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Abstract: Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due
to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at
developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized
extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan
were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract
standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of
poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and
mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds
but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of
S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of
hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed
shear-thinning properties, gelation temperature between 25 and 27 ◦C, and favorable mucoadhesive-
ness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture
of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were
liberated in a prolonged manner with a fast onset from hydrogel formulations.

Keywords: Scutellaria baicalensis; chitosan; periodontal diseases; dissolution studies; ex vivo mucoad-
hesion; permeability

1. Introduction

Periodontitis is a chronic immuno-inflammatory disease that causes the destruction of
periodontal tissues and the alveolar bone supporting the teeth [1]. Periodontitis affects more
than 10% of the adult population, making it the 11th most prevalent disease globally, and it
is associated with systemic diseases such as diabetes, cardiovascular disease, rheumatoid
arthritis, cancer, non-hemorrhagic stroke, or respiratory disease [2–5].

Oral bacteria in dental plaque are the main cause of periodontal diseases [6]. The inter-
action between pathogenic microorganisms and the host immune response is accompanied
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by an increase in proinflammatory cytokines, matrix metalloproteinases [7], and reactive
oxygen species [8].

The treatment of periodontal diseases is highly nonspecific, consisting of mechanical
debridement of dental plaque and calculus from the teeth. Additionally, pharmacologic
therapies based on antimicrobials, in particular antiseptics and local or systemic antibiotics
are recommended [9]. Recent studies showed that the significant effectiveness of topical
14% doxycycline gel on oral anaerobic bacteria caused chronic periodontitis [10]. However,
the long-term use of antibiotics increases the risk of bacterial antibiotic resistance [11]. It
may be due to the use of sub-inhibitory concentrations of various antibiotics that affect the
genotype and phenotype of microorganisms, increasing their resistance by formatting a
biofilm [12].

Research in recent years has focused on searching for new herbal therapies in the
preventive and therapeutic applications of periodontal diseases [13,14]. Herbal extracts
contain various ingredients, e.g., flavonoids and other polyphenols, terpenes, and alkaloids,
which are well known as an anti-inflammatory, antioxidative, and antimicrobial agents [15].

One of the plant materials with significant potential for use in treating periodontitis is
Scutellaria baicalensis Georgi. It is also known as a Baikal skullcap or Chinese skullcap, and
it is a perennial herbaceous plant from the Lamiaceae (Labiatae) family [16]. The potential
of S. baicalensis radix in periodontal diseases is justified by its numerous properties, which
lead to beneficial changes in inflammatory processes in the oral cavity. Firstly, it reduces
inflammation by inhibiting the expression of proinflammatory mediators, such as IL-1β,
IL-6, IL-8, and TNFα in gingival tissues, reduces alveolar bone destruction, and promotes
the recovery of periodontal structures [17,18]. This action is associated with the presence of
compounds: baicalin, baicalein, and wogonin. Baicalin in the rat model of periodontitis
reduced alveolar bone loss and increased the surface fraction of collagen fibers by decreas-
ing cyclooxygenase-2 and nitric oxide synthase proteins expression [19,20]. It promoted
osteogenic activity in the human periodontal ligament and periodontal ligament cells
by up-regulating the expression of osteoprotegerin (OPG) mRNA and proteins, down-
regulating receptor activator of nuclear factor-κβ ligand (RANKL) mRNA and protein
expression, and significantly reducing the ratio of RANKL/OPG expression [21–23]. Fur-
thermore, baicalin inhibited the secretion of the IL-1β induced pro-matrix metalloprotein-1
(pro-MMP-1) and expression of MMP-3 in human gingival fibroblasts and periodontal
ligament cells [24] and blocked MMP-8 release from polymorphonuclear leukocytes in-
duced by IL-8 [25]. Moreover, baicalin possesses significant antibacterial properties against
periodontal pathogenic bacteria [26]. Baicalein possesses anti-inflammatory activity to
reduces mRNA and protein levels of proinflammatory cytokines such as IL-1β, TNF-α,
MMP-1, MMP-2, and monocyte chemoattractant protein 1 in periodontal ligament cells
by the mechanism of inhibiting the mitogen-activated protein kinase (MAPK) signaling
pathway [27]. Subsequent studies indicate that baicalein may up-regulate the expression
of the osteogenic markers in human periodontal ligament cells, including runt-related
transcription factor 2, bone morphogenetic protein 2, osterix, and osteocalcin through the
activation of the Wnt/β-catenin signal transduction pathway in the cells of periodontal
ligaments [27,28]. In another study, wogonin inhibited lipopolysaccharide (LPS)-induced
bone resorption through down-regulation of RANKL and up-regulation of OPG expression
by blocking PGE2 production [29].

One of the ways to better use the health-promoting properties of plant raw materials
is to obtain their systems with biopolymers, which extend the time of contact with places
with changed tissues. Moreover, in the case of choosing the suitable biopolymer, we can
also expect a synergy of action between the plant material and the carrier used. Chitosan
is a carrier with valuable properties (such as anti-inflammatory, antibacterial, and bone
regeneration) essential for treating oral diseases [30,31].

With regard to topical formulations applied to the oral cavity, hydrogels are regarded
as a feasible delivery systems, which is due to their high biocompatibility, lack of irritating
properties, and possibility of adjusting the polymer network degradation rates or drug
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release profiles, according to the desired therapeutic effect [32–34]. When selecting the
composition of the formulations applied in the periodontal space, several important aspects
should be taken into account, such as ease of application, entire filling of the treated area,
and sufficiently long residence time [35,36]. All of the above-mentioned can be achieved
by application of the thermosensitive poloxamers with a unique ability to reverse thermal
gelation. This means that at lower temperatures, they are liquid, and as the temperature
increases, they thicken to a semi-solid form [37,38]. Therefore, it is reasonable to use
poloxamer-based vehicles, which are liquid during application, and after filling of the
periodontal space, they increase the viscosity to ensure a longer residence time in the
treated area. Unfortunately, due to the relatively quick dilution of poloxamer semi-solid
systems with saliva, it is advisable to use additional stabilizing polymers. One of the
possibilities is the addition of ion-sensitive polymers such as sodium alginate or gellan
gum. Due to the presence of specific functional moieties, these polymers, in the presence
of cations, including those present in saliva, can undergo cross-linking, which results in
stiffening of the structure, makes it more resistant, and thus extends the residence time at
the site of administration [39–41]. Another approach is to enhance the contact between
the preparation and the tissue by introducing mucoadhesive polymers that temporarily
connect with the mucosa, e.g., modified celluloses such as hydroxyethyl cellulose, methyl
cellulose, hydroxypropyl cellulose, and hydroxymethyl propyl cellulose [42–44].

The aim of this work was to investigate the impact of chitosan on the biological
behavior of S. baicalensis radix lyophilized extract in terms of their potential application in
the treatment of periodontal diseases. For this purpose, two types of chitosan that differ in
viscosity were employed in order to obtain binary mixtures of S. baicalensis radix extract and
chitosan. Additionally, a particular effort was made toward the development of hydrogel
formulations comprising thermosensitive and mucoadhesive polymers as a convenient
platform for the periodontal pocket delivery of a binary mixture of S. baicalensis radix extract
and chitosan. The study investigated both the physicochemical properties of the obtained
systems and the estimated synergism of the biological activity of the components that were
part of the system.

2. Results and Discussion

S. baicalensis radix is one of such herbal agents with proven efficacy in treating peri-
odontal disease [45,46]. Various plant extracts or natural compounds are applied to reduce
dental plaque formation and gingivitis [47,48]. Moreover, they are characterized by compa-
rable or even greater efficacy than conventional medications used for the management of
periodontitis, e.g., chlorhexidine [49–51]. Chitosan is a mucoadhesive, biodegradable, and
non-toxic biopolymer, which due to its unique biological properties is widely explored as a
multifunctional excipient in pharmaceutical technology [52].

