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Abstract 20 

 The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact 21 

on biological systems even at extremely low concentrations. For instance, enormous 22 

threats to human and aquatic species have resulted from the widespread use of 23 

antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-24 

resistant bacterial species and associated genes. Additionally, it is challenging to 25 

eliminate these PhACs by employing conventional physicochemical water treatment 26 

techniques. Enzymatic approaches, including laccase, have been identified as a 27 

promising alternative to eliminate a broad array of PhACs from water matrices. 28 

However, their application in environmental bioremediation is hindered by several 29 

factors, including the enzyme's stability and its location in the aqueous environment. 30 

Such obstacles may be surmounted by employing laccase immobilization, which 31 

enables enhanced stability (including inactivation caused by the substrate), and thus 32 

improved catalysis. This review emphasizes the potential hazards of PhACs to 33 

aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well 34 

as the deployment of laccase-based multifunctional biocatalytic systems for the 35 

environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, 36 

antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach 37 

could reduce the underlying toxicological consequences. In addition, current 38 

developments, potential applications, and viewpoints have focused on computer-39 

assisted investigations of laccase-PhACs binding at enzyme cavities and 40 

degradability prediction. 41 

Keywords: Laccase; Pharmaceutical compounds; Biocatalysis; Enzyme 42 

immobilization; Environmental bioremediation; Ecological hazards; Toxicity  43 
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1. Introduction 45 

A new class of organic pollutants known as pharmaceutically active compounds 46 

(PhACs) primarily consists of hormones, antibiotics, antifungal agents, 47 

antidepressants, anti-epileptics, hypoglycemic medications, analgesics, beta-48 

blockers, and nonsteroidal anti-inflammatory medicines (NSAIDs) [1, 2]. The 49 

potential application of PhACs is widely employed in agriculture, aquaculture, animal 50 

husbandry, and human healthcare globally [1]. PhACs are not used by organisms 51 

substantially, and most of them are flushed out of the body in their parent form 52 

before being metabolized, the vast majority of these compounds end up in the 53 

environment or wastewater treatment facilities (WWTPs) [1]. The concentration of 54 

PhACs in water systems has been reported in a varying range from ng L−1 to µg L−1 55 

[3, 4]. Their existence in aquatic ecosystems is a consequence of the direct release 56 

of WWTP effluents into water bodies [5]. These PhACs are present in both the 57 

influent and effluent wastewater, but they might also be detected in other kinds of 58 

surface water including freshwater and marine environments as well as in 59 

groundwater via effluent leachates [6]. Over the last decade, the increase in the 60 

global population has led to elevated drug use and, therefore, a significant excretion 61 

of both the drug and its metabolites [5]. The scarcity of information concerning the 62 

sources, transport, and accumulation of PhACs in aquatic ecosystems has resulted 63 

in uncertainty in associated potential risks they may exhibit during their interactions 64 

with aquatic bodies. On a global scale, these compounds are among the most 65 

critical emerging contaminants (EC) found in water sources [5]. Consequently, 66 

PhACs have devastating consequences on aquatic organisms, since exposure to 67 

them has negative reproductive effects in the early life stages of several species [7-68 

10]. As a result, this issue requires serious consideration as a way to address it 69 
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promptly. A wide range of physical, physicochemical, and chemical methods 70 

including membrane processes, advanced oxidation processes (e.g., ozonation, UV 71 

photolysis or UV/H2O2) adsorption are often employed to remove pharmaceutical 72 

contamination from water [11-13]. Nevertheless, these methods have several 73 

disadvantages, including the generation of toxic by-products in advanced oxidation 74 

processes, the disposal challenges associated with concentrated waste in 75 

membrane processes, and the cost of operation, etc. [14]. For instance, the high 76 

expense of the reagents (such as H2O2) and energy required to generate O3 or UV 77 

light is one major drawback of advanced oxidation processes [15]. Compared to 78 

physicochemical or other non-biological processes, biological processes particularly 79 

enzymatic remediation offer several benefits including; In addition, including 80 

advantages of environmental friendliness, high efficiency, broad substrate specificity, 81 

less toxic need less energy, and not required for any extra nutrients to operate 82 

designed experiments [14, 16]. 83 

Laccases (EC 1.10.3.2) are multicopper-containing oxidoreductases that are 84 

potent biocatalysts and have been exploited in the bioremediation of a broad range 85 

of pollutants including a wide range of PhACs [17-24]. Laccases can oxidize diverse 86 

phenolic and non-phenolic contaminant compounds employing molecular oxygen as 87 

an electron acceptor, with water as the only by-product [25, 26]. This is a clear 88 

advantage when compared to other enzymes (peroxidases or oxidases) with oxidant 89 

potential that could be used for similar functions, as both have H2O2 in their catalytic 90 

cycle (Fig. 1) [27]. Peroxidases have been proposed in many instances to perform 91 

this bioremediation function, but these enzymes require the use of H2O2 as an 92 

oxidant cosubstrate [28-31]. This means that the actual use of these enzymes in 93 

bioremediation may be hindered, as it may not be easy to add this dangerous 94 
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reagent to the environment due to its negative biological effects, although this fact 95 

used to be not considered. This may be stressed if the environment is as large as 96 

the ocean. Oxidases are other alternatives to destroy contaminant compounds [28, 97 

32, 33].  They do not require the addition of H2O2 as a co-substrate (Fig.1).  As 98 

laccases do, they can utilize molecular oxygen as an oxidant. However, in their 99 

catalytic cycle, the FAD-dependent oxidases produce hydrogen peroxide as a by-100 

product [27, 34, 35]. Laccases are extensively prevalent in the environment (e.g., 101 

plants, insects, fungi, and bacteria)) [17]. Such prevalence has been caused by their 102 

multiple physiological roles. For example,  within plants, they are engaged in lignin 103 

biosynthesis (polymerization from monolignols), while bacterial and fungal-derived 104 

laccase (Table 1) are most often deployed systems involved in the degradation of 105 

lignin, phenolic, and pharmaceuticals [36-38]. The catalytic reaction of laccase 106 

triggers the cleavage of each specific compound in a unique way, i.e., C-C cleavage, 107 

oxidation, or alkyl-aryl cleavage; the same pattern is utilized to break down both β-1 108 

and β-O-4 dimers of lignin compounds [39, 40]. Laccases catalyze oxidative coupling 109 

or bond breakage of target molecules by one-electron oxidation and 110 

subsequent radical formation [41]. Such attribute of laccase may oxidize several 111 

phenolic and nonphenolic substances owing to its broad substrate specificity [42, 112 

43]. Based on distinct spectroscopic features, the four copper atoms in a typical 113 

laccase molecule are classified as Type 1 (T1), Type 2 (T2), and binuclear Type 3 114 

(T3) Cu sites [44]. The four copper ions in the resting enzyme are in the +2 oxidation 115 

state [44]. Plant and bacterial laccases typically have low redox potentials (e.g., 0.43 116 

and 0.46 V for Rhus vernicifera and wild-type Bacillus subtilis CotA laccases, 117 

respectively), whilst, white-rot fungi exhibit comparatively higher redox potential 118 

(0.720–0.790 V) [41]. A rising global issue in recent years has been the presence of 119 
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ECs, which include a variety of PhACs, in both the environment and WWTPs [45, 120 

46]. PhACs and their metabolites are usually discharged into the environment by 121 

urban agricultural discharge, hospital effluent, and treated and untreated industrial 122 

wastewater [45, 46]. Hospitals primarily discharge PhACs into the environment as a 123 

consequence of patient excretion and the improper disposal of remaining 124 

medications [46]. A schematic representation of PhACs emergence from diverse 125 

sources and their prevalence in water matrices is portrayed in Fig. 2. Several PhACs 126 

are not eliminated through WWTPs and are released into the environment either in 127 

the form of non-degraded or in metabolites [47]. Despite this, the WWTPs are not 128 

initially designed with the distinct objective of eliminating these hazardous chemicals 129 

[48]. The magnitude of toxicological hazards of such PhACs has been explained 130 

thoroughly in a separate section. For example, antibiotics such as sulfamethoxazole 131 

can induce genetic alterations and long-term effects in aquatic animals, even at low 132 

concentrations [49-51]. Conversely, analgesics such as paracetamol can increase 133 

the risk of asthma, liver damage, and kidney cancer in humans [52, 53]. Laccase-134 

based biocatalysts are well-suited to expediting the development of environmentally 135 

friendly, sustainable, and efficient industrial deployments to mitigate the 136 

aforementioned EC from water matrices [23]. However, the affordability and 137 

effectiveness of the enzymes restrict the widespread use of laccases. Considerable 138 

efforts have been undertaken to enhance the production of substantial quantities of 139 

laccases at a low cost by the use of recombinant organisms or the identification of 140 

natural hypersecretory strains [54]. Enzyme activity and stability can be improved by 141 

employing appropriate immobilization techniques, including the use of bionanozyme 142 

methods, as discussed below [55]. The immobilization of enzymes without 143 

compromising their activity offers a potential solution to these issues and enables 144 
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reusability by simplifying the separation process and enhancing stability to a variety 145 

of environmental factors [56]. In addition to the conventional application of laccases 146 

in the degradation of ECs, they have also been employed in the computer-aided pre-147 

screening of degradability, which involves the implementation of multivalent 148 

computational techniques that include docking, MD-simulation, DFT, protein 149 

modeling, and predicted plausible pathways for microbial degradation [57-62]. The 150 

aforementioned computer-aided methods are not only robust, but they also provide a 151 

molecular-level comprehension of the degradation process by comprehending the 152 

role of the involved amino acid residues [63].The purpose of this review article is to 153 

emphasize the potential hazards of PhACs and the potential applications of laccases 154 

in both their free and immobilized forms for the degradation of a wide range of 155 

PhACs. Additionally, the computational framework has been outlined in coupled with 156 

laccase utilization as a method to facilitate the degradation of PhACs using laccases. 157 

This approach involves prescreening-based degradability, which could aid in the 158 

exploration of the structural aspects of laccases that bind to PhACs at the cavity and 159 

associated amino-acid residues. 160 

 161 

 162 

 163 

 164 

 165 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 
 

Table 1 List of well-known laccase-producing microbial species with kinetics parameters. 166 

Laccase producer Substrate KM Vmax kcat kcat/KM Condition Reference 

Aureobasidium pullulans 
NAC8 

Guaiacol 1.05 ± 0.12 
mM 

12.67 ± 0.55 
μmol/ml/min 

25.3 × 
10−1 s−1 

2.4 × 103 M−1 s−1 pH-4.5, 
45 °C 

[64] 

Pleurotus ostreatus POXA3b ABTS 74 μm  158 333 2.1 × 109 pH 3.6, 25 °C [65] 

Pleurotus ostreatus POXA3a ABTS 70 μm  73 333 1.0 × 109 pH 3.6, 25 °C [65] 

Lentinus sp. ABTS 65 μm  3382 5.2 × 107 pH 2.5, 70 °C [65] 

