate parametric electrical model for slow- wave CPW and application to circuits design', IEEE Trans. Microwave Theory Techn., 2015, 63, (12), pp. 4225-423 otwiera się w nowej karcie
  18. Ciccazzo, A., Di Pillo, G., Latorre, V.: 'A SVM surrogate model-based method for parametric yield optimization', IEEE Trans. CAD Int. Circ. Syst., 2016, 35, (7), pp. 1224-1228 otwiera się w nowej karcie
  19. Koziel, S., Bekasiewicz, A., Cheng, Q.S.: 'Response features for low-cost statistical analysis and tolerance-aware design of antennas', Int. J. Numer. Model., 2018, 31, (3), e2297 otwiera się w nowej karcie
  20. Abd El-Hameed, A.S., Wahab, M.G., Elboushi, A., Elpeltagy, M.S.: 'Miniaturized triple band-notched quasi self-complementary fractal antenna with improved characteristics for UWB applications', AEU -Int. J. Electr. Comm., 2019, 108, pp. 163-171 otwiera się w nowej karcie
  21. Koziel, S., Ogurtsov, S.: 'Simulation-based optimization of antenna arrays' (World Scientific, Singapur, 2019) otwiera się w nowej karcie
  22. Sobester, A., Forrester, A.I.J., Toal, D.J.J., Tresidder, E., Tucker, S.: 'Engineering design applications of surrogate-assisted optimization techniques', Optim. Eng., 2012, 15, (1), pp. 243-265 otwiera się w nowej karcie
  23. Baratta, I.A., de Andrade, C.B., de Assis, R.R., Silva, E.J.: 'Infinitesimal dipole model using space mapping optimization for antenna placement', IEEE Ant. Wireless Propag. Lett., 2018, 17, (1), pp. 17-20 otwiera się w nowej karcie
  24. Xu, J., Li, M., Chen, R. 'Space mapping optimisation of 2D array elements arrangement to reduce the radar cross-scattering', IET Microw. Ant. Prop., 2017, 11, (11), pp. 1578-1582 otwiera się w nowej karcie
  25. Koziel, S., Leifsson, L.: 'Simulation-driven design by knowledge-based response correction techniques' (Springer, New York, 2016) otwiera się w nowej karcie
  26. Koziel, S., Bekasiewicz, A.: 'Expedited simulation-driven design optimization of UWB antennas by means of response features', Int. J. RF Microw. CAE, 2017, 27, (6), pp. 1-8 otwiera się w nowej karcie
  27. Koziel, S., Unnsteinsson, S.D.: 'Expedited design closure of antennas by means of trust-region-based adaptive response scaling', IEEE Ant. Wireless Propag. Lett., 2018, 17, (6), pp. 1099-1103 otwiera się w nowej karcie
  28. Koziel, S., Bekasiewicz, A.: 'Multi-objective design of antennas using surrogate models' (World Scientific, Singapur, 2016) otwiera się w nowej karcie
  29. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: 'DACE: a Matlab kriging toolbox', Tech. University of Denmark, 2002 otwiera się w nowej karcie
  30. Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., Demeester, P.: 'A surrogate modeling and adaptive sampling toolbox for computer based design', J. Machine Learn. Res., 2010, 11, pp. 2051-2055
  31. Marelli, S., Sudret, B.: 'Uqlab: A framework for uncertainty quantification in Matlab', Int. Conf. Vulner. Risk Analysis Manag. (ICVRAM), Liverpool, United Kingdom, July 2014, pp. 2554-2563 otwiera się w nowej karcie
  32. Hassan, A.S.O., Etman, A.S., Soliman, E.A.: 'Optimization of a novel nano antenna with two radiation modes using kriging surrogate models', IEEE Photon. Journal, 2018., 10, (4), pp. 1-17 otwiera się w nowej karcie
  33. Dong, J., Li, Q., Deng,L.: 'Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model', AEU -Int. J. Electr. Comm., 2017, 72, pp. 192-199 otwiera się w nowej karcie
  34. Mishra, S., Yadav, R.N., Singh, R.P.: 'Directivity estimations for short dipole anten-na arrays using radial basis function neural networks', IEEE Ant. Wireless Propag. Lett., 2015, 14, pp. 1219-1222 otwiera się w nowej karcie
  35. Jacobs, J.P.: 'Efficient resonant frequency modeling for dual-band microstrip antennas by gaussian process regression', IEEE Ant. Wireless Propag. Lett., 2015, 14, pp. 337-341 otwiera się w nowej karcie
  36. Chávez-Hurtado, J.L., Rayas-Sánchez, J.E.: 'Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem', IEEE Trans. Microwave Theory Tech., 2016, 64, (12), pp. 4371-4381 otwiera się w nowej karcie
  37. Rayas-Sánchez, J.E.: 'EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art', IEEE Trans. Microwave Theory Techn., 2004, 52, (1), pp. 420-435 otwiera się w nowej karcie
  38. Prado, D.R., López-Fernández, J.A., Arrebola, M., Goussetis, G.: 'Support vector regression to accelerate design and crosspolar optimization of shaped-beam reflectarray antennas for space applications', IEEE Trans. Ant. Prop., 2019, 67, (3), pp. 1659-1668 otwiera się w nowej karcie
  39. Jacobs, J.P.: 'Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics', IEEE Trans. Antennas Propag.,2012, 60, (4), pp. 2114-2118 otwiera się w nowej karcie
  40. Easum, J.A., Nagar, J., Werner, D.H.: 'Multi-objective surrogate-assisted optimization applied to patch antenna design', IEEE Int. Symp. Ant. Prop. (APS/URSI), San Diego, CA, July 2017, pp. 339-340 otwiera się w nowej karcie