2.1. Preparation of S. baicalensis radix Lyophilized Extract and Its Analysis
2.1.1. Extract Preparation

The first work stage was to prepare a freeze-dried hydro-alcoholic (6:4, v/v) extract
of S. baicalensis radix. The dried roots of S. baicalensis used for these studies met the
pharmacopoeial requirements regarding content baicalin (9.58 ± 0.06%) [53]. The choice of
appropriate solvent composition can increase the extraction efficiency of active compounds
from the plant material. A previous study showed that the extraction of major flavones
from S. baicalensis radix using 60% ethanol was the most effective [54].

2.1.2. Determination of Flavonoids Content

S. baicalensis radix lyophilized extract was standardized from the content of flavones
by using the HPLC-DAD method. The chromatographic method developed by Wang
et al. [55] was validated following the protocol issued by ICH Q2(R1) for linearity, precision,
limits of detection, and quantification of analytical standards (Table S1 in Supplementary
Materials) [56]. Under developed chromatographic conditions, we obtain a separation of
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baicalin (baicalein 7-O-glucuronide), baicalein, and wogonin at 30.95, 47.36, and 60.41 min,
respectively. The chromatographic parameters of the separated peaks are presented in
Figure 1. The content of baicalin was 178.10 ± 1.90 mg per 1 g of lyophilized extract, and
the content of baicalein was 62.93 ± 1.23 mg per 1 g of lyophilized extract, while that of
wogonin was 25.31 ± 0.19 mg per 1 g of lyophilized extract.

Figure 1. Spectral and chromatographic analysis of (a) baicalin, baicalein, and wogonin standards
and (b) S. baicalensis radix lyophilized extract.

2.2. Preformulation Studies of S. baicalensis radix Lyophilized Extract with Chitosan and the
Evaluation of Their Activity
2.2.1. Binary Mixtures Preparation

S. baicalensis radix lyophilized extract was mixed carefully in the mortar with chitosan
different in viscosity (500 and 1000 mPas) in equal amounts (w/w) to formulate binary
mixtures (SBE/Cs 80:500 and SBE/Cs 80:1000, respectively).

2.2.2. ATR-FTIR Spectroscopy

Binary mixtures of S. baicalensis radix extract and chitosan were characterized by
Fourier transform infrared spectroscopy (FTIR) using the attenuated total reflectance tech-
nique (ATR). The results of FTIR spectral analysis are demonstrated in Figure 2. The
observed characteristic bands for flavones are consistent with the literature [57–59]. Char-
acteristic bands of S. baicalensis radix lyophilized extract at 3333 cm−1, 1726 cm−1, and
1657 cm−1 were attributed to the stretching vibration of the O-H, -COOH, and C=O groups
in flavones, respectively. The signals at 1609 cm−1, 1584 cm−1, and 1576 cm−1 were in-
duced by the C=C vibration stretching of the aromatic rings in the flavones. The signals
in the range 1200–900 cm−1 were attributed to the various stretching vibrations of C–O
bonds of saccharides. The peak at 1059 cm−1 was characteristic for the stretching vibra-
tion of glycosidic bonds (C-O-C) in flavonoids glycosides. The FTIR spectra of chitosan
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showed characteristic bands at 3362 cm−1 and 3298 cm−1 due to the stretching vibrations
of O-H and N-H groups. The absorption peaks at 2920 cm−1 and 2872 cm−1 are due to
symmetric and asymmetric C-H stretching, and the absorption peaks at 1657 cm−1 and
1570 cm−1 can be attributed to N-H bending vibration. The stretching vibration of CH3 and
CH2 groups was attributed in the range of 2800–3000 cm−1 and 1300–1500 cm−1. In the
range 900–1200 cm−1 were shown the bands of peaks for the following bonds: 1150 cm−1

(asymmetric stretching of C-O-C bridge), 1059 cm−1 (C-O stretch, secondary hydroxyl
group), and 1026 cm−1 (C-O stretch, primary hydroxyl group). The peak at 1150 cm−1

was characteristic of glycoside linkages [60–63]. These results illustrated that no change
occurred in the chemical structure of the S. baicalensis radix extract after being mixed with
chitosan.

Figure 2. ATR-FTIR spectra of (a) binary mixtures and chitosans; (b) S. baicalensis radix extract, baicalin, and baicalein.

2.2.3. Dissolution Studies

In order to provide information on the rate and extent of the release of active com-
pounds from binary mixtures with S. baicalensis radix extract, dissolution studies were
conducted. Results from the dissolution studies showed that the formulations SBE/Cs
80:500 and SBE/Cs 80:1000 were prolonged the release rates of baicalin (65.65 ± 1.58% and
62.03 ± 3.28%, respectively) and baicalein (53.32 ± 1.94% and 54.48 ± 0.43%, respectively)
compared with S. baicalensis radix extract at the end of the 480 min dissolution studies, as
shown in Figure 3a,b. Surprisingly, after mixing the lyophilized extract with chitosans,
a slight increase in the dissolution rate of wogonin was observed (Figure 3c). The previ-
ously published studies indicated that chitosan is a proper carrier for poorly water-soluble
drugs [61,64].
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Figure 3. Dissolution profiles of (a) baicalin; (b) baicalein; (c) wogonin of S. baicalensis radix extract and binary mixtures in
pH 6.6.

2.2.4. Permeability Studies

In vitro permeability of active compounds from binary mixtures was carried out using
a parallel artificial membrane permeability assay (PAMPA-GIT) in pH 6.6, simulating the
pH of the saliva. The systems were equilibrated for 4 h for baicalin and 1 h for baicalein
and wogonin at 37 ◦C, based on literature values of permeability [65]. As shown in
Table 1, among the studied standards, only baicalein and wogonin (Papp (91.56 ± 2.72)
× 10−6 cm s−1 and (57.23 ± 5.42) × 10−6 cm s−1, respectively) were characterized by
high passive diffusion across the plasma lipid membrane. Moreover, the higher values
of permeability of these compounds from S. baicalensis radix extract and binary mixtures
were observed in comparison to standards alone. This beneficial effect may be due to the
presence of other compounds in the extract such as fatty acid [66], which are considered
to be mucosal permeation enhancers [67]. On the other hand, the low permeability of
baicalin (Papp (0.02 ± 0.01) × 10−6 cm s−1) resulted from its relatively high hydrophilicity
and large molecular weight [68] and absorption in the form of an aglycone after hydrolysis
by intestinal bacteria [69].D
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Table 1. Apparent permeability coefficients (Papp) values of standards, S. baicalensis radix extract, and
binary mixtures.

Papp(× 10−6 cm s−1)

Baicalin Baicalein Wogonin

Standard 0.02 ± 0.01 91.56 ± 2.72 57.23 ± 5.42
SBE n.d. 116.58 ± 3.97 134.43 ± 3.59

SBE/Cs 80:500 n.d. 119.05 ± 7.64 133.66 ± 6.44
SBE/Cs 80:1000 n.d. 129.03 ± 1.34 130.60 ± 3.58

Compounds with Papp < 0.1 × 10−6 cm s−1 = low-permeable compound, those with Papp ≥ 1 × 10−6 cm s−1 =
high-permeable compounds indicated values are means (±SD, n = 3); n.d.—not detected in the acceptor.

2.2.5. Biological Activity

The biological activities of binary mixtures of lyophilized S. baicalensis radix extract
and chitosan were assessed from methodologies in vitro, evaluating the possibilities of
inhibition degradation of hyaluronic acid and the potential of antioxidant and antimicrobial
activity.