Trametes hirsuta ABTS 41 μm  196 4.8 × 106 pH 5.0, 25 °C [65] 

Rigidoporus lignosus ABTS 200 μm  1360 6.8 × 106 pH 3.0, 25 °C [65] 

Meripilus giganteus ABTS 17 μm  546 3.7 × 107 pH 3.0, 30 °C [65] 

Agaricus bisporus ABTS 134 μm  7885 5.9 × 107 pH 3.0, 65 °C [65] 

Trametes versicolor ABTS 38 μm  26 803 6.0 × 108 pH 3.0, 65 °C [65] 

Tricholoma mongolicum ABTS 2 μm  1480 6.4 × 108 pH 4.5, 30 °C [65] 
 

Yersinia enterocolitica strain 7 ABTS 675 μM 0.125 
μmol/ml/min 

  pH 9.0 and 
stable at 70 °C 

[66] 

Aspergillus niger ABTS     pH 4.5, 45 °C [19] 

Coriolus brevis ABTS 0.02 mM   7.2 × 106 Optimal reaction 
pH 2.5 30–90 °C 

[67] 

Bacillus sp. MSK-01 Guaiacol 
ABTS 

5.481 
mM(Guaiacol), 

1.624 mM 
(ABTS) 

19.32 μM min−1 
ml−1(Guaiacol), 
25.53 μM min−1 

ml−1(ABTS) 

  ABTS(pH 4.5),  
guaiacol(pH 8.0), 

75 °C 

[68] 

 167 
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2. Routes, occurrence, and associated hazards of pharmaceutical 168 

contaminants  169 

The disposal of pharmaceuticals and their by-products, as well as the excretion of 170 

both people and animals, bring these substances into the environment. On a 171 

worldwide level, pharmaceutical substances such as NSAIDs, anticonvulsants, β-172 

blockers, and their metabolites have been detected in water bodies [69]. 173 

Pharmaceuticals are continuously released into the environment as a result of their 174 

extensive utilization. (i) urban domestic effluents, (ii) hospital effluents, (iii) livestock 175 

farming, which involves the excretion of pharmaceuticals and their metabolites, and 176 

(iv) pharmaceutical manufacturing serve as the most significant and extensive 177 

sources of pharmaceutical contamination in wastewater worldwide (Fig. 2) [70]. 178 

Pharmaceuticals are a substantial contributor to wastewater effluent from hospitals 179 

and health care facilities resulting from the excretion of pharmaceuticals by patients 180 

and laboratory, diagnostic, and research activities. Conventional wastewater 181 

treatment facilities are unable to adequately remove the inert chemicals and 182 

metabolites released into the environment as a result of the widespread use of 183 

pharmaceuticals [6, 71]. The prevalence of pharmaceutical substances and their 184 

metabolites in the environment is an issue of concern. Consequently, 185 

pharmaceuticals pose a concern to aquatic ecosystems and human health since 186 

they are found in water bodies in amounts ranging from ngL-1 to µgL-1  [72-76].   187 

Many organic chemicals, along with pharmaceutics, are present in surface waters 188 

owing to inefficient removal from wastewater-treatment facilities. In addition to 189 

wastewater from municipalities and hospitals, human pharmaceuticals consumption 190 

is also derived from landfill leachates, effluent from manufacturers, and the 191 

deposition of pharmaceuticals in the environment led to prolonged existence in water 192 
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10 
 

bodies. A variety of negative impacts, that include genotoxic, teratogenic, 193 

reproduction-disturbing, acute cytogenotoxic, oxidative stress, endocrine disruption, 194 

growth inhibition (EC50), deformations, and others, have been observed in aquatic 195 

organisms as a result of pharmaceutical contamination [70, 77-79]. Detailed 196 

toxicological hazards of pharmaceuticals on aquatic organisms have been listed in 197 

Table 2.  Gutiérrez-Noya et al. [78] reported that ibuprofen induces teratogenesis, 198 

and oxidative stress, and alters embryonic development in Cyprinus carpio. 199 

Subsequently, at concentrations between 1.5 and 11.5 μg L-1, ibuprofen was capable 200 

of inducing alterations to embryonic development, teratogenic effects, and oxidative 201 

stress in oocytes and embryos of Cyprinus carpio. As a conclusion, the major 202 

embryonic development abnormalities and teratogenic consequences were delayed 203 

hatching, hypopigmentation, pericardial edema, yolk deformation, and 204 

developmental delay in Cyprinus carpio. 205 

Rosas-Ramírez et al. [79] studied the teratogenic effects of paracetamol, and 206 

ciprofloxacin, and their combined use in Danio rerio embryos. Subsequent findings 207 

indicated that paracetamol, ciprofloxacin, and their combination decreased the 208 

survival rate of embryos by as much as 75%. Furthermore, both drugs elicited 209 

morphological changes in the embryos, resulting in their mortality. The 210 

predominantly noticed defects were scoliosis, craniofacial anomalies, 211 

hypopigmentation, growth retardation, and pericardial edema. Xu et al. [80] 212 

demonstrated that naproxen induces thyroid dysfunction in zebra fish after a 60-day 213 

exposure to varying doses (0.1, 1, 10, and 100 μg L-1). Subsequent studies indicated 214 

that thyroid hormone analysis revealed significantly reduced levels of both T3 and 215 

T4. 216 

 217 
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Table 2. Main identified toxicological impacts of PhACs on aquatic animals. 218 

Pharmaceutical 
compounds 

 

Class 
 

Toxicity profile 
 

Reference 

Ofloxacin Antibiotic -Ecological risk 
-Risk to the trophic levels: fish, 

daphnids, and algae 
-Reproductive toxicity on 
Caenorhabditis elegans 

[81-83] 

Norfloxacin Antibiotic Reproductive toxicity on 
Caenorhabditis elegans 

[83] 

Erythromycin Antibiotic Antibiotic resistance [84, 85] 

Carbamazepine Anticonvulsant -Toxicological effects in 
humans and animals even at 

trace concentrations 
-Congenital malformations, 

neuro-developmental 

[86, 87] 

Metoprolol β-blockers Ecotoxicological impact [88] 

Metformin Antidiabetic Ecotoxicological risk to: 
Fish, Daphnia, Rotifers, 

Chlorella 

[89] 

Ibuprofen Analgesic Environmental risks, effects on 
aquatic organisms 

acute toxicity 

[90] 

Tramadol Opioid-
analgesic 

-Altering evolutionary crucial 
behaviors in aquatic fish 

-Aquatic toxicity 

[91, 92] 

Cephalexin Antibiotic -Antibiotic resistance 
diarrhea, skin irritation, 

nausea, and stomach ache 

[93] 

Cefradine Antibiotic Toxic to Vibrio fischeri and 
Daphnia Magna 

[94] 

Diclofenac NSAIDs -Ecological risk 
-Toxic to vultures, aquatic 

organisms, higher plants, also 
causes serious threats to 

mammals 

[95] 

Benzodiazepine(Alpr
azolam, clonazepam 

and diazepam) 

Psychotropic 
drug 

-Environmental risk 
-Bioaccumulation, behavioral 
changes, and modulations in 
genes and enzymes  of fishes 

and insects 

[96] 
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Paracetamol Antipyretic -Hepatotoxic 
-Ecotoxicological effects on 

aquatic organisms 

[97, 98] 

Albendazole Anthelmintic Toxicity on aquatic and soil 
organisms 

[99] 

Tetracycline Antibiotic Negative impact on algal and 
plankton communities 

Human health and 
environmental hazards 

[100, 101] 

 219 

3. Structural and chemical aspects of laccases 220 

As stated above, laccases belong to the protein superfamily known as multicopper 221 

oxidases [102-104]. Enzymes of this type exhibit catalytic activity in the oxidation of a 222 

wide variety of compounds, notably those with phenolic moieties. Furthermore, these 223 

enzymes are not only important in numerous biological processes but also relevant 224 

in the area of biotechnology [105, 106]. The catalytic cycle of laccase may be 225 

improved by employing a mediator system to degrade the specific contaminant 226 

(Fig.3). The molecular structure of laccases is characterized by a high abundance of 227 

beta components in its protein structure, distinguishing them from peroxidases [105, 228 

107, 108]. Although laccases are structurally complicated, they are typically 229 

monomeric enzymes [105]. The Protein Databank (https://www.rcsb.org) contains a 230 

wide range of laccases structures from many sources, characterized by their crystal 231 

structures solved by different methods containing diverse structural architects [109, 232 

110]. For instance, the laccase from Thermus thermophilus (PDB: 6TYR) comprised 233 

439 amino acids in a single chain with a molecular weight of around 49.45 kDa [109, 234 

111, 112]. Likewise, a fungal laccase, from Cerrena maxima origin (PDB: 2H5U), 235 

comprises 499 amino acid residues in a single chain with a molecular weight of 236 

around 55.67 kDa [109, 113]. A laccase from plant origin (Zea mays), PDB: 6KLJ 237 

comprises 550 amino acid residues in a single chain with a molecular weight of 238 
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63.91 kDa [109, 114, 115]. The laccase from Drosophila erecta, with accession no: 239 

XP_001981736.2, translated to have 677 amino acid residues with a calculated 240 

molecular weight of 77.56 kDa [116]. The laccase from Trametes versicolor (PDB: 241 

1KYA) contains 499 amino acid residues distributed in four chains (A, B, C, and D) 242 

with a molecular weight of  221.72 kDa [117]. The constituent amino-acid residues of 243 

no single laccase are identical to those of others. Detailed quantitative information on 244 

protein secondary structure elements of laccases from different sources have been 245 

portrayed in Fig. 4. However, it is essential to note that the use of bacterial and 246 

fungal laccases has been primarily employed in the degradation of PhACs; however, 247 

comparison to different origin may provide the structural similarity in few aspects. A 248 

closer look at the multicopper binding site of laccase with an active site of copper 249 

binding is portrayed in Fig. 5. 250 

4. Chemical scheme and catalytic functionalities of laccases 251 

The catalytic mechanism of laccases has been extensively studied and is 252 

characterized by the formation of radical species. The catalytic process of laccases 253 

commences with the mono-electronic oxidation of four equivalent reducing 254 

substrates, including aromatic and aliphatic amines and phenols. This oxidation 255 

results in the formation of organic radicals, which consume molecular oxygen before 256 

being reduced to two molecules of water [118]. The catalytic machinery of 257 

laccase consists of a four-membered copper cluster, which is also involved in water 258 

formation and release, oxygen coordination, and reduction. Fungal laccases 259 

commonly distinguish between three distinct sites within the copper cluster, each of 260 

which serves a specific function in the catalytic cycle: the “blue site” or Type 1 (T1), 261 

the "normal site" (T2), the "binuclear site" (T3) [119, 120]. The chemical reaction of 262 

laccases is characterized by the involvement of a single electron (1e-) and the 263 
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sequential oxidation of four molecules of reducing substrates. Simultaneously, two 264 

oxygen atoms undergo double electron reductions (2x2e-) to form their respective 265 

water molecules [43]. The aforementioned process is characterized by a catalytic 266 

exchange of four hydrogen ion (4 H+) equivalents [43]. The laccase reaction may be 267 

analyzed from a structural, mechanistic, and kinetic perspective. It can be 268 

conceptualized as two half-reactions that are linked by an internal electron transfer 269 

