
Citation: Przybyłek, M.; Bełdowski, P.;
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Abstract: In this study, molecular dynamics simulations were employed to analyze interactions
between phospholipid membranes and human serum albumin (HSA) in the presence of mono-
and divalent cations. Two types of membranes, composed of dipalmitoyl phosphatidylcholine
(DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE), were utilized. The results revealed
that both systems exhibited high stability. The DPPE complexes displayed a greater affinity for
albumin compared to DPPC. The high stability of the complexes was attributed to a high number of
ionic contacts and hydrogen bonds. The presence of mono- and divalent metal cations significantly
influenced the membrane’s capacity to bind proteins. However, these effects varied depending on the
phospholipid composition of the bilayer. The studies confirmed the relatively low ability of DPPC to
bind potassium ions, as previously observed by others. Consequently, the DPPC/HSA/K+ complex
was found to be the least stable among the systems studied. While DPPC interactions were limited
to HSA domains I and II, DPPE was able to interact with all domains of the protein. Both lipid
bilayers exhibited substantial structural changes and characteristic curvature induced by interactions
with HSA, which confirms the formation of relatively strong interactions capable of influencing the
arrangement of the phospholipids.

Keywords: phospholipid membranes; DPPC; DPPE; human serum albumin; intermolecular interactions;
hydrogen bonds; ionic interactions; mono- and divalent cations; molecular dynamics

1. Introduction

Phospholipid bilayers play a crucial role in organisms by constituting the basic struc-
ture of cell membranes, providing a barrier against environmental factors, and facilitating
various cellular processes [1–3]. Despite their well-known biological role and relatively
simple structure, phospholipids remain a subject of scientific interest for their emerging
applications and features, such as learning and memory capabilities [3]. Notably, reconsti-
tuted proteoliposomes also merit special consideration for their ability to replicate natural
biological systems, particularly in bioenergy applications [4] and artificial cell models [5].
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Two classes of phospholipids with significant biological relevance are phosphatidyl-
choline (PC) and phosphatidylethanolamine (PE), with representative examples being
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-
3-phosphorylethanolamine (DPPE). Membranes and liposomes composed of DPPC and
DPPE are widely utilized in pharmaceutical and biomedical applications [3,6–12]. DPPE
membranes exhibit denser packing compared to those formed from DPPC, influencing
their interactions with other molecules [13,14].

A far more complex biomolecule than DPPE and DPPC, which also holds signifi-
cant biological and biomedical importance, is human serum albumin (HSA). Similar to
phospholipids, HSA has the ability to bind with a wide range of both polar and non-polar
substances, highlighting its versatile functional properties [15,16]. Moreover, it plays crucial
biological roles, serving as a carrier for various bioactive molecules, maintaining osmotic
pressure, pH of blood, and electrolyte homeostasis [17–21]. The interactions between HSA
and phospholipid layers significantly affect molecular transport, as demonstrated in both
in vitro and in vivo studies [22]. It is worth mentioning that albumins are known to possess
multiple binding sites when interacting with phospholipid liposomes [23]. Notably, even a
low concentration of bovine serum albumin can modulate the structural arrangement of
phospholipids [24].

Lipid–protein systems have a wide range of applications in various fields, such as
encapsulation [25], food packaging, and coatings [26–28]. The distinctive properties of
phospholipid- and albumin-based systems have made them valuable in drug delivery. This
has been particularly evident in the development of nanocomplexes and nanoparticles,
which enable the controlled and sustained release of active substances [29,30]. In addition
to the well-established biological and pharmaceutical significance of HSA-membrane
interactions, their biomechanical implications also warrant attention. Phospholipids, along
with HSA, γ-globulin, collagen, lubricin, and hyaluronan, are components of articular
cartilage and synovial fluid, contributing significantly to joint lubrication and health [31].