Several herbal extracts or natural compounds play an important role in treating vari-
ous disease symptoms of periodontitis diseases due to their antioxidant properties [70,71].
Free radicals and reactive oxygen species play an essential role in an increased inflam-
matory response in the pathogenesis of periodontitis, which leads to the destruction of
periodontal tissues and alveolar bone [8,72]. Antioxidant activity of S. baicalensis radix
extract and binary mixtures were investigated by using two methods of different mech-
anisms, such as ABTS•+ radical cation assay and ferrous ion-chelating assay. Due to the
multifunctional properties of natural antioxidants, these methods are widely employed to
evaluate the antioxidant activity of plant extract [73,74]. ABTS assay utilized the SET (single
electron transfer) mechanism. In contrast, metal chelating prevents the generation of reactive
oxygen species in the Fenton and Haber–Weiss reaction by forming complex structures
of antioxidants with transition metals (mainly iron and copper) [75]. Moreover, previous
reports documented the positive correlation between the levels of transition metal ions in
periodontal pockets and periodontitis severity [8]. As shown in Figure 4a, the S. baicalensis
radix lyophilized extract showed twice higher the scavenging activity against the radical
cations ABTS•+ (IC50 = 28.49 µg mL−1) than the binary mixtures (IC50 = 60.59 µg mL−1 and
IC50 = 59.88 µg mL−1 for chitosan 80:500 and 80:1000, respectively). The ABTS radical scav-
enging activity of the binary mixtures resulted only from the presence of S. baicalensis radix
lyophilized extract (Figure 4b). Similar results were obtained for encapsulated chlorogenic
acid [76]. The crucial role in the scavenging activity of the S. baicalensis radix extract is the
presence of flavonoids with numerous phenolic hydroxyl groups [77], whereas chitosan
has an insignificant radical scavenging activity due to insufficient H-atom donors [78].
On the other hand, the metal-chelating capacity of binary mixtures was higher than that
of S. baicalensis extract (IC50 = 8.32 µg mL−1), and the chitosan viscosity significantly in-
fluenced forming complexes of iron (III) with chelators with IC50 values 2.79 µg mL−1

or 4.52 µg mL−1 for 500 and 1000 chitosan viscosity, respectively (Figure 4c). The higher
antioxidant activity of lower viscosity chitosans was also demonstrated in preventing lipid
oxidation in the herring flesh model system [79]. The hydroxyl groups (OH) and amino
groups (NH2) in the chitosan molecule are the crucial factor of its chelating properties [80].
Additionally, the S. baicalensis radix is known to have a strong complexing ability through
interactions 6,7-dihydroxy structure of flavonoids (especially baicalein) with transition
metals [81,82].
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Figure 4. Concentration-dependent antioxidant activity of S. baicalensis extract and binary mixtures. (a) ABTS assay
calculated per µg of SBE and binary mixtures (mean ± S.D., n = 6); (b) ABTS assay calculated per µg of SBE in binary
mixtures; (c) metal-chelating activity (mean ± S.D., n = 6).

Hyaluronic acid is a naturally occurring glycosaminoglycan of the extra-cellular
matrix of the periodontal ligament [83]. Hyaluronic acid plays a major role in periodon-
tal tissue differentiation and proliferation binding to membrane receptor CD44 as well
as reduces local inflammatory processes and alveolar bone resorption by inducing the
up-regulation of inflammatory genes in tissues affected by periodontitis [84–86]. More-
over, hyaluronan can reduce the colonization and proliferation of pathogenic bacteria in
the gingival crevice and adjacent periodontal tissues [87]. During periodontal diseases,
hyaluronic acid can be extensively depolymerized to fragments with lower molecular
weight by the activity of hyaluronidases, β-glucuronidases, hexosaminidases, and reactive
oxygen species [88,89]. Low molecular weight hyaluronan possessing proinflammatory
activity has been reported to be present in the gingival tissue of patients at the initial phase
of periodontal disease [83,90]. Plant extracts and natural compounds are known to be
hyaluronidase inhibitors [91–93]. As shown in Figure S1 (Supplementary Materials), binary
mixtures had stronger activity (IC50 0.12 mg mL−1 and 0.18 mg mL−1 for chitosan 80:500
and 80:1000 respectively) than S. baicalensis radix extract alone (IC50 = 2.19 mg mL−1). A
significant increase in the inhibition of hyaluronic acid degradation may point toward a syn-
ergistic action of active compounds from S. baicalensis extract, particularly baicalein [94–96]
and chitosan molecules [97]. A similar result was obtained by Mao et al. for chitosan
oligosaccharide modified by grafting linalool [98].
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The potential against bacterial and fungal species inhabiting the oral cavity of humans
for them was also evaluated. Plant species play a vital role in inhibiting pathogen growth
and invading gingival tissue [15,99]. S. baicalensis radix [100,101] and chitosan [30,31,102,103]
are well-known antimicrobial and antifungal agents. The antimicrobial activity of lyophilized
extract and binary mixtures was evaluated according to their minimum inhibitory con-
centrations (MICs) against various pathogens: four species of Gram-positive bacteria
(Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Actinomyces naeslundii), three
Gram-negative bacteria (Escherichia coli, Proteus mirabilis, Prevotella intermedia), and two
species of yeast-like fungi (Candida albicans, C. tropicalis). Antimicrobial activity against
Gram-positive lactic acid bacterium Lactobacillus acidophilus was also carried out. Used in
this study as solvent, a 20% water solution of dimethyl sulfoxide DMSO did not present
antibacterial and antifungal activity. The results showed a significant increase in the sen-
sitivity of pathogens to the S. baicalensis radix extract with chitosan 80:500 compared to
the lyophilized extract and flavones (Table 2). Most sensitive to its effects were Gram-
positive bacteria and yeast-like fungi, which is inconsistent with previous reports [102,104].
A binary mixture with chitosan 80:500 exhibited low antimicrobial efficacy or was inac-
tive against P. mirabilis, P. intermedia, and A. naeslundii with MICs in the range of 1250
and >2500 µg mL−1. Binary mixture with chitosan 80:1000 was found inactive against all
bacteria and fungi tested.

Table 2. Antimicrobial activity of standards, S. baicalensis radix extract, and binary mixtures.

Pathogen MIC (µg mL−1)

SBE SBE/Cs 80:500 SBE/Cs 80:1000 Cs 80:500 Cs 80:1000 Baicalin Baicalein

A. naeslundii 1250 >2500 >2500 1250 1250 312.5 156.25
L. acidophilus 625 39.1 * >2500 78.1 156.25 156.25 312.5

S. aureus 1250 78.125 * 2500 156.25 2500 625 625
S. epidermidis 1250 78.125 * >2500 156.25 >2500 625 625

S. mutans Clarke
ATCC 25175 >2500 156.25 * >2500 78.1 156.25 625 312.5

E. coli 1250 312.5 * 2500 625 2500 1250 312.5
P. mirabilis 1250 2500 2500 2500 2500 1250 1250

P. intermedia
ATCC 25611 625 1250 >2500 1250 1250 1250 625

C. albicans 1250 156.25 * 2500 312.5 2500 625 1250
C. tropicalis 1250 156.25 * 2500 312.5 2500 1250 625

* decrease the MIC value compared with MIC of S. baicalensis radix extract.

Preformulation studies indicated the stronger biological activity of innovative binary
systems compared to pure S. baicalensis radix lyophilized extract toward anti-hyaluronidase,
metal chelating, and antimicrobial activities. Moreover, the presence of chitosan allowed
for the prolonged release of flavones baicalin, baicalein, and wogonin, without affecting
the permeation of active compounds through membranes simulating the gastrointestinal
tract from the binary mixtures.