  41. Gehani, A., Agnihotri, P., Pujara, D.A.: 'Analysis and synthesis of multiband Sierpinski carpet fractal antenna using hybrid neuro-fuzzy model', Progr. In Electromag. Research Lett., 2017, 68, pp. 59-65 otwiera się w nowej karcie
  42. Wu, X., Peng, X., Chen, W., Zhang, W.: 'A developed surrogate-based optimization framework combining HDMR-based modeling technique and TLBO algorithm for high-dimensional engineering problems', Struct. Multidisc. Optim., 2019, 60, (2), pp. 663-680 otwiera się w nowej karcie
  43. Lambert, R.S.C., Lemke, F., Kucherenko, S.S., Song, S., Shah, N.: 'Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling', Math. Comp. Simul., 2016, 128, pp. 42-54 otwiera się w nowej karcie
  44. Koziel, S., Bekasiewicz, A.: 'Computationally feasible narrow-band antenna modeling using response features', Int. J. RF Microwave CAE, 2017, 27, (4), e21077 otwiera się w nowej karcie
  45. Wen, J., Zhou, Z., Wang, J., Tang, X., Mo, Q.: 'A sharp condition for exact support recovery with orthogonal matching pursuit', IEEE Trans. Signal Proc., 2017, 65, (6), pp. 1370-1382 otwiera się w nowej karcie
  46. Tu, S., Cheng, Q.S., Zhang, Y., Bandler, J.W., Nikolova, N.K.: 'Space mapping optimization of handset antennas exploiting thin-wire models', IEEE Trans. Ant. Prop., 2013, 61, (7), pp. 3797-3807 otwiera się w nowej karcie
  47. Xu, J., Li, M., Chen, R.: 'Space mapping optimisation of 2D array elements arrangement to reduce the radar cross-scattering', IET Microwaves Ant. Propag., 2017, 11, (11), pp. 1578-1582 otwiera się w nowej karcie
  48. Tao, J., Wang, F., Cachecho, P., Zhang, W., Sun, S., Li, X., Kanj, R., Gu, C., Zeng, X.: 'Large-scale circuit performance modeling by bayesian model fusion', in: Elfadel, I., Boning, D., Li, X. (Eds.): 'Machine learning in VLSI Computer-Aided Design' (Springer, Cham, Germany, 2019) otwiera się w nowej karcie
  49. Koziel, S., Bekasiewicz, A., Couckuyt, I., Dhaene, T.: 'Efficient multi-objective simulation-driven antenna design using co-kriging', IEEE Trans. Ant. Prop., 2014, 62, (11), pp. 5900-5905 otwiera się w nowej karcie
  50. Jacobs, J.P., Koziel, S.: 'Reduced-cost microwave filter modeling using a two-stage Gaussian process regression approach', Int. J. RF Microwave CAE, 2015, 25, 453- 462 otwiera się w nowej karcie
  51. Koziel S.: 'Low-cost data-driven surrogate modeling of antenna structures by constrained sampling', IEEE Ant. Wireless Propag. Lett., 2017, 16, pp. 461-464 otwiera się w nowej karcie
  52. Koziel S, Sigurðsson AT.: 'Triangulation-based constrained surrogate modeling of antennas', IEEE Ant. Wireless Propag. Lett., 2018, 66, (8), pp. 4170-4179 otwiera się w nowej karcie
  53. Koziel, S., Pietrenko-Dabrowska, A.: 'Performance-based nested surrogate modeling of antenna input characteristics', IEEE Trans. Ant. Prop., 2019, 67, (5), pp. 2904-2912 otwiera się w nowej karcie
  54. Koziel, S., Pietrenko-Dabrowska, A.: 'Computationally-efficient and reliable surrogate modeling of antenna structures using performance-driven nested kriging', 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Boston, MA, May 2019, pp. 1- 4 otwiera się w nowej karcie
  55. Koziel, S., Pietrenko-Dabrowska, A.: 'Reliable data-driven modeling of high- frequency structures by means of nested kriging with enhanced design of experiments', Eng. Comp., 2019, 36, (7), pp. 2293-2308 otwiera się w nowej karcie
  56. Koziel, S., Pietrenko-Dabrowska, A.: 'Surrogate modeling of high-frequency structures using nested kriging and improved sampling strategy', International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 2019, pp. 0066-0069 otwiera się w nowej karcie
  57. Simpson, T.W., Peplinski, J.D., Koch, P.N., Allen, J.K.: 'Metamodels for computer-based engineering design: Survey and recommendations', Eng. Computers, 2001, 17, pp. 129-150 otwiera się w nowej karcie
  58. Koziel, S.: 'Fast simulation-driven antenna design using response-feature surrogates', Int. J. RF & Microwave CAE, 2015, 25, (5), pp. 394-402 otwiera się w nowej karcie
  59. Beachkofski, B., Grandhi, R.: 'Improved distributed hypercube sampling', American Institute of Aeronautics and Astronautics, Paper AIAA, 2002, 2002-1274 otwiera się w nowej karcie
  60. Chen, Y.-C., Chen, S.-Y., Hsu P.: 'Dual-band slot dipole antenna fed by a coplanar waveguide', IEEE Ant. Propag. Society Int. Symp., Albuquerque, NM, July 2006, pp. 3589-3592
  61. Koziel, S., Bekasiewicz, A.: 'Fast re-design and geometry scaling of multi-band antennas using inverse surrogate modeling techniques', Int. J. Num. Model., 2018, 31, (3), pp. 1-11 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 110 razy

Publikacje, które mogą cię zainteresować

Meta Tagi