(IET) step. This process is facilitated by the presence of catalytic copper ions 270 

situated at the T1 Cu and T2 Cu/T3 Cuα/T3 Cuβ trinuclear cluster (TNC) sites [43]. 271 

The active site of laccase corresponding to substrate (Ofloxacin) binding including 272 

mediator (ABTS) binding attributes is portrayed in Fig. 6. Both possess distinct 273 

binding orientations and binding amino acid residues. 274 

5. Laccase immobilization for enhancing catalytic potential towards 275 

pharmaceutical degradation 276 

Compared to laccase in its free state, the immobilization of laccase may result in 277 

improved stability concerning storage, temperature, and pH. Enzyme immobilization 278 

consists of the location of the enzyme in a confined space [121]. This started as a 279 

technology intended to simplify the capture and reutilization of these biological and 280 

initially very expensive biocatalysts [122, 123]. The recycling, operational stability, 281 

and resistance to application conditions of laccases are all enhanced when the 282 

enzymes are immobilized [124]. Some examples of immobilization methods 283 

encompass entrapment, adsorption, covalent binding, self-immobilization, and so on 284 

has portrayed in Fig.7. In some instances, immobilized laccases can withstand high 285 

temperatures, storage, and reusability in a better way than their free counterparts. 286 

The control of enzyme immobilization requires a fine control of the process, and 287 

many artifacts can occur, that in many instances are ignored by the researcher [125]. 288 
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Nevertheless, immobilization methods have shortcomings along with their 289 

advantages (Table 3). Shortly, researchers found that proper immobilization can 290 

produce many positive effects on enzyme features. Firstly, immobilization can affect 291 

the enzyme stability [126]. Although using an inadequate immobilization protocol 292 

(e.g., using a very hydrophobic support) enzyme stability can decrease, using a 293 

proper immobilization protocol (that involves support, the groups on the support and 294 

their superficial concentration, the immobilization protocol, and the support-enzyme 295 

reaction endpoint), the enzyme stability can be greatly increased [127, 128]. This 296 

may be achieved mainly if the final support is physically and chemically inert and if 297 

an intense multipoint covalent immobilization is achieved, or if all enzyme subunits of 298 

a multimeric enzyme are bound to the support [127]. Reported support types for 299 

immobilization along with their advantages and disadvantages have been presented 300 

in Table 4. If the enzymes are submitted to chemical modification to further improve 301 

their features, performing this on immobilized enzymes may be simpler than the 302 

modification of free enzymes, making possible enzyme modifications that hardly can 303 

be performed in solution by using the benefices of the solid-phase [129]. 304 

Immobilization may benefit if a proper design of the enzyme surface is performed by 305 

site-directed mutagenesis or chemical modification to improve the enzyme 306 

immobilization performance, although this synergy has been scarcely exploited in 307 

literature [130, 131]. Immobilization can be performed using different strategies. 308 

Classically, the immobilization techniques have been classified by the immobilization 309 

cause (physical adsorption, covalent bonds, trapping, cross-linking, etc.). However, 310 

the current status of this technique suggests that a new classification may be 311 

proposed, related to the solid material utilized in the immobilization. There are new 312 

proposals to immobilize enzymes using the producing cells, adding to the enzyme 313 
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some domain that permits the enzyme to become attached to the cell wall [132]. This 314 

strategy is cheap and does not require the extraction of the enzyme, but the loading 315 

of the enzyme never becomes very high, and the possibilities of exploring all the 316 

possible beneficial effects of immobilization are reduced. A second class of 317 

immobilization strategies may be those that do not use a pre-existing solid, but that 318 

form an ex novo solid. This is composed of copolymers, aggregates, crystals coated 319 

with enzymes, nanoflowers, crosslinked enzyme crystals (CLECs) and aggragates 320 

(CLEAs), enzymes trapped in solids produced by polymer-formed ex novo (e.g., 321 

calcium alginate, lentikats), multifunctional cross-linkable itaconic acid copolymers, 322 

sol-gels, and so on [133-137]. The third group of immobilization strategy involve 323 

those where a preexisting solid is utilized as a matrix for enzyme immobilization (the 324 

immobilization may be via covalent bonds or physical interactions) [138-140]. These 325 

supports may be porous or not porous (nanomaterials, membranes) materials, and 326 

each of them may have gains and problems, depending on the specific enzyme, 327 

application, and reactor [141]. This way, it can be expected that the recycling, 328 

operational stability, and resistance to application conditions of laccases may be 329 

enhanced when the enzymes are immobilized using an adequate protocol [124]. 330 

Depending on the enzyme, the chosen immobilization technique, and preparation 331 

conditions, activity recovery varies. Due to higher stability, immobilized laccase can 332 

be also more resistant to inhibitors like NaCl [142, 143]. Despite the common concern 333 

of decreased enzyme flexibility, steric hindrance, and diffusion limits, laccase 334 

immobilization can sometimes enhance catalytic performance. The efficiency of 335 

some laccases in pharmaceutical degradation has been improved by their 336 

immobilization on diverse material frameworks [144-146]. 337 
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Masjoudi et al. [145] reported the removal of carbamazepine and diclofenac 338 

by immobilized laccase on a polyvinylidene fluoride nanocomposite containing multi-339 

walled carbon nanotubes. Covalent immobilization of laccase on nanocomposite 340 

membrane support was achieved, demonstrating high activity and activity recovery 341 

of the immobilized laccase. As a result, the immobilized reusability of laccase was 342 

confirmed for five cycles, and its stability was up to 60 °C. The study concluded that 343 

immobilized laccase in a mini-membrane reactor demonstrated removal efficiencies 344 

of 27% in 48 h and 95% in 4 h for carbamazepine and diclofenac, respectively. 345 

Taheran et al. [144] reported the Immobilization of laccase onto a nanofibrous 346 

membrane for the degradation of chlortetracycline (CTC), carbamazepine (CBZ), 347 

and diclofenac (DCF) residues in water. The results indicated that the immobilized 348 

laccase exhibited superior pH, temperature, and storage stability in comparison to 349 

the free laccase. Additionally, it maintained over 17% of its initial activity after 10 350 

cycles of ABTS oxidation, indicating that the enzyme's reusability was improved. The 351 

degradation efficiency of three pharmaceutical compounds in batch experiments was 352 

72.7% (DCF), 63.3% (CTC), and 48.6% (CBZ) after 8 hours of reaction when 353 

immobilized laccase was employed. Al-sareji et al. [24] reported laccase 354 

immobilization on activated carbon derived from pomegranate peels to remove 355 

diclofenac, amoxicillin, carbamazepine, and ciprofloxacin from water and 356 

wastewater. The subsequent study showed pomegranate peels were successfully 357 

used as an adsorbent and enzyme carrier for the removal of emerging contaminants, 358 

even from complex sample matrices. The removal of contaminants from effluent was 359 

completed in five cycles, while it was extended to six cycles for water. 360 

 361 
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Table 3:  Reported advantages and disadvantages of laccase immobilization 362 

methods. 363 

Laccase immobilization 
method 

Advantages Disadvantages 

P
h

y
s
ic

a
l 

Entrapment -Simple and rapid 
-Low cost 

-No modification of the 
enzyme 

 

-Low stabilization 
-Pore diffusion restraint 

-Enzyme leakage 
-Difficult to industrial-level 

deployment 
 

Adsorption -Low cost 
-Straight forward 

-No modification of the 
enzyme 

-Support reusability option 

-Low stabilization 
-Enzyme leakage 

 

Encapsulation -Straight forward 
-Native conformation of 

the enzyme is kept 
 

-Low stabilization 
-Highly concentrated enzyme 

requirement 
-Mass transfer 

-Pore size limitations 
-Enzyme leakage 

C
h
e

m
ic

a
l 

Crosslinking -Enzyme stabilization 
-Strong binding 

-No carrier needed 
 

-Diffusion limitations 
-Enzyme  chemical 

modification 
-Crosslinking reagent is 

required 

Covalent binding -Prevents leaking 
-High heat stability 

-Strong binding 
- The highest enzyme 

stabilization 

-Complex method 
-Cost bearing 

-Chemical enzyme 
modification 

 

 364 

 365 

 366 

 367 

 368 

 369 
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 370 

Table 4: Reported advantages and disadvantages of support types that have been 371 

employed in laccase immobilization [18]. 372 

Support type for 
immobilization 

Advantages Disadvantages 

Carbon support -Easy modification with different 
functional groups 

-Electrical conductivity 
-Good mechanical strength 

-Considerable adsorption capacity 
 

-Possibility of contamination 
-High production cost 

Toxicity 
 
 

Magnetic support -Easy surface modification 
-Good magnetic responsiveness 

-Easy separation and good 
reusability 

 

-Susceptible to acidic and 
oxidative conditions 

-Agglomeration problem 
 

Inorganic support -Low cost 
-Low impact on the environment 

-High pH and thermal stability 
-High mechanical strength 

 

-Requirements for adsorption 
properties of support 

-Particle size is not easy to 
change 

-Enzymes are relatively easy 
to leak 

-Modification is required to 
form strong enzyme support 

interaction 
 

Synthetic organic 
support 

-Abundant functional groups and 
easy modification 

-High enzyme loading 
-Strong enzyme-support binding 
-Pore diameter may be chosen 

-Large specific surface area 
 

-High cost 
-Non-renewable 

-Complex synthesis process 
 

Natural organic 
support 

-Low cost, easy to obtain materials 
-Good biocompatibility and non-

toxic 
-Abundant functional groups and 

easy modification 
-Large specific surface area-Pore 

diameter may be chosen 
in certain cases 

-Possibility of bacterial 
degradation 

-Low mechanical rigidity 
 

COFs -Low density 
-Large surface area 

-Regular and orderly pore structure 
-Structural pre-designability 

-Complex synthesis process 
and cannot be mass-produced 

-High production cost 
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-Good stability and biocompatibility 
 

MOFs -High porosity and adjustable pore 
sizes 

-Large surface area 
-Chemical and thermal stability 

-Multiple functional sites and facile 
modification 

-Negative effect on enzyme 
activity 

-High production cost 
-Microporous channels limit 

enzyme binding 
-The metal can act as a 

catalyst 

HNFs -Low mass transfer limitation 
-Cooperative effect of enzyme and 

cation center 
-Large surface area 

 

-Limited available surface 
area 

-Small-scale production 
-Uneven pore size and 

porosity 
 

 373 

6. Advances in enzyme immobilization for environmental bioremediation of a 374 

wide array of pharmaceutically active contaminants 375 

Enzyme immobilization consists of the location of the enzyme in a confined space 376 