2.3. Formulation Studies Involving S. baicalensis radix Lyophilized Extract with Chitosan and the
Evaluation of Its Quality
2.3.1. Preparation of the Formulations and Rheological Analysis

Rheological analysis plays a key role in developing the composition of semi-solid
formulations, including those applied in the oral cavity [105]. Properly designed rheo-
logical properties translate into the conditions of the production process, the method of
application, and may also correlate with the release of the active ingredient and the thera-
peutic efficacy [106]. In this study, the properties of thermo-sensitive hydrogels gelling in
situ in the periodontal space based on poloxamer 407 were developed and assessed. The
assumption was to obtain a formulation with a liquid consistency at room temperature,
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which would fill it up and then thicken when introduced to the target site. Sodium alginate,
an ion-sensitive mucoadhesive polymer capable of reacting with saliva ions, was used
as a component that stiffens the polymer network. In addition, it was used to assure
proper rheological properties. For the preparation of the formulations, a binary mixture
with S. baicalensis radix extract and chitosan 80:500 (SBE/Cs 80:500) was used due to its
higher antioxidant, anti-hyaluronidase, and antimicrobial activities. Hydrogels loaded
with 2 or 4% of binary mixture and a corresponding placebo formulation were analyzed for
steady shear by plotting flow curves. The thermal solidification process was also assessed
to determine the gelation temperature (Tsol–gel). In order to more precisely define the
microstructure of the tested formulations, an advanced oscillatory analysis was performed,
including stress (amplitude) sweeping stress and frequency.

Flow curves. In the steady-shear experiments, the samples were subjected to the
increasing shear rate, and the shear stress was monitored. The obtained data were plotted
as the flow curves (Figure S2 in Supplementary Materials). As can be observed, the
shape of the curves indicates the shear-thinning properties preceded by rapid breakage of
the polymer structure typical for hydrogels containing poloxamer 407, not showing the
ductility that characterizes most natural polymers. In the case of formulations containing
MC, the curves showed the best fitting to the Ostwald de Waele (power law) model:

τ = K· .
γ

n

where n is a power law index and represents the fluidity [107]. In general, it can be assumed
that the more the value of n differs from unity, the more the properties of the tested system
differ from the Newtonian behavior (n = 1). The n parameter illustrates the degree of
the structure of the gel changes with the increase in the shear rate. The K parameter K is
referred to as the consistency coefficient. Its value corresponds to the shear stress at a shear
rate of 1.0 s−1. The power law can be applied to materials with a strong internal structure.
As presented in Table 3 for the mentioned MC gels, the n values are very low, which
indicate their typical shear-thinning nature. As can be seen, addition of the binary mixture
with. S. baicalensis radix extract had no effect on n, regardless of its percentage content. On
the other hand, in the case of the K value, the addition of 2% did not affect its value, while
at 4%, a clear decrease can be noticed. In the case of a placebo sample containing HPC,
the curves showed best fitting to the Herschel–Bulkley model, which is used to describe
materials that follow the power law flow behavior but reveal the presence of yield stress
(τ0) [108]. Despite the high value of τ0, the above-mentioned samples showed lower K
values than the MC samples, while the n values were switched closer to 1.0, which suggests
a tendency to a more plastic reaction of the tested system. Surprisingly, the addition of
the binary mixture to an HPC containing vehicle resulted in a lower reproducibility of the
results and irregular shape of the flow curves, which are probably related to the varied
shape of the binary mixture particles. Therefore, it was impossible to obtain reliable data
and to fit the curves to the appropriate model. It can be stated that with the presence
of HPC in formulation, the consistency index decreased to a large extent. Moreover, in
the case of MC containing formulations, an addition of 2% of the binary mixture did not
have any visible effect on the consistency, but increasing its amount to 4% contributed to
decreasing this parameter.

Temperature sweeping. The evaluation of the thermosensitivity of the systems was
assessed in steady shear conditions with a constant shear rate (10 1 s−1) and increasing
temperature. Two parameters were determined from the shape of the curves, such as Tsol–
gel corresponding to the average viscosity value during the entire measurement and the
maximum viscosity obtained by the formulations during the test. As can be seen in Figure
S3 (Supplementary Materials) and Table 3, the gelation temperature of all formulations was
within the range of 25–27 ◦C. In comparison to MC samples, HPC contributed to a slight
decrease of about 1 ◦C. Among MC gels (formulations F1-2 and F1-4), it could be seen that
the presence of the binary mixture did not have any influence on Tsol–gel. Additionally, it
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can be stated that placebo sample P1 showed a more rapid gelation process, whereas after
binary mixture addition, the gelation process was more extended.

Table 3. Rheological parameters calculated for placebo and SBE/Cs 80:500 loaded hydrogels.

P1 P2 F1-2 F1-4 F2-2 F2-4

Controlled rate
K 188.53 ± 5.42 9.07 ± 0.64 186.67 ± 4.00 113.17 ± 7.06 — —
n 0.11 ± 0.00 0.74 ± 0.02 0.10 ± 0.00 0.11 ± 0.00 — —
τ0 — 316.53 ± 8.46 — — — —

Temperature sweeping
Tsol–gel 26.65 ± 0.11 25.68 ± 0.02 26.75 ± 0.04 26.28 ± 0.03 26.62 ± 0.02 25.80 ± 0.02
ηsol–gel 8.45 ± 0.07 13.02 ± 0.47 12.21 ± 0.04 9.62 ± 0.03 10.61 ± 0.05 16.93 ± 0.03

Stress sweeping
LVR 74.83 ± 9.05 106.34 ± 10.01 84.48 ± 20.90 66.31 ± 18.08 62.07 ± 10.13 70.63 ± 13.13

Cross-over ↑ 158.43 ± 1.40 189.87 ± 5.09 165.97 ± 13.90 147.82 ± 20.64 168.77 ± 11.12 195.77 ± 10.37
Cross-over ↓ 92.88 ± 3.13 122.67 ± 12.19 92.73 ± 0.35 89.10 ± 5.15 87.73 ± 4.10 122.10 ± 7.24

K—consistency coefficient, n—power law index, τ0—yield point, Tsol–gel—gelation temperature, ηsol–gel—dynamic viscosity at Tsol–gel,
LVR—linear viscoelastic region, Cross-over ↑—G′ = G” point at increasing stress ramp, Cross-over ↓—G′ = G” point at decreasing stress ramp.

