Development and validation of a model that includes two ultrasound parameters and the plasma D-dimer level for predicting malignancy in adnexal masses: an observational study - Publikacja - MOST Wiedzy

Wyszukiwarka

Development and validation of a model that includes two ultrasound parameters and the plasma D-dimer level for predicting malignancy in adnexal masses: an observational study

Abstrakt

Background: Pre-operative discrimination of malignant from benign adnexal masses is crucial for planning additional imaging, preparation, surgery and postoperative care. This study aimed to define key ultrasound and clinical variables and develop a predictive model for calculating preoperative ovarian tumor malignancy risk in a gynecologic oncology referral center. We compared our model to a subjective ultrasound assessment (SUA) method and previously described models. Methods: This prospective, single-center observational study included consecutive patients. We collected systematic ultrasound and clinical data, including cancer antigen 125, D-dimer (DD) levels and platelet count. Histological examinations served as the reference standard. We performed univariate and multivariate regressions, and Bayesian information criterion (BIC) to assess the optimal model. Data were split into 2 subsets: training, for model development (190 observations) and testing, for model validation (n = 100). Results: Among 290 patients, 52% had malignant disease, including epithelial ovarian cancer (72.8%), metastatic disease (14.5%), borderline tumors (6.6%), and non-epithelial malignancies (4.6%). Significant variables were included into a multivariate analysis. The optimal model, included three independent factors: solid areas, the color score, and the DD level. Malignant and benign lesions had mean DD values of 2.837 and 0.354 μg/ml, respectively. We transformed established formulae into a web-based calculator (http://gin-onc-calculators.com/gynonc.php) for calculating the adnexal mass malignancy risk. The areas under the curve (AUCs) for models compared in the testing set were: our model (0.977), Simple Rules risk calculation (0.976), Assessment of Different NEoplasias in the adneXa (ADNEX) (0.972), Logistic Regression 2 (LR2) (0.969), Risk of Malignancy Index (RMI) 4 (0.932), SUA (0.930), and RMI3 (0.912). Conclusions: Two simple ultrasound predictors and the DD level (also included in a mathematical model), when used by gynecologist oncologist, discriminated malignant from benign ovarian lesions as well or better than other more complex models and the SUA method. These parameters (and the model) may be clinically useful for planning adequate management in the cancer center. The model needs substantial validation.