[121]. This started as a technology intended to simplify the recovery and reutilization 377 

of these biological and initially very expensive biocatalysts [122, 123]. Moreover, as 378 

with any heterogeneous catalysts, immobilized enzymes can simplify the control of 379 

the reactor and increase the reactor types where they can be utilized, as well as 380 

simplify the downstream [122, 123]. In the case of bioremediation, the alternative to 381 

using an immobilized enzyme in a reactor where the enzyme can be reused (or the 382 

reactor can be moved to another contaminated area after being used in one specific 383 

place) is the use of a free enzyme. However, the free enzyme will be diluted along 384 

the whole medium (a lake, a river, the ocean), making the use of the enzyme less 385 

efficient. Its use in soils may be suitable, as very likely the enzyme will become 386 

adsorbed in some components of the soil and will perform its function in the desired 387 

targeted area, but due to the variability of the components of the different soils, this 388 

in situ natural immobilization may lead to improvement of enzyme properties in 389 
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certain cases, but a worsening of the enzyme features in other cases, depending on 390 

the nature of the enzyme-adsorbing materials in the soils (Fig. 8) [147]. The use of 391 

immobilized enzymes is a guarantee that these direct interactions with the soil 392 

components cannot have a negative effect on the enzyme (Fig. 8), although changes 393 

in the composition of the soil composition can affect the concentrations and nature of 394 

the salts interacting with the immobilized enzyme, or alter the pH of the medium, etc. 395 

and this obviously may affect even to the immobilized enzyme features. However, as 396 

stated later in this section, proper immobilization may also help to reduce the impact 397 

of these problems. The use of the immobilized enzyme in a reactor (to act in a water 398 

medium) can also raise some further advantages. It can permit a certain control of 399 

the reaction, perhaps not so strictly as in a standard biocatalytic process, but it may 400 

be possible at least to control the reactor temperature. Even, if the reactor is properly 401 

designed, and there is easy and cheap access to clean water, it may be possible to 402 

mix the contaminated water with this clean water to reduce the concentration of any 403 

reagent that can have a negative effect on the enzyme features or have a more 404 

neutral pH by reducing the concentration of acid or basic species. Thus, at first 405 

glance, enzyme immobilization in bioremediation may have a clear interest, even 406 

when the cost cam suggest the contrary [147]. The results of enzyme immobilization 407 

require fine control of the whole immobilization process, and many artifacts can 408 

occur. In many instances, these artifacts are ignored by the researcher [125] and can 409 

lead to wrong conclusions. That way, a deep understanding of the mechanisms of 410 

enzyme immobilization and the possible events simultaneously occurring during the 411 

immobilization should be considered to take full advantage of the technique and 412 

understand the results [125]. Shortly after the launching of the technique, 413 

researchers found that proper immobilization may produce many positive effects on 414 
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enzyme features. The first objective of enzyme immobilization was to improve 415 

enzyme stability, as only enzymes that remain active after use may be reused  [126]. 416 

Although using an inadequate immobilization protocol (e.g., using a very 417 

hydrophobic support) enzyme stability can decrease, using a proper immobilization 418 

protocol (that involves proper support, the groups on the support and their superficial 419 

concentration, the immobilization protocol, and the support-enzyme reaction 420 

endpoint), the enzyme stability can be greatly increased [127, 128]. This may be 421 

achieved mainly if the final support is physically and chemically inert and if an 422 

intense multipoint covalent immobilization is achieved, or if all enzyme subunits of a 423 

multimeric enzyme are bound to the support [127]. A recent review summarizes all 424 

possibilities of achieving some enzyme stabilization after its immobilization [148]. 425 

Enzyme immobilization may also increase enzyme activity, mainly under drastic 426 

conditions (related to higher enzyme stability) (Fig. 9), although in some instances a 427 

real positive conformational change that produces an increase in enzyme activity 428 

may be found [125]. Immobilization may be coupled to enzyme purification, using 429 

protocols defined to achieve this result, with the saving in time, effort, and economic 430 

costs that this produces [149]. The fact that the enzyme may be partially distorted 431 

and located in a confined space can lead to alterations in enzyme selectivity and 432 

specificity. In many instances, using a large enough number of immobilization 433 

technologies, a specific immobilized enzyme can greatly improve the properties of 434 

the free enzyme for a specific process [150]. Finally, enzyme resistance to inhibitors 435 

and distorting agents may be increased, making it possible to use the enzymes 436 

under higher substrate concentrations (Fig. 9) [126]. This can have a special interest 437 

in bioremediation, where some substrates can produce serious decreases in enzyme 438 

activity/stability, even at millimolar concentrations, due to their enzyme inactivation 439 
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potential [151] (Fig. 9). The use of enzymes with a more rigid structure via multipoint 440 

covalent attachment may prevent the enzyme distortions caused by the substrates, 441 

leading this way to the possibility of using the laccase biocatalysts under higher 442 

concentrations of substrates and for more time [150] (Fig. 9). It should be noted that 443 

several strategies can be simultaneously utilized to improve the final biocatalyst 444 

performance, it is not necessary to choose one strategy. In the case of 445 

immobilization, the chemical modification of immobilized enzymes may be simpler 446 

than the modification of free enzymes, making possible modifications that hardly can 447 

be performed in solution by using the benefices of the solid-phase [129, 131, 152]. 448 

Enzyme immobilization may benefit if a proper design of the enzyme surface is 449 

performed by site-directed mutagenesis or chemical modification to improve the 450 

enzyme immobilization performance [129, 131, 152]. However, this synergy has 451 

been scarcely exploited in literature [130, 153-156]. Enzyme immobilization can be 452 

performed using different strategies. Classically, the immobilization techniques have 453 

been classified by the immobilization cause (physical adsorption, covalent bonds, 454 

trapping, cross-linking, etc.). However, the current status of this technique suggests 455 

that a new classification may be proposed, related to the solid material resulting after 456 

the immobilization. The first immobilization class can be formed by the new 457 

proposals to immobilize enzymes directly using the producing cells, adding 458 

genetically to the enzyme some domains that permit the enzyme to become attached 459 

to the cell membrane or wall [132, 157-159]. This strategy is cheap and does not 460 

require the extraction of the enzyme, but the loading of the biocatalyst never 461 

becomes very high, and the possibilities of exploring all the possible beneficial 462 

effects of immobilization are reduced. A second class of immobilization strategies 463 

may be those that do not use a pre-existing solid, but that form an ex-novo solid. 464 
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This can include copolymers, crosslinked enzyme crystals (CLECs) or aggregates 465 

(CLEAs), nanoflowers, sol-gels, crystals coated with enzymes, enzymes trapped in 466 

polymer-formed ex novo (e.g., calcium alginate or lentikats beads), etc. [133-135, 467 

137, 160-173]. Finally, the third class of immobilization protocols will be formed by 468 

those where a preexisting solid is utilized as a matrix for the enzyme immobilization 469 

(the immobilization may be via covalent bonds or physical interactions) [138-140, 470 

174]. These supports may be nonporous (nanomaterials, membranes) or porous 471 

materials, and each of them may have advantages and drawbacks, depending on 472 

the specific enzyme, reactor, and application [141]. One point usually not considered 473 

in immobilization is the possibility of using immobilization techniques where the 474 

particle of the biocatalyst can promote the partition of the substrate (Fig. 10)  [150]. 475 

The increase or the reduction of the concentration of the substrate in the enzyme 476 

environment may be interesting, depending on the circumstance. For example, in 477 

cases where the contaminant substance to be eliminated is at a very low 478 

concentration in the media, far below the enzyme saturation concentration, and that 479 

must be maintained that way to prevent damage to the environment, the enzyme 480 

performance will be reduced. In this instance, it may be interesting to use a 481 

support/modification of the enzyme with polymers where the substrate can become 482 

favorably partitioned, and that way to have in the enzyme environment a higher 483 

substrate concentration that permits the enzyme to exhibit maximum activity even 484 

when the external substrate concentration may be very low (Fig. 10A). In 485 

contraposition, if the enzyme may be exposed to occasional high concentrations of 486 

some deleterious reagent (the substrate itself or some other component of the 487 

medium with negative effects on enzyme stability) (Fig. 9), a partition from this 488 

reagent away from the biocatalyst particle may promote positive effects for the 489 
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enzyme performance by reducing the concentration of this negative compound in the 490 

enzyme environment (Fig. 10B) [27, 150, 175]. Ideally, if the substrate is at low 491 

concentration and there are an inactivating/inhibiting compound in the media of very 492 

different nature (e.g., one cationic and the other anionic, one hydrophobic and the 493 

other hydrophilic), both partition effects could be explored to improve the biocatalyst 494 

performance under “real” conditions. Other point to be considered is that some 495 

activated supports may behave as “solid” buffers, e.g., supports coated with ionic 496 

polymers like polyethyleneimine, and this can help to maintain the enzyme in a 497 

favorable pH value when the pH in the medium is fluctuating due to the 498 

contamination or by natural factors (Fig. 11) [176]. That way, even when in the 499 

laboratory or a controlled bioreactor in a factory, perhaps this may not be relevant; 500 

this buffering potential of the polymers can make it recommendable to use them in 501 

bioremediation as an immobilization mechanism or to physically modify the 502 

immobilized enzyme. Moreover, this modification may have, in some instances, 503 

positive effects on enzyme performance (e.g., stabilizing multimeric enzymes, and 504 

scavenging some metals that can have negative effects on enzyme features) [176]. 505 

However, it should be considered that these hydrophilic polymers may have negative 506 

effects on the oxygen concentration in the enzyme environment, and this can 507 

negatively affect the performance of the laccase [177, 178]. This way, it can be 508 

expected that the recycling, operational stability, and resistance to application 509 

conditions of laccases may be enhanced when the enzymes are immobilized using 510 

an adequate protocol [124]. Depending on the enzyme, the chosen immobilization 511 

technique, and the preparation conditions, final enzyme features vary. Properly 512 

immobilized laccases may be able to better withstand high temperatures, and 513 

storage behavior and permit reusability better than their free counterparts. 514 
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Immobilized laccase can also be more resistant to inhibitors like NaCl [142, 143]. 515 

Despite the common concern of decreased enzyme flexibility, steric hindrance, and 516 

diffusion limits, laccase immobilization can sometimes enhance catalytic 517 

performance. An array of materials has been reported for laccase immobilization 518 

including polyvinylidene fluoride nanocomposite, carbon nanotubes, activated 519 

carbon, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar, 520 

polyacrylonitrile/polyethersulfone material, glutaraldehyde cross-linked chitosan 521 

beads, nanofibrous membrane and so on   [24, 124, 144, 179-182]. The 522 

immobilization of enzymes on multi-walled carbon nanotubes (MWCNTs) may be 523 

improved by the inclusion of carboxylic moieties, according to a recent report [183].  524 

Masjoudi et al. [145] reported the laccase immobilization on polyvinylidene 525 

fluoride nanocomposite with multi-walled carbon nanotubes to be employed in the 526 

removal of carbamazepine and diclofenac, which exhibited the removal efficiencies 527 

of 27% in 48 h for carbamazepine and 95% in 4 h for diclofenac.  Al-sareji et al. [24] 528 

reported laccase immobilization to remove diclofenac, amoxicillin, carbamazepine, 529 

and ciprofloxacin from water and wastewater. Taheran et al. [144] reported covalent 530 

immobilization of laccase onto the nanofibrous membrane for degradation of 531 

chlortetracycline, carbamazepine, and diclofenac. It was able to exhibit 72.7%, 532 