Dynamic oscillatory experiments. Oscillatory measurements were performed in two
modes, the first in stress (amplitude) sweeping (SS) and the second in frequency sweeping
(SS) [109]. The SS analysis was carried out in two stages, under increasing and decreasing
stress, due to depicting the ability of the samples to rebuild their structure after destruction.
The samples were subjected to the increasing stress, which changed sinusoidally. Changes
in the values of the storage (G′) and loss (G”) were monitored. The value of angular
frequency was constant and equal to 1 Hz (6.2832 rad s−1). On the basis of the obtained
results, the LVR (Linear Viscoelastic Regime) of the tested samples was first defined. LVR
depicts the stress range during which the internal structure remains intact and both mod-
uli are independent on the stress. As it was shown in Figure 5, all of the formulations
revealed typical elastic behavior as G′ prevailed G”. The LVR also depicts the mechanical
stability, which is the result of a well-packed and linked polymer structure. Broad LVR
also characterizes well-dispersed materials. As presented on the plots, the values of both
modules began to approach to each other under the influence of increasing stress, mostly
as the result of polymer chains extension. The cross-over point of G′ and G” depicts the
moment of elasticity loss, beyond which the samples behave more as liquids (non-linear
region). As it was mentioned, the samples were subjected to increasing and decreasing
stress, and two cross-over points were determined respectively, one for breakage of the
structure and the second depicting its reconstruction. According to the calculated rheo-
logical data presented in Table 3, a P1 sample revealed shorter LVR than P2, which could
suggest that HPC contributed to stiffening of the structure. However, such a relationship
was observed only for the placebo samples, whereas after addition of the binary mixture,
the polymer-related effects were not visible. It was noticed that in the presence of the
S. baicalensis radix extract with chitosan 80:500, the structure of the HPC-containing gels
liquefied, whereas this effect was not observed for MC gels. An interesting observation
concerned the structure recovery of the gels. In all cases, the breakdown stress values
were higher than those analogous at the recovery stage. It shows that the intact gels had
the ability to more strongly counteract the deforming force due to the stabilization of the
polymer network and the interactions between the components. In case of the rebuilding
process, the return of the mechanical strength was faster, and the obtained values of both
modules were higher than the initial values.
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After measurement of the LVR values, the samples were subjected to increasing
frequency under constant stress. The frequency sweeping provides essential information
on the structure and nature of a given material and how the microprocesses, colloidal forces,
and interactions translate into external mechanical properties. The rate of G′ dependency
on the frequency shows how the delivered energy is stored or dissipated throughout
the material. The fluidity of a given material increases with the frequency dependency.
Figure S4 (Supplementary Materials) presents the values of G′, G”, and complex viscosity
as a function of frequency. The value of G′ prevailed G” in the range of applied frequencies.
This indicates that the gels are solid-like and can be described as well-structured. Moreover,
G′ showed only a narrow dependency on the frequency, which confirmed the previous
observations. However, from the dependence of complex viscosity on the frequency, it can
be concluded that all samples showed the evidence of viscosity loss. Changes in complex
viscosity depict how viscous and elastic properties influence the flow behavior of given
material [110]. It is also defined as the total resistance to flow as a function of angular
frequency [111]. As can be seen in Figure S4, the complex viscosity of all samples showed a
dependence on the oscillation frequency, and its values decreased with increasing frequency.
It can be concluded that despite the existence of a three-dimensional polymer network,
typical for structured gels, the tested formulations are able to resist slight deformation
forces but are easily destroyed when the forces increase and their structure becomes more
liquid-like.

Figure 5. The oscillatory stress sweeping of the gel samples.

In general, it can be considered that the developed gels meet the requirements regard-
ing the mechanical properties of preparations for use in the oral cavity and will constitute
suitable vehicles for the tested active ingredients.
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2.3.2. In Vitro Dissolution Studies

Studies with the use of Franz diffusion cells were carried out to assess in vitro release
profile of three active ingredients, baicalin, baicalein, and wogonin. The obtained results
are presented in Figure 6 and Table S2 (Supplementary Materials) as the dependence of
cumulative flux (Jss) on time. When using the infinite dose conditions, the permeation of
the active compounds in a steady-state period follows Fick’s first law. It has to be taken
into account that in the case of artificial membranes, the process undergoes a slightly
different pattern, which is related to the fact that the membrane does not constitute a tight
border; therefore, it can be used to simulate the conditions present after application of the
formulation to the periodontal pocket, as it does not have the direct impact on the active
compounds release. Within the steady-state period, the flux (Jss = dQ/dt, µg cm−2 h−1)
is constant and can be calculated as the slope of the linear regression of the released
amount as a function of time. This value can be further used to calculate the release
coefficient Kr = Jss/C0 [112,113]. As can be seen from the course of the release profiles,
this process, in the measured range, followed the zero-order release kinetics. However, it
must be emphasized that due to the fact that the formulations were poured to the donor
compartment of the Franz cell in a liquid state, a very fast onset of the release process
could have occurred. The sample dosing started after 30 min of the experiment; therefore,
some amounts of the actives could be released immediately after application and before
thickening of the vehicle. It also has to be kept in mind that after mixing of the binary
mixture with the vehicles, some amounts of the active compounds that were not bound to
the chitosan particles rapidly dissolved, and this fraction could immediately diffuse across
the membrane. Nevertheless, in the case of baicalin and baicalein, the profiles suggest
that throughout the experiment, the release was not diffusion dependent. Probably, it
was also the effect of gradual water uptake dilution of the gel formulation in acceptor
fluid. Wogonin displayed the slowest release rate, and the lowest cumulative amounts
of this compound at the end of the studies were observed in acceptor media. Moreover,
for this compound, a 1 h release lag time period was noticed. According to baicalin and
baicalein, it was clearly shown that the Jss and Q6h values increased with the amount of the
binary mixture in the formulation. In both cases, the Kr values had the highest values for
the binary mixture concentration of 2%. Baicalin showed a slower release rate from the
formulation F2 (with HPC), but the effect was not noticeable for baicalein. It can be also
stated that baicalein was released in larger amounts than baicalin, as the values of Q6h were
predominantly higher. The parameters calculated for wogonin show that the release was
significantly slower and time extended than the other two substances. It should be taken
into account that one of the components present in the media was PEG400, which may act
as a co-solvent for lipophilic substances. The applied components of the vehicle, due to the
presence of active ingredients, both in free form and bound to the chitosan carrier, have
the potential to provide a two-stage release, with the first initial dose and the subsequent
maintenance dose.

It should be emphasized that the results obtained on the Franz cells do not have to
directly correlate with the PAMPA penetration test. In the first case, the applied synthetic
diffusion membranes act only as a mechanical border to the formulation and its components
and do not interact directly with active compounds molecules; hence, the process that takes
place is called release. In the case of the PAMPA test, the composition of the membrane
determines the permeation of active compounds depending on their physicochemical
properties, and thus, the process can take a different course.

It can be stated that the slower the release of the active compounds, the better, espe-
cially bearing in mind that in the oral cavity, the gels will have direct contact with saliva and
will be exposed to oral movements, which to some extent may accelerate the degradation
of the polymer network and can liquefy their structures.
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Figure 6. Dissolution profiles of (a) baicalin; (b) baicalein; (c) wogonin from hydrogels with binary
mixture with S. baicalensis radix lyophilized extract and chitosan using acceptor solution (pH 6.6) con-
taining potassium chloride, sodium chloride, di-potassium hydrogen orthophosphate, magnesium
chloride, calcium chloride, and xylitol.

2.3.3. Mucoadhesive Properties

Ex vivo tensometric analysis measured the maximum detachment force (mimicking
the mechanical stress caused by e.g., sharp tongue movements interrupting contact be-
tween the formulation and buccal tissue) and the work of mucoadhesion (imitating the
overall ability to retain on the buccal epithelium after application) required to separate
the tested formulations; the placebo from the excised porcine cheek displayed anatomical
and structural resemblance to human buccal epithelium [114]. Both bases P1 and P2 used
for hydrogel formation comprise hydrophilic polymers (Table 4) commonly regarded as
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mucoadhesive materials [115]. As expected then, all examined formulations displayed
substantial mucoadhesive behavior when compared to negative control but responded
differently upon contact with excised porcine cheek (Figure 7).

Table 4. Percent composition of the prepared formulations.

Component AlgNa MC HPC PEG400 P407 DW SBE/Cs 80:500

P1 0.4 0.6 — 2.0 17.0 80.0 —
P2 0.4 — 0.6 2.0 17.0 80.0 —

F1-2 P1 98.0 2.0
F1-4 P1 96.0 4.0
F2-2 P2 98.0 2.0
F2-4 P2 96.0 4.0

Figure 7. (a) Maximum detachment force (Fmax) expressed in millinewtons (mN); (b) work of mucoadhesion (Wad) expressed
in microjoules per tissue area unit (µJ/cm2) of hydrogels with a binary mixture of lyophilized extract of S. baicalensis radix
and chitosan 80:500 (in weight ratio 1:1) (F1–F2), placebo formulations (P1–P2), and controls (Control-1 cellulose paper;
Control-2 commercial oromucosal gel) in contact with excised porcine cheek (mean ± S.D., n = 5); * represents substantial
differences with p ≤ 0.05, ** with p ≤ 0.01 and *** with p ≤ 0.001 in comparison to Control-1; † and †† symbolize significant
differences with p ≤ 0.05 and p ≤ 0.01 in comparison to placebo formulations.

