Abstrakt
In this paper we consider the problem of state estimation of a dynamic system whose evolution is described by a nonlinear continuous-time stochastic model. We also assume that the system is observed by a sensor in discrete-time moments. To perform state estimation using uncertain discrete-time data, the system model needs to be discretized. We compare two methods of discretization. The first method uses the classical forward Euler method. The second method is based on the continuous-time simulation of the deterministic part of the nonlinear system between consecutive times of measurement. For state estimation we apply an unscented Kalman Filter, which - as opposed to the well known Extended Kalman Filter - does not require calculation of the Jacobi matrix of the nonlinear transformation associated with this method.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Tytuł wydania:
- Advanced and Intelligent Computations in Diagnosis and Control strony 91 - 104
- ISSN:
- 2194-5357
- Język:
- angielski
- Rok wydania:
- 2016
- Opis bibliograficzny:
- Domżalski M., Kowalczuk Z.: Discrete-time estimation of nonlinear continuous-time stochastic systems// Advanced and Intelligent Computations in Diagnosis and Control/ ed. Z. Kowalczuk Cham – Heidelberg – New York – Dordrecht – London : Springer IP Switzerland, 2016, s.91-104
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-319-23180-8_7
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 143 razy