63.3%, and 48.6% degradation efficiency for chlortetracycline, carbamazepine, and 533 

diclofenac respectively, after 8 h of reaction.  534 

7. Deployment of the laccase-biocatalyst system in degrading a wide array of 535 

pharmaceutical compounds, and toxicity reduction   536 

The rise in the worldwide population and the concurrent widespread utilization of 537 

PhACs (Table 5), including antibiotics, hormones, cardiovascular medications, 538 

analgesics, anticonvulsants, anti-inflammatory drugs, and antiepileptic drugs, has 539 
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resulted in concerns about water and environmental contamination [184-186]. Most 540 

studied toxicological impacts of PhACs have been reported in Table 6. 541 

Consequently, these pollutants often evade treatment facilities and permeate further 542 

into natural water sources such as groundwater, rivers, and water bodies, ultimately 543 

contaminating drinking water supplies [187, 188]. As a result, there has been a rise 544 

in the study and implementation of biological wastewater treatment techniques with 545 

the purpose of PhACs removal. In recent years, laccase has been deployed in the 546 

degradation of diverse PhACs [37, 189-194]. A few examples of PhAC degradation 547 

by applying laccase in free and immobilized form have been explained in detail in 548 

subsequent sections. Recently reported laccase-assisted PhACs degradation is 549 

summarized in Table 6. The effective function of laccase for lowering toxicity and the 550 

degradation of pharmaceuticals is evident in observations from recent studies [195, 551 

196]. Laccase-based pharmaceutical degradation has been recognized as an 552 

economically viable method for the complete biotransformation of antibiotics from 553 

aquatic media [196]. Furthermore, the agar-diffusion method demonstrated that 554 

biodegraded products were non-toxic and promoted the growth of Staphylococcus 555 

aureus and E. coli [195]. Feng et al. [197] reported the transformation of atenolol 556 

(ATL) by the native laccase from Trametes versicolor in an aqueous solution. In a 557 

subsequent study, the toxicity of ATL and TEMPO mixtures was significantly reduced 558 

through laccase treatment.  The aforementioned findings suggest that the reduction 559 

of pharmaceuticals by laccase into less toxic transformed compounds is a 560 

sustainable and eco-friendly method. 561 

Table 5 Compilation of identified PhACs in wastewater systems on a worldwide 562 

scale throughout recent years. 563 

Country wise 
geo-location 

Pharmaceutical 
compound 

Concentration 
 

Wastewaters/sources 
 

Reference 
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Iran 

 

Carbamazepine 16.87 mg L−1 Real pharmaceutical 
wastewater 

[90] 

Ibuprofen 17.26 mg L−1 

Azithromycin 10.62 mg L−1 

Nalidixic acid 15.20 mg L−1 

India Ketoprofen 3–41 μg L−1 Domestic and hospital 
wastewater 

[90] 

Aspirin 125–184 μg L−1 

Diclofenac 12–68 μg L−1 

Naproxen 11–217 μg L−1 

Ibuprofen 5–22 μg L−1 

Enrofloxacin 780–900 μg L−1 Households and 
hospitals 

Ciprofloxacin 28000–31000 μg L−1 

Cetirizine 1300–1400 μg L−1 

Enoxacin 150–300 μg L−1 

Korea 

 

Sulfamethoxazole 194 ng L−1 Urban, domestic 
sewage, and industrial 

wastewater 

[90] 

Trimethoprim 21 ng L−1 

Erythromycin 44 ng L−1 

Saudi Arabia Trimethoprim 0.05-4.8 μg L-1 WWTP-1 influent [198] 
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 Ciprofloxacin 7.1-711.3 μg L-1 

Diclofenac 0.4-45.3 μg L-1 

Acetaminophen 46.4-943 μg L-1 

Ofloxacin 0.9-88.2 μg L-1 

Metformin 3.1-587.9 μg L-1 

China Roxithromycin 34.14-353.33 ng L-1 WWTPs [199] 

Ofloxacin 47.87-491.53 ng L-1 

Sulfamethoxazole 121.98-275.04 ng L-1 

Tetracycline 14.17- 104.23 ng L-1 

Norfloxacin 84.89-458.49 ng L-1 

Sulfadiazine 87.67-145.70 ng L-1 

Oxytetracycline 36.22-256.70 ng L-1 

Nigeria Norfloxacin 561 μg L−1 Hospital wastewater [90] 

Ofloxacin 198 μg L−1 

Ciprofloxacin 228 μg L−1 

Spain Ofloxacin 592.9–14377.8 ng L−1 Hospital and urban 
wastewater 

[90] 

Ciprofloxacin 639.1–8372.9 ng L−1 

Cefazolin 83.4–94.7 ng L−1 
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Acetaminophen 18–74 μg L−1 

Canada Ibuprofen 49000 ng L−1 Municipal, hospital 
wastewater, 

urban and industrial 
wastewater 

[90] 

Enrofloxacin 12 ng L−1 

Ciprofloxacin 600 ng L−1 

Tetracycline 53 ng L−1 

Acetaminophen 104–105 ng L−1 

Colombia Ketoprofen 0.12–0.16 μg L−1 Urban wastewater [90] 

Gemfibrozil 2.7–3.2 μg L−1 

Carbamazepine 0.17–0.19 μg L−1 

Ibuprofen 6.4–19.0 μg L−1 

France Cyclophosphamide 0.5–0.8 μg L−1 Hospital wastewater [90] 

Sulfamethoxazole 12.3–33.5 μg L−1 

Atenolol 1.6–6.5 μg L−1 

South Africa Aspirin 

 

118 ± 0.82 μg L−1 Domestic, hospital, 
commercial, and 

industrial wastewater 

[90] 

Diclofenac 22.3 ± 0.63 μg L−1 

 564 

 565 
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Table 6 Deployment of laccase in degradation of a broad array of PhACs. 566 

Laccase 
source 

 

Deployed 
enzyme form 

 

Application in 
PhACs 

degradation 
 

Reaction 
mechanism 

& 
parameters 

 
 

Removal 
efficiency 

 

Reference 

Trametes 
versicolor 

Magnetically 
modified biochar 

immobilized 
laccase 

Norfloxacin, 
enrofloxacin and 

moxifloxacin 

pH 4 and 40 
°C after 48 h 

reaction 

93.7 %, 65.4 
% and 77.0 

% 

[200] 

Trametes 
versicolor 

Immobilization 
using electrospun 

materials 

Tetracycline pH 5, 25 °C 100% and 
94% for 

covalently 
bonded and 
encapsulate

d laccase 

[201] 

Aspergillus 
species 

Immobilized on 
zeolitic 

imidazolate 
frameworks 

Carbamazepine pH 7.0,  
20–70 °C 

∼92% [146] 

Aspergillus 
species 

Immobilized on a 
zeolitic 

imidazolate 
framework 

Diclofenac and 
norfloxacin 

pH 6.4 93.9 and 
95.1% 

[202] 

Trametes 
hirsuta 

Immobilized on 
polyvinylidene 

fluoride 
membrane 

modified with 
multi-walled 

carbon nanotubes 

Carbamazepine 
and diclofenac 

pH  5, 25 °C 27% in 48 h 
and 95% in 4 

h were 
obtained for 
carbamazepi

ne and 
diclofenac 

[145] 

Trametes 
versicolor 

Immobilized on 
date stones 

Ketoprofen and 
aspirin 

pH range 2–
7.5, 25 °C 

Complete 
removal 

within 4 h of 
treatment 

[203] 

Pleurotus 
ostreatus and 
Lentinus sajor-

caju 

Free Sulfamethoxazole pH 5.0, 25 °C Approximatel
y 100 % of 

SMX 
degradation 
was attained 

in 30 min 

[196] 
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Pleurotus florida Free Ciprofloxacin and 
norfloxacin 

pH 4.5, 30 °C Ciprofloxacin 
(86.12–

75.94%) and 
norfloxacin 

(83.27–
65.94%) was 

achieved 

[195] 
 
 
 
 
 
 
 
 
 

Trametes 
versicolor 

Free Atenolol  pH of 7.0, 
25–50 °C 

Transformati
on 

efficiencies 
are 77%, 

100%, and 
100% with 

the addition 
of 500 μM 

TEMPO after 
4, 12, and 

24 h enzyme 
treatment, 

respectively. 

[197] 
 

Pleurotus 
ostreatus 

Free Clomipramine, 
mianserin, 
paroxetine, 

sertraline, and 
mycophenolic 

acid 

pH 6.5, 26 °C Sertraline (5, 
D(4h) = 91.2 

± 3.3%, 
D(96h) = 

92.8 ± 
4.5%), 

paroxetine 
(3, D(4h) = 

86.1 ± 6.2%, 
D(96h) = 

93.7 ± 
4.2%), 

clomipramin
e (2, D(4h) = 
89.6 ± 4.2%, 

D(96h) = 
98.4 ± 0.3%) 

and 
mianserin (4, 
D(4h) = 63 ± 
10%, D(96h) 

= 94.01 ± 
0.64%). 

 
Mycophenoli
c acid was 
removed 

[204] 
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after 4 h 
completely 

Trametes 
versicolor 

Free Doxorubicin pH 7, 30 °C Reduction of 
41.4% 

doxorubicin 
toxicity 

[192] 

Trametes 
versicolor 

Graphene 
Facilitated 

laccase 

Labetalol  pH 7.0 Complete 
removal was 
90 min while 

the 
concentratio
n of ABTS 
was 5 or 
10 μM 

[205] 

 567 

7.1 Degradation of anticancer drugs  568 

The detection of anticancer drugs in hospital wastewater and also surface water 569 

samples has raised worldwide concern. A number of anticancer drugs have been 570 

identified on a global scale in the environment, including doxorubicin, etoposide, 571 

fluorouracil, cyclophosphamide, ifosfamide, tamoxifen, vinblastine and vincristine 572 

[192, 206-209]. Kelbert et al. [192] reported the degradation of doxorubicin, an 573 

anticancer drug, by direct application of laccase. The doxorubicin underwent with 574 

most noticeable enzymatic degradation at pH 7 and 30 °C, which closely resembles 575 

the properties of effluent from wastewater treatment plants (that obviously, cannot be 576 

controlled) [192]. Maximal velocity (Vmax) of 702.8 µgDOX h−1 L−1 and Michaelis-577 

Menten constant (KM) of 4.05 µM were the Michaelis–Menten kinetic parameters 578 

acquired for this reaction. The KM value indicated a good affinity for the substrate. 579 

Cell (L-929) viability is reduced by 27% in the presence of doxorubicin (1000 µg L−1). 580 

Laccase degraded doxorubicin into non-toxic compounds, as evidenced by the 581 

41.4% reduction in toxicity of doxorubicin at the maximum concentration tested 582 