The presence of a binary mixture of S. baicalensis radix extract and chitosan improved
the mucoadhesive capacity of formulations. In fact, hydrogels F1-F2 exhibited a greater
ability to interact with porcine cheek as compared to the values obtained with the reference
commercial oromucosal gel. Notably, the strength of the mucoadhesive bond was not
altered by increasing the concentration of binary mixture from 2% to 4% in formulations F1
and F2.

The polymer composition and the type of cellulose derivative used in the designed for-
mulations influenced their mucoadhesiveness upon the addition of a mixture of S. baicalen-
sis radix extract and chitosan. Basically, formulations F2 containing hydroxypropyl cellulose
demonstrated greater Fmax and Wad values than those observed for formulations prepared
of methylcellulose (F1). In turn, no real differences in mucoadhesiveness were noticed
when compared placebo formulations P1 and P2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Int. J. Mol. Sci. 2021, 22, 11319 16 of 26

3. Materials and Methods
3.1. Preparation of S. baicalensis radix Lyophilized Extract and Its Analysis
3.1.1. Extract Preparation

The roots of Scutellaria baicalensis Georgi were purchased from the NANGA, Zlotow,
Poland (Lot No. 243112019). Total baicalin content in the plant material was determined by
using UPLC-DAD method. According to Ph. Eur. 9th Edition, the dried root of S. baicalensis
should contain baicalin not less than 9.0% [53].

Five hundred grams of dried S. baicalensis roots were extracted three times with
ethanol–water (6:4), each time for 90 min at 95 ◦C in a water bath. The obtained extract
was concentrated under the vacuum (BÜCHI Rotavapor R-210, Büchi Labortechnik GmbH,
Essen, Germany) at a temperature below 40 ◦C to a syrupy consistency, frozen, and
then lyophilized. The freeze drying was conducted at reduced pressure (2–9 hPa) at a
condensation temperature of −55 ◦C for 48 h (Heto PowerDry PL3000, Thermo Fisher
Scientific, Waltham, MA, USA). Then, 192.67 g of lyophilized extract from S. baicalensis
roots (SBE) were obtained.

3.1.2. Determination of Flavonoids Content

The determination of flavones (baicalin, baicalein, wogonin) in the lyophilized extract
of S. baicalensis radix was performed according to the High-Performance Liquid Chromatog-
raphy with diode array detector (HPLC-DAD) method developed by Wang et al. [55]. The
HPLC system comprised a high-performance liquid chromatography (DionexThermoline
Fisher Scientific, Waltham, MA, USA) equipped with a high-pressure pump (UltiMate3000),
an autosampler (UltiMate 3000), and a DAD detector (UltiMate 3000). Analyses were
performed on a Luna C18(2) column (5 µm, 4.60 mm × 250 mm, Phenomenex). The linear
gradient was as follows: 42–43% B over 0.0–18.0 min, 43–46% B over 18.0–30.0 min, 46–50%
B over 30.0–45.0 min, 50–58% B over 45.0–55.0 min, 58–61% B over 55.0–65.0 min, 61% B
over 65.0–75.0 min, and 42% B over 75.0–80.0 min with a flow rate of 1.0 mL min−1 at the
column temperature 30 ◦C. The chromatographic profile was recorded at 280 nm. The
injection volume of the sample was 5.0 µL. As a mobile phase, 0.1% acetic acid (eluent
A) and methanol (eluent B) were used. Quantification of flavonoids in S. baicalensis radix
lyophilized extract and binary mixtures was performed using Chromeleon software version
7.0 comparing the peak area with standard reference curves (10–250 µg mL−1).

The HPLC-DAD method was validated according to the International Conference on
Harmonization Guideline Q2 (ICH) for linearity, precision, the limit of detection, and the
limit of quantification (LOD and LOQ, respectively) [56].

3.2. Chemicals and Reagents

Baicalin, baicalein, and wogonin as phyproof® reference substances, as well as sodium
alginate—AlgNa, methyl cellulose—MC, poly(ethylene glycol)—PEG400 (M.W. 400), polox-
amer 407—P407 (Kolliphor® P407), and 2-hydroxypropyl cellulose—HPC were purchased
from Sigma-Aldrich Co. (St Louis, MO, USA). Chitosan (Cs) 80:500 (degree of deacetylation:
77.6–82.5%; viscosity: 351–750 mPas in 1% acetic acid at ambient temperature) and 80:1000
(degree of deacetylation: 77.6–82.5%; viscosity: 751–1250 mPas in 1% acetic acid) were
supplied from Heppe Medical Chitosan GmbH (Halle, Germany). High-quality pure water
and ultra-high-quality pure water were prepared by using a Direct-Q 3 UV Merck Millipore
purification system. Solvents used for the determination of total flavonoid content and
HPLC method were purchased from Avantor Performance Materials Poland S.A. (Gliwice,
Poland). All other chemicals were from Sigma–Aldrich Chemical Co.

3.3. Preformulation Studies of S. baicalensis radix Lyophilized Extract with Chitosan and the
Evaluation of Their Activity
3.3.1. Binary Mixtures Preparation

The standardized S. baicalensis radix lyophilized extract was mixed in an agate mortar
for 45 min with two types of chitosan with a degree of deacetylation of 80% and different
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viscosity (500 mPas and 1000 mPas) in a weight ratio of 1:1 (w/w) to obtain binary mixtures
(SBE/Cs 80:500 and SBE/Cs 80:1000, respectively) as uniform powders. The obtain binary
mixtures were stored at room temperature.

3.3.2. ATR-FTIR Spectroscopy

The molecular characteristics of binary mixtures were confirmed using Attenuated
Total Reflectance spectroscopy (ATR-FTIR) using a Bruker Equinox 55 spectrometer (Bruker
Optics, Ettlingen, Germany). The spectra were recorded with 400 scans in a range between
4000 and 400 cm−1 at a resolution of 4 cm−1 by using x software.

3.3.3. Dissolution Studies

The dissolution profiles of active compounds from binary mixtures were determined
in 150 mL of phosphate buffer solution at pH 6.6 prepared according to Ph. Eur. at 50 rpm in
a standard paddle Agilent 708-DS Dissolution at 37 ± 0.5 ◦C for 24 h [116]. Sink conditions
were maintained throughout the studies. In all experiments, 2.0 mL dissolution samples
were collected at appropriate time intervals and replaced by equal volumes of temperature-
equilibrated media and filtered through a 0.45 µm membrane filter. For the quantification
of flavones, the UHPLC-DAD method was used. The similarity of dissolution percentage
of active compounds from binary mixtures was established based on f 1 and f 2 parameters
and was defined by the following equation:

f1 =
∑n

j=1
∣∣Rj − Tj

∣∣
∑n

j=1 Rj
× 100 (1)

f2 = 50× log

(1 +
(

1
n

) n

∑
j=1

∣∣Rj − Tj
∣∣2)− 1

2

× 100

 (2)

in which n is the number of withdrawal points, Rj is the percentage dissolved of reference
at time point t, and Tj is the percentage dissolved by test at time point t. The f 1 value close
to 0 and f 2 value close to 100 indicate profile similarity [117].