Cytowania

  • 7

    CrossRef

  • 7

    Web of Science

  • 7

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 20 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
BMC CANCER nr 9, strony 1 - 12,
ISSN: 1471-2407
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Stukan M., Badocha M., Ratajczak K.: Development and validation of a model that includes two ultrasound parameters and the plasma D-dimer level for predicting malignancy in adnexal masses: an observational study// BMC CANCER. -Vol. 9, (2019), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1186/s12885-019-5629-x
Bibliografia: test
  1. Valentin L, Hagen B, Tingulstad S, Eik-Nes S. Comparison of 'pattern recognition' and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation. Ultrasound Obstet Gynecol. 2001;18:357-65. otwiera się w nowej karcie
  2. Van Gorp T, Veldman J, Van Calster B, Cadron I, Leunen K, Amant F, Timmerman D, Vergote I. Subjective assessment by ultrasound is superior to the risk of malignancy index (RMI) or the risk of ovarian malignancy algorithm (ROMA) in discriminating benign from malignant adnexal masses. Eur J Cancer. 2012;48:1649-56. otwiera się w nowej karcie
  3. Meys EM, Kaijser J, Kruitwagen RF, Slangen BF, Van Calster B, Aertgeerts B, Verbakel JY, Timmerman D, Van Gorp T. Subjective assessment versus ultrasound models to diagnose ovarian cancer: a systematic review and meta-analysis. Eur J Cancer. 2016;58:17-29. otwiera się w nowej karcie
  4. Geomini P, Kruitwagen R, Bremer GL, Cnossen J, Mol BW. The accuracy of risk scores in predicting ovarian malignancy: a systematic review. Obstet Gynecol. 2009;113:384-94. otwiera się w nowej karcie
  5. Kaijser J, Sayasneh A, Van Hoorde K, Ghaem-Maghami S, Bourne T, Timmerman D, Van Calster B. Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:449-62. otwiera się w nowej karcie
  6. Stukan M, Dudziak M, Ratajczak K, Grabowski JP. Usefulness of diagnostic indices comprising clinical, sonographic, and biomarker data for discriminating benign from malignant ovarian masses. J Ultrasound Med. 2015;34:207-17. otwiera się w nowej karcie
  7. Westwood M. Tests in secondary care to identify people at high risk of ovarian cancer.2017 14/10/2017. Available from: https://www.nice.org.uk/ guidance/dg31/documents/final-protocol. otwiera się w nowej karcie
  8. Bristow RE, Chang J, Ziogas A, Campos B, Chavez LR, Anton-Culver H. Impact of National Cancer Institute Comprehensive Cancer centers on ovarian cancer treatment and survival. J Am Coll Surg. 2015;220:940-50. otwiera się w nowej karcie
  9. Chang SJ, Bristow RE, Chi DS, Cliby WA. Role of aggressive surgical cytoreduction in advanced ovarian cancer. J Gynecol Oncol. 2015;26:336-42. otwiera się w nowej karcie
  10. Wallace S, Kumar A, Mc Gree M, Weaver A, Mariani A, Langstraat C, Dowdy S, Bakkum-Gamez J, Cliby W. Efforts at maximal cytoreduction improve survival in ovarian cancer patients, even when complete gross resection is not feasible. Gynecol Oncol. 2017;145:21-6. otwiera się w nowej karcie
  11. Glanc P, Benacerraf B, Bourne T, Brown D, Coleman BG, Crum C, Dodge J, Levine D, Pavlik E, Timmerman D, et al. First international consensus report on adnexal masses: management recommendations. J Ultrasound Med. 2017;36:849-63. otwiera się w nowej karcie
  12. Testa AC, Ludovisi M, Mascilini F, Di Legge A, Malaggese M, Fagotti A, Fanfani F, Salerno MG, Ercoli A, Scambia G, et al. Ultrasound evaluation of intra-abdominal sites of disease to predict likelihood of suboptimal cytoreduction in advanced ovarian cancer: a prospective study. Ultrasound Obstet Gynecol. 2012;39:99-105. otwiera się w nowej karcie
  13. Fischerova D, Cibula D. Ultrasound in gynecological cancer: is it time for re- evaluation of its uses? Curr Oncol Rep. 2015;17:28. otwiera się w nowej karcie
  14. Weinberger V, Fischerova D, Semeradova I, Slama J, Dundr P, Dusek L, Cibula D, Zikan M. Prospective evaluation of ultrasound accuracy in the detection of pelvic Carcinomatosis in patients with ovarian Cancer. Ultrasound Med Biol. 2016;42:2196-202. otwiera się w nowej karcie
  15. Fischerova D, Zikan M, Semeradova I, Slama J, Kocian R, Dundr P, Nemejcova K, Burgetova A, Dusek L, Cibula D. Ultrasound in preoperative assessment of pelvic and abdominal spread in patients with ovarian cancer: a prospective study. Ultrasound Obstet Gynecol. 2017;49:263-74. otwiera się w nowej karcie
  16. Zikan M, Fischerova D, Semeradova I, Slama J, Dundr P, Weinberger V, Dusek L, Cibula D. Accuracy of ultrasound in prediction of rectosigmoid infiltration in epithelial ovarian cancer. Ultrasound Obstet Gynecol. 2017; 50:533-8. otwiera się w nowej karcie
  17. Lyman GH, Khorana AA. Cancer, clots and consensus: new understanding of an old problem. J Clin Oncol. 2009;27:4821-6. otwiera się w nowej karcie
  18. Sakurai M, Satoh T, Matsumoto K, Michikami H, Nakamura Y, Nakao S, Ochi H, Onuki M, Minaguchi T, Yoshikawa H. High pretreatment plasma D-dimer levels are associated with poor prognosis in patients with ovarian cancer independently of venous thromboembolism and tumor extension. Int J Gynecol Cancer. 2015;25:593-8. otwiera się w nowej karcie