In previous works [32–37], the interactions between phospholipid assemblies and
various natural and synthetic macromolecules were examined using molecular dynamics
methods. Particularly interesting for understanding the mechanism of binding biolog-
ically active compounds to biopolymers and membranes is the role of physiologically
occurring ions such as Na+, K+, Mg2+, and Ca2+. It is well-known that they can signifi-
cantly influence the structural organization and energetic stability of various biomolecular
systems [36,38–41]. The next phase of the project involves exploring the interactions of HSA
with DPPC and DPPE phospholipid bilayers, which contain choline and ethanolamine
groups, respectively. Although the ability of albumin and other serum proteins to bind
to lipid bilayers has been investigated [42], to the best of our knowledge, there are no
available studies on the impact of changes in the phospholipid headgroup structure on
albumin affinity to the membrane. The influence of metal ions on phospholipid stability
has been investigated extensively [43–47]. However, a comprehensive analysis of their
effects on DPPC and DPPE bilayers, particularly in the context of interactions with HSA,
remains lacking. This molecular dynamics simulation study aims to fill the mentioned gaps
by analyzing the affinity of HSA for phospholipid bilayers of DPPC and DPPE and the
influence of Na+, K+, Mg2+, and Ca2+ cations.

2. Methods

In this study, all-atom molecular dynamics (MD) simulations employing the NPT
ensemble were conducted utilizing the AMBER14 force field [48] to investigate the in-
termolecular interactions between human serum albumin (HSA) and bilayers composed
of either 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) or 1,2-dipalmitoyl-sn-
glycero-3-phosphorylethanolamine (DPPE). The HSA structure (PDB code: 1e78) was
obtained from the Protein Data Bank [49] and subjected to structural refinement procedures.
Specifically, missing hydrogen atoms were added using the YASARA software (2021) [50],
followed by homology modeling to incorporate absent amino acids based on the PDB struc-
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ture and secondary structure prediction protocols. The resulting HSA model considered
for analysis exhibited a molecular mass of 66.5 kDa.

The DPPC and DPPE bilayers, each comprising 700 lipids, were constructed and ini-
tially equilibrated utilizing the CHARMM-GUI software platform (http://www.charmm-
gui.org, accessed on 1 March 2023) [51–53]. Subsequently, a 10-nanosecond (ns) equili-
bration period was employed to mitigate potential atomic clashes within the membrane.
Following equilibration, the HSA molecule was introduced adjacent to the bilayer surface
without perturbing its structural integrity. Ten unique orientations of HSA were randomly
positioned approximately 0.5 nm from the bilayer surface to explore potential binding sites.

Initial MD simulations spanning 100 ns have been performed to select the most stable
binding sites. DPPC showed more specific HSA domain binding affinity, resulting in
protein desorption from the surface (except for those orientations involving mostly domain
II). DPPE membrane formed stable complexes with HSA regardless of the orientation. After
this initial period, binding was retained in only five DPPC systems. Therefore, further anal-
yses and computations included only the five most stable structures for both DPPE/HSA
and DPPC/HSA systems. For this reason, the simulations for selected structures were
repeated and extended to 200 ns. Periodic boundary conditions were enforced to simulate
an “infinite” bilayer, and the TIP3P water model [54,55] was employed.

All simulations were conducted under physiological conditions (temperature:
310 K, pH: 7.0, P = 1 Atm, NPT procedure [50,56]) employing a 2 fs time step. Two scenarios
were investigated: (i) HSA at the bilayer interfaced with an aqueous solution of NaCl and
(ii) HSA at the bilayer interfaced with a CaCl2 aqueous solution. Additionally, simulations
with KCl and MgCl2 solutions were also performed. Each simulation box encompassed
water, a single HSA molecule, a DPPC/PE bilayer, 240 cations for bivalent ions, and around
480 cations for monovalent ions, along with an appropriate number of anions to maintain
electroneutrality. The default ion parameterization in YASARA was applied throughout
the study.

The equilibrium state of the system was achieved after approximately 40 ns, following
which simulations were continued for an additional 200 ns to gather data. To maintain
constant pressure and temperature throughout the simulations, we utilized a modified
Berendsen barostat and thermostat [57], each with a relaxation time of 1 fs.

Analysis of the MD simulations involved the evaluation of binding free energies, the
formation of hydrogen bonds, and ionic interactions. These interactions were elucidated
through contact maps illustrating the frequency of specific molecular pairings. Furthermore,
the distribution of water molecules surrounding the HSA–bilayer complexes, as well as
the distribution of calcium and sodium ions, were analyzed to provide insights into the
solvation environment and potential ion-mediated interactions.