3.3.4. Permeability Studies

The permeability of active compounds from binary mixtures was investigated using
the PAMPA GIT model according to the method described by Paczkowska et al. [118]. The
standards, S. baicalensis radix extract, and binary mixtures were dissolved in the donor
solution adjusted to pH 6.6. All plates were incubated for 1 h and 4 h at 37 ◦C. The
concentration of permeated flavones was determined using the HPLC-DAD method. The
apparent permeability coefficients (Papp) were calculated from the following equation:

Papp =
−ln

(
1− CA

Cequilibrium

)
S×

(
1

VD
+ 1

VA

)
× t

(3)

where VD—donor well volume (0.2 mL), VA—acceptor well volume (0.2 mL), Cequilibrium—
equilibrium concentration Cequilibrium = CD×VD+CA×VA

VD+VA
, CD—the compound concentration

in the donor well, CA—the compound concentration in the acceptor well, S—membrane
area, t—incubation time (in seconds).

To verify that Papp determined for permeability was statistically different, an ANOVA
test was used. Compounds with the value of Papp < 0.1 × 10−6 cm s−1 are classified as
low-permeable, compounds found as medium permeable have a value of 0.1 × 10−6 cm
s−1 ≤ Papp < 1.0 × 10−6 cm s−1, and compounds with a Papp ≥ 1 × 10−6 cm s−1 are defined
as high-permeable compounds [119]. Each experiment was performed three times.
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3.3.5. Biological Activity

Systems extract of S. baicalensis radix with chitosan were tested to evaluate their
biological activity in periodontal diseases. The antioxidant potential (ABTS assay and
ferrous ion chelating activity), anti-inflammatory effect (anti-hyaluronidase activity), and
microbiological activity of binary mixtures compared with the S. baicalensis radix extract
alone were estimated.

The solutions to antioxidant and anti-hyaluronidase activity studies of S. baicalensis
radix lyophilized extract and binary mixtures were prepared by shaking (400 rpm min−1)
with buffer solutions at pH 6.6 on a shaker (Thermo Scientific MaxQ 4450, Waltham, MA,
USA) for 30 min. at 37 ◦C and then centrifuging at 4100 rpm min−1 for 20 min (Nüve NF
800, Ankara, Turkey) to produce a clear supernatant. The IC50 values were calculated with
OriginPro 9 software. All experiments were performed six times.

ABTS Assay

The ABTS radical scavenging activity was conducted by the modified method of
Re et al. with a slight modification [120]. The samples were diluted with the phosphate
buffer to concentrations 0.1–1.3 mg mL−1 for S. baicalensis radix lyophilized extract and
0.2–2.7 mg mL −1 for binary mixtures. After the addition of 200 µL of ABTS•+ solution
to 10 µL of the sample in a well of a 96-well microplate, the absorbance was recorded
at 734 nm using a spectrophotometer Thermo Scientific Multiskan GO (Thermo Fisher
Scientific, Waltham, MA, USA). The control blank contained water instead of the studied
solution. The percentage inhibition of the ABTS•+ by the test samples was calculated
according to the following formula:

ABTS scavenging activity (%) = [Acontrol − Asample/Acontrol) × 100

where Acontrol is the absorbance of the control and Asample is the absorbance of the
sample. The IC50 values, i.e., the amount of antioxidant necessary to obtain half of the
initial ABTS•+ concentration, were used to compare the quality of the antioxidant potency
of the studied extract. The lower absorbance of the reaction mixture indicated a higher free
radical scavenging activity.

Ferrous Ion-Chelating Activity

The chelating ability was determined following the method of Dinis et al. with some
modifications [121]. Briefly, 10 µL of 1 mM FeCl2 were added to 0.2 mL of concentrations
(1.0–19.0 mg/mL in phosphate buffer pH 6.6) of the samples. The reaction was initiated
by the addition of 10 µL of 2.5 mM ferrozine solution. After incubating for 30 min at
room temperature, the absorbance of the mixture was measured spectrophotometrically
at 562 nm. The results were expressed as a percentage of the inhibition of ferrozine–Fe2+

complex formation, using the following equation:

Metal chelating activity (%) = (Acontrol − Asample)/Acontrol × 100

where Acontrol is the absorbance of the control reaction (without extract or binary mixtures),
and Asample is an absorbance in the presence of extract or binary mixtures. All experiments
were performed six times. The IC50 values (50% inhibition) were calculated from the plot
of chelating percentage against concentration and used for comparing the quality of the
studied samples.

Anti-Hyaluronidase Activity

The inhibition of hyaluronidase was performed by a turbidimetric method described
by Studzińska-Sroka et al. [122]. The final concentrations for binary mixtures and S. baicalen-
sis radix lyophilized extract were 0.04–0.25 mg mL−1 and 1.6–2.4 mg mL−1, respectively.
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Antimicrobial Activity

All tested substances were dissolved in 20% water solution of dimethyl sulfoxide
DMSO. The minimum inhibitory concentrations (MICs) were evaluated for five Gram-
positive bacteria (Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Actinomyces
naeslundii, and Lactobacillus acidophilus), three Gram-negative bacteria (Escherichia coli,
Proteus mirabilis, Prevotella intermedia), and two species of yeast-like fungi (Candida albicans,
C. tropicalis). All strains were from the collection of the Chair and Department of Medical
Microbiology, PUMS. MICs of selected substances were determined by the micro-dilution
method using the 96-well plates (Nest Scientific Biotechnology). The methodology was
described in our previous publications [123,124]. In wells, we placed Mueller–Hinton broth
(Graso, Poland) and the final concentration of microbial inoculums was 105 CFU mL−1.
The plates were incubated at 35 ◦C for 24 h. Serial dilutions of each of the substances were
performed in the range concentrations of 1.22–2500 µg mL−1. The analyses were repeated
three times.

3.4. Formulation Studies Involving S. baicalensis radix Lyophilized Extract with Chitosan and the
Evaluation of Its Quality
3.4.1. Hydrogels Preparation

The compositions of the hydrogel formulations are presented in Table 4. The binary
mixture of S. baicalensis radix lyophilized extract and chitosan 80:500 was added in two
amounts to the placebo samples to achieve its concentration of 2 and 4%. The placebo
samples (P1, P2) were prepared in closed 50 mL glass bottles, according to the following
procedures. In the case of P1, the deionized water was heated to 90.0 ± 2.0 ◦C. Then, the
desired amounts of sodium alginate and methyl cellulose were added on the surface and
mixed for 30 min to obtain clear polymers solution with the use of an RET controlvisc
magnetic stirrer (IKA, Staufen, Germany). Subsequently, the mixture was cooled down
to 25.0 ± 2.0 ◦C, and poly(ethylene glycol)—PEG400 was added. After 5 min mixing,
poloxamer 407 was poured on the surface and was left for 24 h at 2.0 ◦C for its entire
dissolution. In the case of P2, hydroxypropyl cellulose was added immediately after
PEG400 and prior to mixing. The chitosan system with S. baicalensis radix extract-loaded
formulations was prepared by 15 min mixing of a specific amount of the binary mixture
with the placebo samples.

3.4.2. Rheological Experiments

The rheological measurements were carried out with the use of a HAAKETM RheoStress1
(Thermo Electron Corp., Waltham, MA, USA) rotational rheometer. The rheometer was
equipped with a HAAKETM DC30 thermostat. The titanium plate–plate geometry (35 mm)
was used for the measurements with the standard gap of 1.0 mm. After lowering the upper
plate, the excess of the sample was gently removed by a spatula to avoid any unwanted
shearing. The temperature during measurements was set at 32.0 ± 0.5 ◦C. The analysis and
calculation were performed on HAAKETM RheoWinTM Data Manager Software (Thermo
Electron Corp., Waltham, MA, USA). A fresh sample were used for each measurement. Each
assay was conducted in triplicate. The mean values and standard deviations of the obtained
parameters were reported.