  19. Man YN, Wang YN, Hao J, Liu X, Liu C, Zhu C, Wu XZ. Pretreatment plasma D-dimer, fibrinogen, and platelet levels significantly impact prognosis in patients with epithelial ovarian cancer independently of venous thromboembolism. Int J Gynecol Cancer. 2015;25:24-32. otwiera się w nowej karcie
  20. Gadducci A, Baicchi U, Marrai R, Ferdeghini M, Bianchi R, Facchini V. Preoperative evaluation of D-dimer and CA 125 levels in differentiating benign from malignant ovarian masses. Gynecol Oncol. 1996;60:197-202. otwiera się w nowej karcie
  21. Amirkhosravi A, Gt B, Desai H, Rivera-Amaya M, Coll E, Robles-Carrillo L, Faust P, Waters A, Meyer T, Reyes E, et al. Blood clotting activation analysis for preoperative differentiation of benign versus malignant ovarian masses. Blood Coagul Fibrinolysis. 2013;24:510-7. otwiera się w nowej karcie
  22. Worasethsin P, Narkwichean A. D-dimer as a tumor marker in pre-operative assessment of adnexal masses. J Med Assoc Thail. 2013;96:1395-400.
  23. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer. Version 2.2018.2018 Oct 07, 2018. Available from: www. nccn.org/professionals/physician_gls/pdf/ovarian.pdf. otwiera się w nowej karcie
  24. Michielsen K, Dresen R, Vanslembrouck R, De Keyzer F, Amant F, Mussen E, Leunen K, Berteloot P, Moerman P, Vergote I, et al. Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer. Eur J Cancer. 2017;83:88-98. otwiera się w nowej karcie
  25. Fischerova D. Ultrasound scanning of the pelvis and abdomen for staging of gynecological tumors: a review. Ultrasound Obstet Gynecol. 2011;38:246-66. otwiera się w nowej karcie
  26. Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the international ovarian tumor analysis (IOTA) group. Ultrasond Obstet Gynecol. 2000;16:500-5. otwiera się w nowej karcie
  27. Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97:922-9. otwiera się w nowej karcie
  28. Alcazar JL, Errasti T, Laparte C, Jurado M, Lopez-Garcia G. Assessment of a new logistic model in the preoperative evaluation of adnexal masses. J Ultrasound Med. 2001;20:841-8. otwiera się w nowej karcie
  29. Van Calster B, Van Hoorde K, Valentin L, Testa AC, Fischerova D, Van Holsbeke C, Savelli L, Franchi D, Epstein E, Kaijser J, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ. 2014;349:g5920. otwiera się w nowej karcie
  30. Timmerman D, Van Calster B, Testa AC, Guerriero S, Fischerova D, Lissoni AA, Van Holsbeke C, Fruscio R, Czekierdowski A, Jurkovic D, et al. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group. Ultrasound Obstet Gynecol. 2010;36:226-34. otwiera się w nowej karcie
  31. Timmerman D, Testa AC, Bourne T, Ameye L, Jurkovic D, Van Holsbeke C, Paladini D, Van Calster B, Vergote I, Van Huffel S, et al. Simple ultrasound- based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol. 2008;31:681-90. otwiera się w nowej karcie
  32. Timmerman D, Van Calster B, Testa A, Savelli L, Fischerova D, Froyman W, Wynants L, Van Holsbeke C, Epstein E, Franchi D, et al. Predicting the risk of malignancy in adnexal masses based on the simple rules from the international ovarian tumor analysis group. Am J Obstet Gynecol. 2016;214: 424-37. otwiera się w nowej karcie
  33. Tingulstad S, Hagen B, Skjeldestad FE, Halvorsen T, Nustad K, Onsrud M. The risk-of-malignancy index to evaluate potential ovarian cancers in local hospitals. Obstet Gynecol. 1999;93:448-52. otwiera się w nowej karcie
  34. Yamamoto Y, Yamada R, Oguri H, Maeda N, Fukaya T. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur J Obstet Gynecol Reprod Biol. 2009;144:163-7. otwiera się w nowej karcie
  35. Tavassoli FA, Devilee P. Pathology and genetics of Tumours of the breast and female genital organs. Lyon: IARCPress; 2003. Available from: https:// www.iarc.fr/wp-content/uploads/2018/07/BB4.pdf
  36. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology. 2015; 277:826-32. otwiera się w nowej karcie
  37. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. otwiera się w nowej karcie
  38. Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
  39. Steyerberg E. Clinical prediction models: a practical approach to development, validation, and updating. 1st ed. New York: Springer-Verlag; 2009. otwiera się w nowej karcie
  40. Dziak JJ, Coffman DL, Lanza ST, Li R, Jermiin LS. Sensitivity and specificity of information criteria. Brief Bioinform. 2019. https://doi.org/10.1093/bib/ bbz016. https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/ bib/bbz016/5380417?redirectedFrom=fulltext. otwiera się w nowej karcie
  41. Xia Y, Sun J, Chen D-G. Statistical analysis of microbiome data with R. Singapore: Springer; 2018. otwiera się w nowej karcie
  42. Collins GS, Altman DG. An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study. BMJ. 2009;339:b2584. otwiera się w nowej karcie
