Diagonalized Macromodels in Finite Element Method for Fast Electromagnetic Analysis of Waveguide Components - Publikacja - MOST Wiedzy


Diagonalized Macromodels in Finite Element Method for Fast Electromagnetic Analysis of Waveguide Components


A new technique of local model-order reduction (MOR) in 3-D finite element method (FEM) for frequency-domain electromagnetic analysis of waveguide components is proposed in this paper. It resolves the problem of increasing solution time of the reduced-order system assembled from macromodels created in the subdomains, into which an analyzed structure is partitioned. This problem becomes particularly relevant for growing size and count of the macromodels, and when they are cloned in multiple locations of the structures or are used repeatedly in a tuning and optimization process. To significantly reduce the solution time, the diagonalized macromodels are created by means of the simultaneous diagonalization and subsequently assembled in the global system. For the resulting partially diagonal matrix, an efficient dedicated solver based on the Schur complement technique is proposed. The employed MOR method preserves frequency independence of the macromodels, which is essential for efficient diagonalization, as it can be performed once for the whole analysis bandwidth. The numerical validation of the proposed procedures with respect to accuracy and speed was carried out for varying size and count of macromodels. An exemplary finite periodical waveguide structure was chosen to investigate the influence of macromodel cloning on the resultant efficiency. The results show that the use of the diagonalized macromodels provided a significant solution speedup without any loss of accuracy