Steady shear experiments involved flow curves (CR, controlled rate) and a temperature
ramp test (TS, temperature sweeping). The flow curves (Figure S2) were plotted as the
dependence of the shear stress on the shear rate at 37.0 ± 0.2 ◦C. The pre-shearing stage
included shearing of the samples with a 2.0 1 s−1 rate for 5 s. Then, the shear rate increased
from 0 to 200.0 s−1 over 30 s. The temperature sweeping was performed in the range of
22.0–32.0 ± 0.2 ◦C under a constant shear rate of 10.0 1 s−1. The changes were plotted as
the dependence of dynamic viscosity vs. temperature (Figure S3).

Oscillatory shear measurements included stress sweeping (SS) and frequency sweep-
ing (FS) experiments. Stress sweeping was performed with a two-step procedure. At
a constant frequency of 1 Hz, the samples were exposed to increasing and decreasing
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oscillatory stress in the following order 1.0→300.0→1.0 Pa. The oscillatory stress (τ),
storage modulus (G′), and loss modulus (G”) values were plotted on a logarithmic sale
(Figure 5). For frequency sweeping, the samples were exposed to increasing frequency
(f = 1.0–100.0 Hz) at constant oscillatory stress (2.0 Pa). The results are presented in a
logarithmic scale as the dependence of G′, G” on f (Figure S4).

3.4.3. In Vitro Dissolution Studies

Drug release experiments were performed for hydrogel formulations with the use of
vertical Franz cells (PermeGear Hellertown, Pennsylvania, USA), each containing 8 mL
of acceptor solution composed (per liter) of potassium chloride (1.20 g), sodium chloride
(0.85 g), di-potassium hydrogen orthophosphate (0.35 g), magnesium chloride (0.05 g),
calcium chloride (0.20 g), and xylitol (20.0 g) (pH was adjusted to 6.6 by 1 M HCl). The
cells were equipped with regenerated cellulose membranes (Visking® dialysis tubing,
SERVA Electrophoresis GmbH, Heidelberg, Germany) with a pore diameter ca. 25 Å. The
membranes were kept immersed in the acceptor fluid at 37.0 ± 0.5 ◦C for 24 h before
the experiment. The liquid samples (1.0 mL) were placed at the donor compartment and
spread evenly on the surface of the artificial membrane. The effective diffusion area of the
employed cells was 0.999 cm2. The receptor fluid during the test was stirred at 200 rpm and
kept at a temperature of 37.0 ± 0.5 ◦C. The samples (1.0 mL) were taken from the receptor
compartment after 30, 60, 120, 180, 240, 300, and 360 min and replaced immediately with
an equal volume of receptor fluid. The drug concentration in the collected samples was
determined with the validated HPLC method described above.

3.4.4. Mucoadhesive Properties

A TA.XT.Plus Texture Analyzer (Stable Microsystems, Godalming, UK) equipped with
the measuring system Rig-G/MUC was used for the mucoadhesion test [125,126].

Porcine cheeks were obtained from the Bost slaughterhouse (Turośń Kościelna, Poland).
Tissue excised immediately after animal death was rinsed with isotonic saline solution
and frozen at −20 ◦C. Samples were defrosted at ambient temperature and cut into pieces
(with 3 mm thickness) prior mucoadhesion studies. A fragment of epithelium excised
from porcine cheek was attached to the thermostated steel plane (37.0 ± 1.0 ◦C) with
cyanoacrylate glue and kept for 5 min prior the experiment. Each gel sample (1 mL) kept
at ambient temperature for 24 h before analysis was carefully set on the upper probe with a
syringe to prevent air bubbling and secured with the attached support collar. Then, the
probe was lowered on the surface of the porcine tissue with a constant speed of 0.5 mm
s−1 and a contact force of 0.3 N was applied for 60 s. Afterwards, the two surfaces were
separated at a constant speed of 0.1 mm s−1. The maximum detachment force (Fmax) as a
function of displacement was recorded from Texture Exponent 32 software, and the work of
mucoadhesion (Wad) expressed in µJ per tissue area was calculated from the area under the
force versus distance curve. Cellulose paper was used as a negative control and commercial
oromucosal gel based on carbomer with an extract of S. baicalensis radix Baikadent® (batch
number 030121, expiry date 07.2022, Herbapol, Poland) was applied as a positive control.
Each experiment was carried out at least five times [127].

A statistical analysis was carried out with Statistica 12.0 software. The normality of
results was checked using the Shapiro–Wilk test. The differences among the mean values
of mucoadhesiveness were tested using the Kruskal–Wallis test with post hoc Dunn’s test
for multiple comparisons. Differences between groups were considered to be significant at
p < 0.05.

4. Conclusions

In the present studies, thermosensitive semi-solid formulations containing the binary
mixture of the S. baicalensis radix lyophilized extract and chitosan were developed for peri-
odontitis treatment. The combination of S. baicalensis radix extract and chitosan exhibited
synergistic effects toward ferrous ion chelating activity, inhibition of hyaluronidase, and
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pathogen growth. For this purpose, temperature-sensitive poloxamer 407 and sodium
alginate as an ion-sensitive polymer, stiffening the structure in contact with ions present
in saliva, were used. In addition, two types of polymers were added to more efficiently
bind the preparations to the site of administration and thus extend the residence time. As a
result, the developed innovative gels showed a tendency to have a liquid consistency at
25–27 ◦C, while they thickened immediately after exceeding it. Therefore, it will be possible
to inject the preparations into the periodontal pocket and fill it thoroughly, which is an
unquestionable advantage over commercial gels available on the market. After thickening,
the gels showed a prevalence of elastic properties over viscous ones, while maintaining
the shear thinning behavior. The presence of chitosan in a binary mixture improved the
binding strength of the formulations with the mucosa significantly.
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Piontek, J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics 2021, 13,
417. [CrossRef]

127. Bassi da Silva, J.; Ferreira, S.B.D.S.; Reis, A.V.; Cook, M.T.; Bruschi, M.L. Assessing Mucoadhesion in Polymer Gels: The Effect of
Method Type and Instrument Variables. Polymers 2018, 10, 254. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://doi.org/10.3390/pharmaceutics13030417
http://doi.org/10.3390/polym10030254
http://mostwiedzy.pl

	Introduction 
	Results and Discussion 
	Preparation of S. baicalensis radix Lyophilized Extract and Its Analysis 
	Extract Preparation 
	Determination of Flavonoids Content 

	Preformulation Studies of S. baicalensis radix Lyophilized Extract with Chitosan and the Evaluation of Their Activity 
	Binary Mixtures Preparation 
	ATR-FTIR Spectroscopy 
	Dissolution Studies 
	Permeability Studies 
	Biological Activity 

	Formulation Studies Involving S. baicalensis radix Lyophilized Extract with Chitosan and the Evaluation of Its Quality 
	Preparation of the Formulations and Rheological Analysis 
	In Vitro Dissolution Studies 
	Mucoadhesive Properties 


	Materials and Methods 
	Preparation of S. baicalensis radix Lyophilized Extract and Its Analysis 
	Extract Preparation 
	Determination of Flavonoids Content 

	Chemicals and Reagents 
	Preformulation Studies of S. baicalensis radix Lyophilized Extract with Chitosan and the Evaluation of Their Activity 
	Binary Mixtures Preparation 
	ATR-FTIR Spectroscopy 
	Dissolution Studies 
	Permeability Studies 
	Biological Activity 

	Formulation Studies Involving S. baicalensis radix Lyophilized Extract with Chitosan and the Evaluation of Its Quality 
	Hydrogels Preparation 
	Rheological Experiments 
	In Vitro Dissolution Studies 
	Mucoadhesive Properties 


	Conclusions 
	References