2.1. Free Energy of Binding

The binding free energy was determined by applying the single trajectory method,
employing Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) [58] and
YASARA Structure. The solvation energy and electrostatic interactions were analyzed
using the AMBER14 force field combined with the Adaptive Poisson–Boltzmann Solver
(APBS) [59]. The electrostatic surface potential map was generated through this approach.
Utilizing the optimized structures, the binding free energy, ∆Gb, was computed using the
following equation:

∆Gb = ∆Gc − (∆Gm + ∆GHSA) (1)

where ∆Gc, ∆Gm, and ∆GHSA represent the minimized free energies of the HSA-membrane
complex, membrane, and HSA, respectively. The total ∆Gb has multiple contributions,
which under isothermal conditions can be represented by Equation (2):

∆Gb = ∆HHSA−membrane + ∆HPS + ∆HNS − T∆S (2)
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where T∆S represents the conformational entropy contribution and ∆HHSA-membrane denotes
the interaction enthalpy between the HSA and the phospholipid bilayer. This component
encompasses both electrostatic and van der Waals interactions. The terms ∆HPS and ∆HNS
denote the polar and non-polar solvation enthalpies, respectively.

2.2. Intermolecular Contacts Identification

In this study, the default YASARA settings for crucial intermolecular contact identifi-
cation were utilized.

As is well known, one of the most important interactions stabilizing biological systems
is hydrogen bonding. According to the applied definition, they are strong interactions
considered to be formed when the contact energy exceeds 6.25 kJ/mol, representing 25% of
the optimal value of 25 kJ/mol [60]. The bond energy in kJ/mol is calculated as a function
of the hydrogen acceptor distance and two scaling factors using the following formula [61]:

EHB = 25·2.6 − max(DisH−A,2.1)
0.5

·ScaleD−A−H ·ScaleH−A−X (3)

The first scaling factor (ScaleD−A−H) depends on the angle formed by the donor-
hydrogen-acceptor. The second scaling factor (ScaleD−A−H) is derived from the angle
formed by the hydrogen-acceptor-X, where X represents the atom covalently bound to
the acceptor.

The other important intermolecular forces, namely ionic interactions, occur when
oppositely charged ions localized on specific atoms are close in space. These interactions,
along with hydrogen bonds, constitute the primary contribution to stabilizing the systems
in question. The definition of ionic interactions involves a two-atom contact determined by
the distance between formal centers of integer charges.

It is worth mentioning that using the default YASARA settings, an attempt was made
to characterize the hydrophobic interactions. These weak molecular forces are defined
as the contacts between specific groups recognized as hydrophobic, such as –CH3 or
–CH2–. However, their contribution to complexation at the key sites between the polar
phospholipid heads and the residues in HSA was found to be negligibly small (<1%).

3. Results and Discussion

This research investigates the energetic and structural consequences of complex forma-
tion between HSA and phospholipid membranes (DPPC and DPPE). It details the changes
in phospholipid layers resulting from interactions with HSA, examining the protein’s
affinity for the studied membranes, the geometric and energetic parameters of molecular
contacts, and their distribution in the presence of Na+, K+, Mg2+, and Ca2+ ions.

3.1. The Effect of HSA Binding on Bilayer Shape and Density

An important feature of phospholipids from a biological perspective is their ability to
self-organize, which can, of course, be influenced by the presence of other compounds. The
optimized structures of three examples of molecular assemblies containing albumin and
considered phospholipid membranes are presented in Figure 1. Additionally, snapshots of
the simulation boxes at the conclusion of the simulation are provided in the Supplementary
Materials (Figure S1).