(1000 µg L−1). Pereira et al. [23] documented the enzyme-mediated degradation of 583 

etoposide employing various laccases at different pH values. Subsequent research 584 
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revealed that etoposide was completely degraded in 60 minutes by a laccase, using 585 

activity of 1100 UL−1, and that using a laccase activity of 55 U L−1, 86% of the 586 

etoposide after 360 minutes could be removed. Similar to conditions found in 587 

wastewater treatment plants (pH 6 and 7), etoposide was degraded by laccase at all 588 

pH-studied pH vales.  589 

Jinga et al. [210] reported an effective method employing Laccase-TEMPO for 590 

removing doxorubicin from wastewater. A subsequent study revealed that various 591 

ratios of doxorubicin, laccase, and TEMPO were used to get results (shown as % of 592 

elimination) at pH 5 and 7, 2, 4, 6, and 24 hours [210]. Experiments showed that 593 

larger catalyst concentrations and longer reaction times resulted in greater removal 594 

efficiencies (up to 100%). This demonstrated that the anticancer drug doxorubicin 595 

may be effectively removed from wastewater using the laccase-TEMPO biocatalytic 596 

system. 597 

 598 

7.2 Degradation of analgesics/NSAIDs 599 

Analgesics, which include both opioid and non-opioid formulations, function as 600 

pharmaceutical agents that alleviate pain and that may be found in wastewater [211, 601 

212]. Laccases have undergone evaluation against nonsteroidal anti-inflammatory 602 

drugs, including aspirin and ketoprofen [14, 203]. The excessive use of aspirin 603 

(acetylsalicylic acid), an anti-inflammatory drug commonly prescribed for the 604 

treatment of pain and fever, has become a significant environmental pollution 605 

concern. This has detrimental consequences for aquatic organisms, which include 606 

reproductive and fetal development [14]. Multiple research studies have shown the 607 

effectiveness of free laccases in the degradation of NSAIDs [189, 213-215].  608 
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Al-Sareji et al. [203] reported the utilization of immobilized laccase on date 609 

stones to eliminate ketoprofen and aspirin. In the following study, aspirin, and 610 

ketoprofen biodegradation in aqueous solutions were investigated via batch 611 

experiments. The laccase retained 54% of its original activity after six cycles, as 612 

determined by oxidation assays using ABTS [203]. Following that, an immobilized 613 

laccase system was implemented to catalyze the degradation of 25 mg L−1 of 614 

ketoprofen and aspirin, which nearly entirely disappeared within  4 h of treatment. 615 

Coman et al. [213] reported the degradation of sodium diclofenac by laccase from 616 

Sclerotinia sclerotiorum. Subsequent research showed that much of diclofenac 617 

degradation (>96%) occurred via radical-generated oligomers and their rapid 618 

precipitation after a 30-hour treatment, thereby establishing an unprecedented green 619 

formula appropriate not only for degradation but also for the straightforward 620 

elimination of degradation products.  621 

Apriceno et al. [191] reported the degradation of NSAIDs (ketoprofen (KP), 622 

naproxen (NAP), and diclofenac (DCF)) exploiting direct immobilization on chitosan 623 

beads of a periodate-oxided laccase from Trametes versicolor. As it turned out, the 624 

ideal experimental conditions for DCF degradation at 90% after 3 hours were pH 3 625 

and a 1:1 M ratio for ABTS: drug. The combination of DCF, naproxen, and KP was 626 

used to assess the continued effectiveness of laccase in removing DCF and 627 

potentially focusing on the other drugs. With only 0.02 U of laccase activity, DCF was 628 

degraded completely in a period of three hours. After seven days of degradation, the 629 

hydroxylated compounds that emerged as the transformed products of DCF were 630 

identified. In contrast, it was found that the quantity of NAP-degraded products was 631 

drastically reduced.  632 
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Ratanapongleka et al. [216] reported degradation of acetaminophen-633 

contaminated aqueous solution to be optimized by the use of immobilized laccase 634 

conditions. Barium alginate was used to immobilize the laccase from Lentinus 635 

polychrous. Sodium alginate 5% (w/v), barium chloride 5% (w/v), and a 60-minute 636 

gelation period were the optimum immobilization conditions. As the concentration of 637 

the enzyme escalated, there was a corresponding increase in both the degradation 638 

rate and the percentage of removal. In 240 minutes, immobilized laccase at 0.57 639 

U/g-alginate achieved 94% removal. The immobilized enzyme demonstrated 640 

excellent acetaminophen removal and high activity at pH 7 and 35 °C. For 641 

acetaminophen degradation, the activation energies of free and immobilized laccase 642 

were 8.08 and 17.70 kJ/mol, respectively. Furthermore, the immobilization of laccase 643 

increased its stability to changes in pH and temperature. Furthermore, immobilized 644 

laccase could be possibly reused for up to five cycles. 645 

 646 

7.3. Degradation of antibiotics 647 

Antibiotics are employed in livestock farming and human and veterinary medicine, 648 

thus constituting one of the most widely utilized classes of medications worldwide 649 

[217-220]. Antibiotics that do not undergo decomposition are persistent and get into 650 

the environment. Furthermore, the primary challenge with antibiotics is the 651 

emergence and spread of resistant bacteria, which has been rendered easier 652 

considering the present situation [221]. Antibiotics are not effectively removed either 653 

by conventional water treatment processes or advanced treatment methods; 654 

although advanced remediation methods are more efficient, they come with 655 

drawbacks, including high costs and resulting in secondary pollution [222, 223].  As 656 

"green and sustainable biocatalysts" for antibiotic degradation, laccases have proven 657 

great potential for the degradation of diverse classes of antibiotics [224]. The primary 658 
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emphasis has been on developing and deploying immobilized laccase to address the 659 

existence of antibiotics in environmental matrices [224-227]. 660 

Harguindeguy et al. [228] reported the degradation of tetracycline (TC) using 661 

immobilized laccase from Trametes versicolor in a fluidized bed reactor. Immobilized 662 

laccases exhibited better thermal and pH stabilities than those of free laccases. 663 

Subsequently, the highest degradation rate obtained was 72 ± 1%, with a circulation 664 

flow rate of 80 mL min−1 and air bubbling at 15 mL min−1. A study of the immobilized 665 

enzyme stability under reaction conditions revealed that 45% of the TC was 666 

degraded after 5 cycles of 24 hours each. Microtox assays were used to examine the 667 

toxicity of the TC solution before as well as after treatment. Subsequent microtox 668 

tests revealed that enzymatic degradation decreases the acute toxicity of water. 669 

Sá et al. [196] reported the biotransformation of sulfamethoxazole (SMX) 670 

catalyzed by different laccases. Pleurotus ostreatus and Lentinus sajorcaju were 671 

used to produce laccases utilizing agricultural and food residues as substrates, 672 

notably vine pruning and brewer spent grains. The produced fungal laccases were 673 

subsequently evaluated for their ability to degrade SMX in aqueous environments, 674 

with and without the presence of natural redox mediators. Laccase derived from 675 

Lentinus sajor-caju exhibited the highest rate of SMX transformation; that is, it 676 

degraded approximately 100% of SMX (SMX (200 mg L−1) and the mediators SYR 677 

and PCA (100 mmol L−1))  in 30 minutes. 678 

 679 

Ouyang et al. [229] pointed out the effective removal of sulfonamides and 680 

tetracycline residues by the laccase-mediator system using a novel laccase from 681 

Lysinibacillus fusiformis. A novel laccase from L. fusiformis (Lyfu-Lac) revealed 682 

promising removal effectiveness onto sulfonamides and tetracycline residues in the 683 
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presence of syringic acid (SA) and ABTS. After 12 hours, the Lyfu-Lac-SA system 684 

removed over 85% of sulfamethazine (SMZ), sulfamethoxazole (SMX), and 685 

sulfadiazine (SDZ) at 40 °C. In contrast, oxytetracycline (OTC) and tetracycline (TC) 686 

were reduced by 16.9% and 0%, respectively, after 6 hours using the Lyfu-Lac-ABTS 687 

system. 688 

Wang et al. [230] reported the elimination of tetracyclines in seawater by a 689 

laccase-mediator system. Laccase was utilized from Aspergillus sp. To degrade 690 

tetracyclines (TCs) in coastal seawater at environmentally significant concentrations 691 

(ngL−1-μgL−1), mediators that incorporated distinct oxidation mechanisms were 692 

combined. The enzymatic structure of laccase was altered by the elevated salinity 693 

and alkalinity of seawater, leading to a decreased affinity for the substrate (Km of 694 

0.0556 mmolL−1) of laccase in seawater compared to buffer (Km of 0.0181 mmolL−1). 695 

Despite the decline in stability and activity of laccase when exposed to seawater, it 696 

was possible to completely degrade TCs in seawater within two hours using laccase 697 

at a concentration of 200 UL−1 coupled with a laccase/syringaldehyde (SA) ratio of 1 698 

U:1 μmol, even at initial concentrations of less than 2 μgL−1. Sarnthima et al. [231] 699 

molecular insight of sulfamethoxazole degradation using laccase from Streptomyces 700 

sp. CS29. The activity of laccase was shown to be enhanced by 10 and 20 mM Ca2+, 701 

20 mM Zn2+, and 10 mM K+.  Based on the results of the following investigation, the 702 

best pH for breaking down sulfamethoxazole was 3.0, and the degradation rate was 703 

97.90%. 704 

 705 

7.4 Degradation of antiepileptic agents 706 

Carbamazepine (CBZ) is a PhAC with antiepilectic effects [232-234]. This is one of 707 

the most resistant PhAC compounds routinely identified in wastewater effluent-708 

contaminated environments. Moreover, CBZ exhibited resistance to removal via 709 
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flocculation, coagulation, and chlorination processes [235]. That way, biocatalytic 710 

degradation utilizing enzymes such as laccases presents a potentially effective 711 

strategy for the complete removal of CBZ from water matrices [214, 235-237]. The 712 

ineffectiveness of recent laccase-based investigations to degrade CBZ was 713 

attributed to the electron-withdrawing group amide present in the structure of CBZ 714 