  43. Harrell Jr F. rms: Regression Modeling Strategies. R package version 5.1-2. Department of Biostatistics, Vanderbilt University2018.
  44. Cleveland WS, Devlin SJ, Grosse E. Regression by local fitting: methods, properties, and computational algorithms. J Econ. 1988;37:87-114. otwiera się w nowej karcie
  45. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007;165:710-8. otwiera się w nowej karcie
  46. Nunes N, Ambler G, Foo X, Naftalin J, Widschwendter M, Jurkovic D. Use of IOTA simple rules for diagnosis of ovarian cancer: meta-analysis. Ultrasound Obstet Gynecol. 2014;44:503-14. otwiera się w nowej karcie
  47. Granberg S, Wikland M, Jansson I. Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis: criteria to be used for ultrasound evaluation. Gynecol Oncol. 1989;35:139-44. otwiera się w nowej karcie
  48. Sassone AM, Timor-Tritsch IE, Artner A, Westhoff C, Warren WB. Transvaginal sonographic characterization of ovarian disease: evaluation of a new scoring system to predict ovarian malignancy. Obstet Gynecol. 1991;78:70-6. otwiera się w nowej karcie
  49. DePriest PD, Shenson D, Fried A, Hunter JE, Andrews SJ, Gallion HH, Pavlik EJ, Kryscio RJ, van Nagell JR Jr. A morphology index based on sonographic findings in ovarian cancer. Gynecol Oncol. 1993;51:7-11. otwiera się w nowej karcie
  50. Lerner JP, Timor-Tritsch IE, Federman A, Abramovich G. Transvaginal ultrasonographic characterization of ovarian masses with an improved, weighted scoring system. Am J Obstet Gynecol. 1994;170:81-5. otwiera się w nowej karcie
  51. Smolen A, Stachowicz N, Czekierowski A, Kotarski J. The estimation of the probability of tumor malignacy on the basis of test combination in the primary diagnosis of adnexal tumors. Ginekol Pol. 2010;81:254-61. otwiera się w nowej karcie
  52. Berlanda N, Ferrari MM, Mezzopane R, Boero V, Grijuela B, Ferrazzi E, Pardi G. Impact of a multiparameter, ultrasound-based triage on surgical management of adnexal masses. Ultrasound Obstet Gynecol. 2002;20:181-5. otwiera się w nowej karcie
  53. Ueland FR, DePriest PD, Pavlik EJ, Kryscio RJ, van Nagell JR Jr. Preoperative differentiation of malignant from benign ovarian tumors: the efficacy of morphology indexing and Doppler flow sonography. Gynecol Oncol. 2003; 91:46-50. otwiera się w nowej karcie
  54. Pabinger I, Ay C. Biomarkers and venous thromboembolism. Arterioscler Thromb Vasc Biol. 2009;29:332-6. otwiera się w nowej karcie
  55. Ay C, Dunkler D, Pirker R, Thaler J, Quehenberger P, Wagner O, Zielinski C, Pabinger I. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica. 2012;97:1158-64. otwiera się w nowej karcie
  56. Satoh T, Oki A, Uno K, Sakurai M, Ochi H, Okada S, Minami R, Matsumoto K, Tanaka YO, Tsunoda H, et al. High incidence of silent venous thromboembolism before treatment in ovarian cancer. Br J Cancer. 2007;97: 1053-7. otwiera się w nowej karcie
  57. Kawaguchi R, Furukawa N, Kobayashi H. Cut-off value of D-dimer for prediction of deep venous thrombosis before treatment in ovarian cancer. J Gynecol Oncol. 2012;23:98-102. otwiera się w nowej karcie
  58. Qin YY, Wu YY, Xian XY, Qin JQ, Lai ZF, Liao L, Lin FQ. Single and combined use of red cell distribution width, mean platelet volume, and cancer antigen 125 for differential diagnosis of ovarian cancer and benign ovarian tumors. J Ovarian Res. 2018;11:10. otwiera się w nowej karcie
  59. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C, Group EGW. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. otwiera się w nowej karcie
  60. Ann Oncol. 2013;24(Suppl 6):vi24-32. otwiera się w nowej karcie
  61. Rustin GJ, MEvd B. A randomized trial in ovarian cancer (OC) of early treatment of relapse based on CA125 level alone versus delayed treatment based on conventional clinical indicators (MRC OV05/EORTC 55955 trials). J Clin Oncol. 2009;27:1. otwiera się w nowej karcie
  62. Timmerman D, Van Calster B, Jurkovic D, Valentin L, Testa AC, Bernard JP, Van Holsbeke C, Van Huffel S, Vergote I, Bourne T. Inclusion of CA-125 does not improve mathematical models developed to distinguish between benign and malignant adnexal tumors. J Clin Oncol. 2007;25:4194-200. otwiera się w nowej karcie
  63. Van Calster B, Valentin L, Van Holsbeke C, Zhang J, Jurkovic D, Lissoni AA, Testa AC, Czekierdowski A, Fischerova D, Domali E, et al. A novel approach to predict the likelihood of specific ovarian tumor pathology based on serum CA-125: a multicenter observational study. Cancer Epidemiol Biomark Prev. 2011;20:2420-8. otwiera się w nowej karcie
  64. Valentin L, Jurkovic D, Van Calster B, Testa A, Van Holsbeke C, Bourne T, Vergote I, Van Huffel S, Timmerman D. Adding a single CA 125 measurement to ultrasound imaging performed by an experienced examiner does not improve preoperative discrimination between benign and malignant adnexal masses. Ultrasound Obstet Gynecol. 2009;34:345-54. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 123 razy

Publikacje, które mogą cię zainteresować

Meta Tagi