It is worth noting that at 310 K, a temperature close to physiological conditions, fully
hydrated bilayers composed of DPPC and DPPE are in the gel phase [62]. As clearly illustrated
in the snapshots, although the obtained membranes maintain a well-ordered structure, as seen
in the images, the membrane undergoes a shape change to accommodate HSA. The interaction
between phospholipid bilayers and proteins, including albumin, has been extensively studied
and is well documented both experimentally and theoretically [63–68]. These interactions
often result in notable surface deformations of the bilayers, driven by the minimization of the
overall free energy of the system. This process leads to significant alterations in the curvature
and structural integrity of the lipid bilayer at the site of contact with the protein. Albumins,
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owing to their unique structural properties and affinity for phospholipid liposomes [23], can
induce complex changes within the bilayer. It is worth mentioning that experimental research
on the systems composed of phosphatidylcholine (PC) and sodium cholate has revealed that
the concentration of albumin can significantly affect the size of micelles [69]. Furthermore,
Al-Ayed [70] has demonstrated the critical role of bovine albumin in the solubilization and
phase transitions of systems composed of dipalmitoylphosphatidylcholine (DPPC). These
studies suggest the presence of strong, specific interactions between albumin and the mem-
brane surface, which can lead to considerable changes in the physical properties of the
membrane. Such findings contribute to a deeper understanding of the dynamic nature of
membrane-protein interactions and their implications for cellular processes and membrane
functionality. It is suggested that the ability of the cell membrane to transport essential cellular
components may be influenced by its strong interaction with albumin [22].
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snapshots of complexes in the presence of Ca2+ cations. The membrane is colored pink, HSA do-

mains: I—green, II—yellow, III—red. Panel (A) shows the preferred arrangement of HSA on the 

Figure 1. Preferred orientations of HSA concerning the phospholipid bilayer, illustrated by selected
snapshots of complexes in the presence of Ca2+ cations. The membrane is colored pink, HSA domains:
I—green, II—yellow, III—red. Panel (A) shows the preferred arrangement of HSA on the DPPC
membrane. Panels (B) and (C) present the two possible orientations of HSA with respect to the
DPPE membrane.

The permeability of membranes can be significantly influenced by the deposition
density of phospholipids [71,72]. It is noteworthy that the effect of reduced liposome
packing due to interactions with serum proteins has been described using experimental
tools by Bonté and Juliano [42]. Additionally, research by Melcrová et al. [72] demonstrated
that the presence of calcium salts can affect the packing of phospholipids in the membrane.
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To characterize the impact of complex formation on structural changes in the phospholipid
bilayer, the changes in phospholipid density resulting from the adsorption of HSA on
its surface were analyzed. Figure 2 presents selected phospholipid mass profiles as a
function of cross-section for selected systems. The plots represent average density values
across the entire bilayer. Additionally, the density profiles for the nitrogen atoms in
the phospholipid head groups are also depicted. As clearly seen, the formation of a
complex with HSA affects the distances between phospholipid molecules in the considered
membranes. Interestingly, when focusing on the nitrogen atoms in the phospholipid head
groups, only minor variations in density are observed. For example, the difference between
the maximum and minimum mass density values for DPPE phospholipid head group
nitrogens is approximately 400 (Figure 2B), whereas the difference for the average mass
density across all atoms in the membrane exceeds 10,000. Despite these small variations
in mass density, the shape of the profiles for nitrogen atoms differs significantly between
membranes composed of DPPC and DPPE.
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Figure 2. The effect of HSA adsorption on mass profiles of DPPC (A) and DPPE (B) phospholipid
bilayers. The z-parameter denotes the distance from the membrane center. Smoothed plots were
obtained using a moving average. The mass density values of head group nitrogens were scaled by a
factor of 20 due to their low magnitude.