[235]. This functional group rendered CBZ strongly electron-deficient and reduced its 715 

laccase oxidation potential [235]. Application of redox mediators, with a more 716 

suitable potential,  including ABTS and HBT, can augment the oxidation capacity of 717 

laccase to cope with this concern [235].  718 

Simón-Herrero et al. [237] reported the removal of CBZ by immobilized 719 

laccase on polyimide aerogels. Subsequent findings indicated that the activity of 720 

immobilized laccase on polyimide aerogels was significantly improved in acidic or 721 

basic pH conditions when compared to that of the free enzyme. Additionally, the 722 

activity of the immobilized enzyme was greater than that of the free enzyme form 723 

across all of the temperature ranges. Owing to the immobilization of this support 724 

material, the storage stability was also improved. According to reusability 725 

experiments, the immobilized laccase retained 22% of its original activity after 7 726 

cycles when it was employed to oxidize ABTS. 76% and 74%, respectively, of CBZ 727 

degradation were achieved by immobilizing laccase on polyimide aerogels in 728 

spiked water and secondary effluent. In addition, the CBZ removal efficiency 729 

remained elevated even after 7 cycles (65% for secondary effluent and 50% for 730 

spiked water, respectively). 731 

Naghdi et al. [238] reported the removal of CBZ from immobilized laccase on 732 

oxygen-functionalized nanobiochars. The impact of applying HCl, H2SO4, HNO3, and 733 

their mixtures to oxidize nanobiochar, a carbonaceous material generated through 734 
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biomass pyrolysis, on the immobilization of laccase was investigated in the 735 

subsequent study. The storage, pH, and thermal stability of immobilized laccase on 736 

functionalized nanobiochar were found to be superior to those of free laccase, 737 

indicating that this material had the capacity to be utilized continuously. Reusability 738 

investigations on ABTS oxidation revealed that 70% of the initial activity of the 739 

immobilized laccase was retained after three cycles. As a result, the immobilized 740 

laccase utilized for CBZ degradation achieved 83% and 86% removal, respectively, 741 

in spiked water and secondary effluent. 742 

Dlamini et al. [146] reported aspergillus-based laccase immobilization for the 743 

biocatalytic degradation of carbamazepine. Zeolitic imidazolate frameworks (ZIF) 744 

were utilized as efficient porous substrates for attaching laccase enzymes. 745 

Additionally, the synergistic adsorption and biocatalytic degradation of CBZ in 746 

aqueous solutions were investigated. The results of CBZ degradation revealed that 747 

immobilization of the laccase enhanced its resistance and stability at different pH 748 

levels when compared to the enzyme in its free form. In contrast to the free form, the 749 

immobilized laccase evidenced comparatively elevated activities throughout the 750 

temperature range under investigation. Vmax, which was determined to be 0.873 751 

and 0.692 mg L−1 h−1 for the free and immobilized laccase, respectively, exhibited a 752 

negligible decrease after immobilization, as indicated by kinetic investigations. The 753 

enhanced solubility of the immobilized laccase in organic solvents enables the 754 

composite to be utilized in real wastewater samples. The efficacy of the laccase-ZIF 755 

composite in decontaminating CBZ was demonstrated to be approximately 92%. 756 

Moreover, the immobilized laccase evidenced noteworthy stability in storage 757 

(approximately 70% residual activity) for a duration of 15 days before encountering 758 

any substantial decline in activity. 759 
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7.5 Beta blocker degradation 760 

Beta-blockers are classified as adrenergic antagonists, primarily employed to treat 761 

hypertension, congestive heart failure, and abnormal cardiac arrhythmias [239]. The 762 

concentration of beta blockers in wastewater, surface waters, and groundwater has 763 

been reported to vary significantly from ngL−1 to μgL−1, indicating their ubiquitous 764 

presence [240-242]. According to reports, beta-blockers induce chronic toxicity in 765 

aquatic organisms, which implies that their continued introduction into the 766 

environment could be detrimental to both humans and the environment  [240]. Beta-767 

blockers may remain in surface waters and groundwater as a result of their relatively 768 

inefficient rate of elimination from the natural environment. In spite of the 769 

shortcomings of physicochemical removal technologies, which necessitate 770 

substantial energy and reagent inputs, and even lower safety levels, hazardous 771 

byproducts may be produced during the oxidation process [243]. Therefore, 772 

enzymatic remediation is a more viable alternative for the removal of beta-blockers 773 

from water matrices [55, 197, 205]. 774 

Dong et al. [244] reported laccase-graphene composite potential in the 775 

removal of labetalol. In further investigation, pristine few-layer graphene (FLG) was 776 

employed to interact with laccase to synthesize a laccase-graphene composite 777 

designed to remove labetalol. The synthesized laccase-FLG composite had an 778 

enzyme loading dosage of 221.1 mg g−1. In summary, the laccase-graphene 779 

composite has resulted in the potential to be repurposed for the removal of labetalol 780 

more than ten times. 781 

Feng et al. [197] reported the transformation of atenolol (ATL) by the native 782 

laccase from Trametes versicolor in an aqueous solution. The removal efficacy of 783 
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ATL via laccase-catalyzed reaction was analyzed in the presence of a variety of 784 

laccase mediators. The results indicated that only the mediator TEMPO was capable 785 

of significantly facilitating ATL transformation. The ATL transformation was highly 786 

pH-dependent, with an optimal pH of 7.0, and it remained nearly constant within a 787 

temperature range of 25–50 °C. In a subsequent study, the toxicity of ATL and 788 

TEMPO mixtures was significantly reduced through enzymatic treatment.   789 

Dong et al. [205] reported labetalol removal employing the laccase-ABTS 790 

System. The study revealed that labetalol can be effectively transformed through a 791 

laccase-catalyzed reaction with ABTS as a mediator. However, in the absence of 792 

ABTS, no significant removal of labetalol could be achieved. In conclusion, the 793 

concentration of ABTS was either 5 or 10 μM, and the time required to achieve 794 

complete labetalol removal was 90 minutes. The transformation was substantially 795 

accelerated when 25 μM ABTS was present, necessitating only approximately 60 796 

minutes to achieve the complete removal of 5 μM labetalol. 797 

8. Laccase mediator system to enhance the catalytic process for a diverse 798 

range of pharmaceuticals 799 

Laccase has the ability to catalyze the oxidation of numerous organic compounds. 800 

Despite the employment of molecular oxygen, it is considered a green 801 

environmentally friendly, cost-efficient, and safe enzyme catalyst 802 

[245].  Nevertheless, there are still some issues that need to be resolved when 803 

laccase is explicitly employed in environmental remediation. Initially, a significant 804 

number of non-phenolic substrates were unable to directly bind to laccase. Secondly, 805 

the redox potential of the majority of laccases (0.5-0.8 V) seemed insufficient to 806 

oxidize high-potential phenolic compounds and other complex non-phenolic 807 

compounds [246].  Schematic illustration of the laccase-mediator model, and its 808 
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deployment in Sulfamethoxazole degradation is portrayed in Fig. 12.  Currently, 809 

synthetic mediators that are frequently used include ABTS, 1-hydroxy benzotriazole 810 

(HBT), 2,2,6,6-tetramethylpiperidine oxide (TEMPO), n-hydroxy-n-acetylaniline 811 

(NHA), and phenothiazine (PT) [245]. Further, researchers have discovered that a 812 

diverse array of small-molecule natural compounds, including syringaldehyde (Sa), 813 

acetosyringone (As), and vanillin (Va), can function as laccase mediators [245, 247]. 814 

Since non-phenolic substances, such as pharmaceuticals, often have a greater 815 

redox potential than the majority of laccases produced by fungi, they are not 816 

necessarily appropriate for laccase oxidation [246]. Also, the alteration of the 817 

substrate may be significantly influenced by the presence of certain functional 818 

groups in its structure. Substrates are more susceptible to battery by laccase since 819 

they include functional groups, often known as electron donating groups, such as 820 

hydroxyl and amines [246]. It is possible for laccase to oxidize mediators into free 821 

radicals [247]. Owing to their lack of specificity, these radicals have the ability to 822 

oxidize additional contaminants, expanding the range of chemicals that might be 823 

broken down by laccase. In the process of oxidizing a pollutant, mediators 824 

sometimes called "electron shuttles", may be reduced back to their original 825 

composition after being oxidized to radicals by laccase [247]. Recent studies have 826 

shown that certain small molecule mediators may mediate the oxidation reaction 827 

between laccase and substrate (pharmaceuticals) [226, 247-250]. The scope of 828 

laccase may be further expanded by this modification.  829 

Parra Guardado et al. [246] reported an influence of redox mediators on 830 

pharmaceutical degradation by laccase from Pycnoporus sanguineus CS43 that was 831 

investigated against the commercial laccases Trametes versicolor and Myceliophtora 832 

thermophile. The subsequent investigation revealed micropollutants were resistant to 833 
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degradation in the absence of redox mediators, except the antibiotic amoxicillin, 834 

which was transformed by all exploited laccases. The results indicated that the 835 

degradation of a complex combination of pharmaceuticals was influenced by both 836 

the compound and the redox mediator. The antibiotics amoxicillin (80%), 837 

sulfamethoxazole (100%), and ciprofloxacin (40%) exhibited the highest degradation 838 

yields with syringaldehyde serving as the most effective redox mediator within a 3 839 

hours treatment period. Compared to P. sanguineus CS43 laccase, commercial 840 

laccases demonstrated superior catalytic performance, particularly in the presence of 841 

redox mediators. The potential of these systems to remove complex contaminant 842 

matrices is demonstrated by the effective transformation of pharmaceuticals through 843 

the combined action of various laccases and redox mediators. 844 

Naghdi et al. [235] reported biotransformation of carbamazepine by the 845 

laccase-mediator system, which affected the removal of carbamazepine with the 846 

laccase-ABTS system by temperature and pH. In a subsequent study, it was 847 

reported that the highest degradation efficiency of carbamazepine with laccase-848 

ABTS was up to 95%. Conversely, laccase from Trametes versicolor is unable to 849 

achieve a degradation efficiency of more than 32% in the absence of ABTS. Ghose 850 

et al. [195] reported ciprofloxacin and norfloxacin remediation from wastewater 851 

through laccase using ABTS. In a subsequent study, it was demonstrated that the 852 

degradation of ciprofloxacin (86.12–75.94%) and norfloxacin (83.27–65.94%) was 853 

effective within 3 hours at a temperature of 30 °C, pH 4.5, and ABTS (0.05 mM). 854 

 855 

9. Computational-aided pre-screening-based approaches for the degradation 856 

of unexplored pharmaceuticals   857 
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Extensive research has been conducted on the vital role of laccases in the 858 

degradation of xenobiotics, consisting of phenols, anilines, and PhACs [43, 179, 219, 859 

251, 252]. Despite its broad substrate specificity, it enables numerous screening 860 

opportunities for the sustainable removal of PhAC in a sustainable way [14, 253, 861 

254]. Despite advancements in numerous approaches to pollutant removal, which 862 

include enzyme-conjugated nanocomposites and immobilized enzymes, a significant 863 

concern persists concerning their complete degradation and eventual fate in the 864 

environment, and left over the toxicity after experimental operation [63, 255, 256]. 865 

These concerns pertain to the fate of completely transformed metabolites, the active 866 

site amino acid responsible for catalysis, and molecular interaction among amino 867 

acids and pollutants, which remain unsolved in conventional remediation methods 868 

[61, 63, 107, 257].  Computational degradability prediction of concerned PhACs with 869 

a possible enzyme is a robust approach that could deal with inadequacies in a joint 870 

effort by validating such outcomes through a conventional real-time degradation 871 

assay under controlled settings [60, 63, 258, 259]. Such aforementioned 872 

degradability predictions include docking, MD-Simulation, and degradation pathways 873 

prediction that have been employed to unravel the degradation process at the atomic 874 

level [60, 108, 260]. Docking methods are often used to identify the best 875 

conformational state of the docked complex (enzyme-pollutant), as well as the 876 

binding contact between the pollutant and the enzyme's active site [57, 61, 107, 108, 877 