  • 2


  • 2

    Web of Science

  • 2


Cytuj jako

Pełna treść

pobierz publikację
pobrano 11 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Electronics nr 8, strony 1 - 23,
ISSN: 2079-9292
Rok wydania:
Opis bibliograficzny:
Nyka K.: Diagonalized Macromodels in Finite Element Method for Fast Electromagnetic Analysis of Waveguide Components// Electronics -Vol. 8,iss. 3 (2019), s.1-23
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics8030260
Bibliografia: test
  1. Jin, J.M. The Finite Element Method in Electromagnetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014.
  2. Salazar-Palma, M.; Djordjevic, A.; Sarkar, T.K.; García-Castillo, L.E.; Roy, T. Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling; Artech House: Norwood, MA, USA, 1998.
  3. Bai, Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 2002, 43, 9-44. [CrossRef] otwiera się w nowej karcie
  4. Feldmann, P.; Freund, R.W. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1995, 14, 639-649. [CrossRef] otwiera się w nowej karcie
  5. Freund, R.W. Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 2000, 123, 395-421. [CrossRef] otwiera się w nowej karcie
  6. Nguyen, T.S.; Le Duc, T.; Tran, T.S.; Guichon, J.M.; Chadebec, O.; Meunier, G. Adaptive multipoint model order reduction scheme for large-scale inductive PEEC circuits. IEEE Trans. Electromagn. Compat. 2017, 59, 1143-1151. [CrossRef] otwiera się w nowej karcie
  7. Cangellaris, A.C. Electromagnetic macro-modeling: An overview of current successes and future opportunities. In Proceedings of the Computational Electromagnetics International Workshop, Izmir, Turkey, 10-13 August 2011; pp. 1-6. otwiera się w nowej karcie
  8. Kulas, L.; Mrozowski, M. A fast high-resolution 3-D finite-difference time-domain scheme with macromodels. IEEE Trans. Microw. Theory Technol. 2004, 52, 2330-2335. [CrossRef] otwiera się w nowej karcie
  9. Wu, H.; Cangellaris, A.C. A finite-element domain-decomposition methodology for electromagnetic modeling of multilayer high-speed interconnects. IEEE Trans. Adv. Packag. 2008, 31, 339-350.
  10. Zhu, Y.; Cangellaris, A.C. Macro-elements for efficient FEM simulation of small geometric features in waveguide components. IEEE Trans. Microw. Theory Technol. 2000, 48, 2254-2260. [CrossRef] otwiera się w nowej karcie
  11. Odabasioglu, A.; Celik, M.; Pileggi, L.T. PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1998, 17, 645-654. [CrossRef] otwiera się w nowej karcie
  12. Rubio, J.; Arroyo, J.; Zapata, J. SFELP-an efficient methodology for microwave circuit analysis. IEEE Trans. Microw. Theory Technol. 2001, 49, 509-516. [CrossRef] otwiera się w nowej karcie
  13. Freund, R.W.; Feldmann, P. Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. In Proceedings of the 1996 IEEE-ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 10-14 November 1996; pp. 280-287. otwiera się w nowej karcie
  14. de la Rubia, V.; Zapata, J. Microwave circuit design by means of direct decomposition in the finite-element method. IEEE Trans. Microw. Theory Technol. 2007, 55, 1520-1530. [CrossRef] otwiera się w nowej karcie
  15. Fotyga, G.; Nyka, K.; Kulas, L. A new type of macro-elements for efficient two-dimensional FEM analysis. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 270-273. [CrossRef] otwiera się w nowej karcie
  16. Fotyga, G.; Nyka, K.; Mrozowski, M. Efficient model order reduction for FEM analysis of waveguide structures and resonators. Prog. Electromagn. Res. 2012, 127, 277-295. [CrossRef] otwiera się w nowej karcie
  17. Czarniewska, M.; Fotyga, G.; Mrozowski, M. Local Mesh Deformation for accelerated parametric studies based on the Finite Element Method. In Proceedings of the 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Seville, Spain, 17-19 May 2017; pp. 284-286. otwiera się w nowej karcie
  18. Czarniewska, M.; Fotyga, G.; Lamecki, A.; Mrozowski, M. Parametrized Local Reduced-Order Models with Compressed Projection Basis for Fast Parameter-Dependent Finite-Element Analysis. IEEE Trans. Microw. Theory Tech. 2018, 66, 3656-3667. [CrossRef] otwiera się w nowej karcie
  19. Fotyga, G.; Nyka, K.; Mrozowski, M. Automatic reduction order selection for finite-element macromodels. IEEE Microw. Compon. Lett. 2018, 28, 278-280. [CrossRef] otwiera się w nowej karcie
  20. Fisher, A.; Rieben, R.N.; Rodrigue, G.H.; White, D.A. A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations. IEEE Trans. Antennas Propag. 2005, 53, 2900-2910. [CrossRef] otwiera się w nowej karcie
  21. Zeng, K.; Jiao, D. Frequency-domain method having a diagonal mass matrix in arbitrary unstructured meshes for efficient electromagnetic analysis. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9-14 July 2017; otwiera się w nowej karcie
  22. Laub, A.J. Matrix Analysis For Scientists And Engineers; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. otwiera się w nowej karcie
  23. Zhu, Y.; Cangellaris, A.C. Multigrid Finite Element Methods for Electromagnetic Field Modeling; otwiera się w nowej karcie
  24. Reddy, C.J.; Deshpande, D.M.; Cockrell, C.R.; Beck, F.B. Finite Element Method for Eigenvalue Problemsin Electromagnetics; Technical Report 3485; NASA: Pasadena, CA, USA, 1994. otwiera się w nowej karcie
  25. Schöberl, J. NETGEN An advancing front 2D, 3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1997, 1, 41-52. [CrossRef] otwiera się w nowej karcie
  26. Fotyga, G.; Nyka, K.; Mrozowski, M. Multilevel model order reduction with generalized compression of boundaries for 3-D FEM electromagnetic analysis. Prog. Electromagn. Res. 2013, 139, 743-759. [CrossRef] otwiera się w nowej karcie
  27. Sheehan, B.N. ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization. In Proceedings of the IEEE 36th Design Automation Conference, New Orleans, LA, USA, 21-25 June 1999; otwiera się w nowej karcie
  28. Banerjee, S.; Roy, A. Linear Algebra and Matrix Analysis for Statistics; CRC Press: Roca Raton, FL, USA, 2014. c 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 107 razy

Publikacje, które mogą cię zainteresować

Meta Tagi