3.2. The Affinity of HSA for DPPC and DPPE in the Presence of Mono- and Divalent Cations

The types of molecular contacts discussed in this study are presented in Figure 3.
As shown, the examined systems are primarily stabilized by hydrogen bonds and ionic
interactions formed by the hydrophilic heads of phospholipids and specific residues in HSA.
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Figure 3. Examples of key membrane–HSA interactions are DPPC/HSA (A,B) and DPPE/HSA
(C,D). Pink solid lines indicate ionic interactions. Dotted pink—H-bonds. Atoms of lipids are
presented in ball-like models and colored in the following fashion: turquoise—carbon, red—oxygen,
blue—nitrogen, and yellow—phosphorus. The calcium cation is represented by a pink ball. Large
yellow balls indicate magnesium ions. Solid lines with additional side groups in a stick-like model
represent the HSA molecule. Its color corresponds to the domains depicted in Figure 1. The panels
highlight interactions with specific residues in HSA: Panel A: GLU 321; Panel B: LYS 317, LYS 313,
HIS 367, and ASP 365; Panel C: HIS 9, LYS 12, and GLU 16; Panel D: GLU 321, ASP 314, and LYS 317.
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Given the polyelectrolytic nature of proteins, the distribution of electrostatic charge
within the molecule, dictated by pH, determines the type and number of intermolecular in-
teractions they form. It is well known that albumin, which is characterized by an isoelectric
point of c.a. 5, is negatively charged under physiological pH conditions (pH ≈ 7) [73,74].
As expected, the hydrophilic head groups of the phospholipid membranes interact with
albumin through the ionic interactions formed by positively charged ammonium groups
and negatively charged GLU and ASP residues (Figure 3). The other important interactions
are hydrogen bonds formed by HIS and LYS residues, with the phosphate group playing
the accepting role.

It is of significant importance to examine the energetic aspects, which reveal substantial
differences in the mutual affinity of membranes and HSA. In Figure 4, the distribution of
binding energy values determined for the complexes in the presence of Na+, K+, Ca2+, and
Mg2+ cations is presented. The confirmation that stable optimal structures were obtained
is provided by the plot of root mean square deviation (RMSD) versus time (Figure 5).
Additional trajectories are presented in Figures S2–S5 (Supplementary Materials). The
trajectory analysis is useful for determining the equilibrium state, as indicated by a plateau.
The attainment of a stable conformation is clearly observed both for the entire structure, as
evidenced by considering the binding energy as a function of time (Supplementary Figure
S1), and for individual binding sites (Supplementary Figure S2). In the latter case, however,
broader thermal fluctuations and generally lower binding energy values are observed for
DPPC compared to DPPE. For structures that have reached equilibrium, the binding energy
values further suggest a higher affinity of HSA for the membrane composed of DPPE
(Figure 4). The average binding energy values for DPPC in complexes containing Na+, K+,
Ca2+, and Mg2+ are 700, 600, 1300, and 1100 kJ/mol, while for DPPE, these values are 1800,
1400, 1800, and 1200 kJ/mol, respectively. Apart from energetic characteristics, changes
in structural parameters during MD simulations serve as an indicator of system stability,
as demonstrated in previous studies on protein-phospholipid bilayer interactions [75–78].
Minor variations in structural parameters suggest the formation of stable and energetically
favorable interactions. As illustrated in Figure 5, the RMSD values of DPPC complexes
with HSA are lower than those observed for DPPE complexes. It is noteworthy that,
in simulations of DPPC/HSA in the presence of K+ ions, two structures failed to reach
equilibrium, resulting in complex dissociation. The destabilizing influence of K+ is clearly
reflected in the RMSD vs. time profile (Figure 5).
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As previous studies have shown [38], Na+, Mg2+, and Ca2+ impact the stability of
complexes involving HSA. Notably, Ca2+ ions were found to be responsible for linking
various peptides with phospholipid bilayers [79–81]. In contrast, Na+ and K+ ions are
known to interact only slightly with albumin compared to Ca2+ and Mg2+ [82,83].

The binding of cations to phospholipids increases the positive charge of the bilayer,
thereby promoting interactions with negatively charged albumin. Considering the atomic
radius and ionic charge, the hydration ability of the studied ions increases as follows: K+

< Na+ < Ca2+ < Mg2+, which aligns with experimental observations [84]. Ion hydration
appears to be a competing effect against binding with phospholipids. On the other hand,
the binding of ions of high positive charge (Mg2+, Ca2+) to the membrane is expected to
promote stronger interactions with the negatively charged protein. However, as shown
in Figure 4, this expectation is not met in the case of DPPE, as the presence of Mg2+