261-263]. Enzyme-pollutant docking analyses facilitate the visualization and 878 

estimation of the most frequent amino acid residues involved in pollutant binding, as 879 

well as the straightforward determination of chemical bonds between the 880 

corresponding enzyme-pollutants [107, 261]. However, docking alone is insufficient 881 

for exhibiting the actual catalytic activity of enzyme-contaminants in real-time [61, 882 
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62]. An MD simulation may be undertaken to observe the real-time conformational 883 

behavior of enzyme and pollutant bound complex using an appropriate time-scale 884 

simulation run under a specific build model system (i.e. NPT or NVT) [61]. MD 885 

simulation offers valuable information on how enzymes or proteins interact with 886 

pollutants (ligands), focusing on the chemical bond formation and the role of active 887 

site residues in the degradation process, including the post-simulation energy 888 

analyses, and system equilibrium state [61, 260]. Such functionality could be 889 

implemented to predict the degradability and catalytic potential of an enzyme toward 890 

targeted PhAC. Nonetheless, protein engineering techniques could be used to 891 

improve the enzyme's capability to better binding and catalytic attributes [264-266]. 892 

The proposed computational framework for the binding and chemical functionalities 893 

of PhACs in the context of the degradation mechanism, which is based on laccase, 894 

can be seen in Fig. 13. A clear binding amino-acid residues and Gibbs free energy 895 

(ΔG) assessment can be observed through above explanatory illustration. In the 896 

context of the above functionalities, physico-chemical properties of laccase from 897 

varying origins may or may not be comparable, which ultimately influences the 898 

binding and degradation of target contaminants under specific environmental 899 

conditions. Consequently, it is of the utmost importance to comprehend the various 900 

parameters of physico-chemical properties. Therefore, diverse physicochemical 901 

properties of laccases have been summarized in Table 7. 902 

Nawaz et al. [267] reported bioremediation potential of laccase from Bacillus 903 

ligniniphilus L1 in set of 18 antibiotic degradation (penicillin, levofloxacin, 904 

cephalosporin, tobramycin, linezolid, clindamycin, metronidazole, chloramphenicol, 905 

nitroimidazole, fosfomycin, tetracyclines, rifamycin, vancomycin, daptomycin, 906 

sulfonamide, trimethoprim, polymyxin, and colistin). AutoDock predicted that the 907 
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binding energies of the 18 antibiotics with laccase range from −3.7 to −8.1 kcal mol-1. 908 

A total of six antibiotics, including vancomycin, levofloxacin, tetracycline, rifamycin, 909 

linezolid, and tobramycin, were chosen for MD simulation and experimental 910 

validation with laccase. Subsequent research revealed that laccase-vancomycin, 911 

levofloxacin, tetracycline, rifamycin, linezolid, and tobramycin were the top-ranked 912 

complexes of laccase that were validated through 250 ns MD-simulation by 913 

employing the AMBER tool. The research concluded that the computational 914 

technique is useful for studying antibiotic degradation by enzymes, which may help 915 

with environmental contamination remediation. 916 

Mora-Gamboa et al. [57] reported In silico prediction of 5 antibiotics 917 

(Levofloxacin, Sulfisoxazole, Cefuroxime, Cephradine, and Tetracycline) 918 

biodegradation employing laccase from Ganoderma lucidum GILCC 1 origin. A 919 

subsequent study concluded a high affinity for Levofloxacin (−8.2 kcal mol-1), 920 

Sulfisoxazole (−7.8 kcal mol-1), Cefuroxime (−7.5 kcal mol-1), Cephradine (−7. 5 kcal 921 

mol-1), and Tetracycline (−7.5 kcal mol-1), attributed to pocket topology and 922 

interactions such as hydrogen bonds and van der Waals forces with laccase. 923 

 924 
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Table 7 Comparison of the physicochemical features of laccases from various sources. 925 

Laccase origin species PDB 
 

Amino-
acids 

Molecular formula Molecular 
weight 

(Da) 

Negatively 
charged 
residues 

(Asp + Glu) 

Positively 
charged 
residues 

(Arg + Lys) 

Theoretical 
pI 

The 
instability 
index (II) 

Aliphatic 
index 

Grand average of 
hydropathicity 

(GRAVY) 

Trametes versicolor 
 

1KYA 499 C2399H3600N638O729S9 53331.35 45 20 4.69 26.88 81.34 -0.028 

Streptomyces carpinensis 8AIP 293 C1407H2148N412O427S16 32180.00 37 37 5.95 41.39 63.45 -0.495 

Streptomyces 
viridosporus 

3TBB 313 C1498H2280N444O456S11 34157.94 41 31 6.16 34.54 60.73 -0.657 

Thermus thermophilus 
HB27 

6Q29 439 C2210H3489N613O602S14 48727.60 48 47 7.09 41.29 96.83 -0.146 

Coriolopsis trogii 2HRH 496 C2382H3604N636O729S9 53103.18 48 23 4.83 36.55 82.80 -0.082 

Cerrena caperata 4JHU 496 C2387H3609N643O729S11 53330.44 47 23 4.87 35.38 80.83 -0.127 

Streptomyces griseoflavus 7PEN 322 C1511H2319N451O462S13 34611.56 37 27 6.06 33.75 66.96 -0.433 

Melanocarpus albomyces 3FU7 559 C2764H4153N759O831S15 61791.87 62 34 4.91 32.71 78.59 -0.325 

Trametes maxima 2H5U 499 C2384H3571N653O734S7 
 

53347.93 38 21 
 

5.26 30.41 73.51 -0.207 
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926 Physicochemical properties have been predicted using the ProtParam – Expasy tool by utilizing amino acid sequences from corresponding PDB IDs. 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

Coriolopsis gallica 4A2E 496 C2371H3579N631O722S9 52763.83 45 21 4.84 31.42 83.25 -0.023 
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10. Concluding remarks and future outlook 939 

A wide range of PhACs including, anticancer drugs, analgesics/NSAIDs, antibiotics, 940 

antiepileptic agents, and beta-blockers as micropollutants often exist in water 941 

matrices as a result of consumption and excretion through different routes. PhACs 942 

have been detected in water systems in various regions of the globe at 943 

concentrations as low as ng-µg. The introduction of PhACs into water matrices is a 944 

significant source of public and environmental health concerns for the global 945 

population that is exposed to such contamination. The detrimental effects of these 946 

PhACs on the ecosystem have been extensively investigated in aquatic organisms, 947 

such as phytoplankton, fish, daphnia, and crustaceans. PhACs are not only 948 

detrimental to aquatic organisms but they are also associated with antibiotic 949 

resistance, which is a growing concern for humans. Nevertheless, there is a lack of a 950 

reliable regulatory framework to reduce the hazards associated with pharmaceutical-951 

based water contamination as a means to achieve clean water. However, there are 952 

various physical-chemical water treatment and contaminants remediation 953 

technologies that are currently in existence. These technologies have limitations in 954 

certain aspects, such as cost, and they are not feasible for scaling up. Enzymatic 955 

remediation techniques are more eco-friendly and reliable than those mentioned 956 

above because they do not produce toxic substances during the experimental 957 

operation and implementation. To address these limitations, laccases, a multicopper 958 

O2-dependent biocatalyst, have been implemented in the degradation of a diverse 959 

array of contaminants, including PhACs, which are frequently detected in water 960 

matrices. Laccases that promote the oxidation of various contaminants in the 961 

presence of molecular oxygen may need natural and synthetic mediators to increase 962 

catalytic reactions for the degradation of PhACs. Laccase-based biocatalyst 963 
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systems, both free and immobilized, have been used in several studies on the 964 

degradation of PhACs under controlled conditions. The catalytic efficiency and broad 965 

acceptance of laccase for the breakdown of PhACs have garnered considerable 966 

interest among researchers. Mainly bacterial and fungal laccases have been utilized 967 

in experimental degradation as free-form, along with a wide range of mediators. 968 

Although free-form enzymes are often challenging to extract from liquid samples, 969 

they can only be utilized once for water treatment applications and the location can 970 

be hard to fix. This results in an increase in the overall cost of the process since a 971 

larger amount of enzymes need to be produced. In addition, highly polluted 972 

wastewater, under thermal and pH natural changes, often reduces the stability and 973 

activity of free enzymes. Laccase immobilization may solve some of these problems. 974 

Adsorption, encapsulation, and covalent bonding are only a few of the strategies 975 

looked into for immobilizing laccases on nanomaterials, membranes, and fibers. 976 

However, resources that are cost-bearing and non-hazardous to the environment are 977 

still needed for the effective elimination of pollutants. In recent years, a smart 978 

computational degradability prediction method has been adopted to better 979 

understand the degradation mechanism of antibiotics and a few other PhACs, as 980 

well as their confirmation by undertaking conventional degradation assays. 981 

Computer-aided techniques and their integration into experimental catalysis could 982 

offer a new dimension to archive goals as a green non-testing method of degradation 983 

of unexplored PhACs from the environment. Most often computer-aided degradation 984 

prediction flow utilizes docking, MD simulation, DFT, homology modeling, and a few 985 

other techniques. Such functionality enables insight into laccase binding and 986 

catalysis, real-time binding behavior, and a comprehension of the atomic-level 987 

degradation process. Further, all this information can be applied to the development 988 
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of an engineered protein to have a highly catalytic function against non-degradable 989 

PhACs. Several laccase features are anticipated to be enhanced to facilitate 990 

environmentally friendly remediation of contaminants in the specified setting. These 991 

features include the engineering of microorganisms for high-yield enzyme 992 

production, the targeting of the coding gene and the search for its homology in other 993 

species for enzymatic production, the development of synthetic enzymes based on 994 

their native sequence, and the encouragement of laccase in computational 995 

investigations of unexplored PhACs. A comprehensive detail of eco-friendly 996 

strategies utilizing laccase for the removal of PhACs from water is critically 997 

discussed focusing on their efficiencies, and current limitations to design improved 998 

technologies for their lab-to-field applications. Furthermore, the review highlights the 999 

broad array of PhACs in water bodies and suggests the scope of a laccase-mediated 1000 

system for enhanced removal of pharmaceutical residues from water to fulfill the 1001 

United Nations Sustainable Development Goal (UN-SDG-6) for providing clean 1002 

potable water for all. Nevertheless, it is anticipated that a few factors will be 1003 

integrated in the future to address the current challenges: 1004 

✓ Development and innovation of PhACs detection methods from water 1005 

resources 1006 

✓ Screening and easy AMR detection method for identifying inhabitant-resistant 1007 

microbial species 1008 

✓ Improve laccase production in native producers for high-yield  1009 

✓ Deployment of laccase using novel framework i.e. MXenes for scale up the 1010 

practical applicability in degradation of PhACs 1011 
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✓ Bionanozyme for environmental remediation of PhACs 1012 
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