ions results in the weakest binding of HSA by the phospholipid bilayer. In the case of
DPPC, an advantage of divalent ions in stabilizing the complex over monovalent ions can
be observed, as the highest affinity for HSA was found in systems containing Ca2+ and
Mg2+ ions. Notably, experimental data on the interactions of soybean lecithin with albumin
support this observation [46]. PC phospholipids, including DPPC, are the main components
of lecithins, contributing to their functional properties [85]. These phospholipids have
been found to form efficient interactions with albumin [46,86,87]. The results of infrared
spectroscopic measurements conducted by Tantipolphan et al. [46] have demonstrated
that bovine serum albumin binds more effectively to hydrogenated soybean lecithin films
in the presence of CaCl2 compared to NaCl. On the other hand, the distributions of
Ebind in the case of DPPE complexes containing Na+ and Ca2+ cations are very similar.
Further, both cations increase the stability of the complex when compared to K+ and Mg2+,
respectively. For DPPC, complexes containing the K+ ion exhibit the lowest stability. As
previously mentioned, we have observed that two of these complexes disintegrate during
the simulation period. Indeed, both experimental and theoretical studies conducted by
other researchers [43–45,47] suggest a low affinity of K+ for DPPC compared to other
monovalent and divalent metal cations.

The stability of HSA-phospholipid complexes in the presence of mono- and divalent
cations is primarily driven by ionic contacts between the phospholipid membrane and
HSA, along with hydrogen bonds. However, the influence of ions on HSA affinity for
the membrane appears to be more indirect than direct. It might seem that the differences
in complex stability arise from the binding of components via ions. Nevertheless, ionic
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bridges with Na+, K+, Mg2+, and Ca2+ represent a negligible part of the interactions (<1%)
compared to other types of molecular contacts, including direct ionic interactions between
the phospholipid layer and the protein. In the DPPC/HSA system, ionic bridges are formed
only between the phosphate group and the carboxyl group in GLU in the presence of Ca2+

ions, with an average distance between the atoms and the ion of 3.19 ± 0.14 Å. In the
DPPE/HSA system, ionic bridges are formed by both GLU and ASP, characterized by
distances of 3.33 ± 0.35 Å for GLU and 3.41 ± 0.25 Å for ASP.

The higher binding energy of HSA to the DPPE membrane, compared to DPPC,
demonstrates greater mutual affinity of the components. This is attributed to structural
differences in the phospholipid headgroup. As can be inferred from Figure 6, DPPE forms
more direct ionic contacts (about 4–5 times) with HSA compared to DPPC. This is due
to the difference in headgroup size and, consequently, the difference in positive charge
density on groups capable of forming such contacts with HSA (-N(Me)3 for DPPC and
-NH3 for DPPE) [88,89]. Additionally, the steric hindrances caused by the methyl groups in
-N(Me)3 may also play a role in influencing the stability of HSA associates formed by these
lipids. Considering the effect of mono- and divalent cations on the individual complexes,
significant differences are observed, regardless of whether DPPC or DPPE membranes are
considered. The percentages of ionic interactions formed by particular residues and HSA
domains are presented in Table S1 (Supplementary Materials). The highest percentage of
ionic interactions in the case of DPPC (approximately half of all ionic interactions in the
complex) is formed by LYS (48%, 45%, 47%, and 52% for the complexes with Ca2+, Mg2+,
K+, and Na+, respectively). About 20% of the ionic interactions are formed by ASP or
GLU. The contributions of ASP contacts are 20% (Ca2+), 21% (Mg2+), 20% (K+), and 16%
(Na+), while for GLU contacts they are 25% (Ca2+), 24% (Mg2+), 24% (K+), and 26% (Na+).
Noteworthy, a low number of ionic interactions (2–6%) was observed in the case of ARG
and HIS. In the case of DPPE complexes with HSA, GLU forms the highest number of ionic
contacts: 46% (Ca2+), 45% (Mg2+), K+ (42%), and Na+ (46%). Similarly, as in the case of
DPPC, ARG and HIS form only a small number of interactions (1–5%).
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As presented in Figure 1, HSA bound to the DPPC and DPPE bilayers by domain I
and II. However, in the case of DPPE, interactions with domain III also occur (Figure 1C,
Tables S1 and S2, Supplementary Materials). The experimental studies of Pantusa et al. [90]
showed that the adsorption of DPPC affects the structural features of all domains in
HSA. This study, however, does not indicate which parts of albumin interact with a
DPPC membrane. It is worth noting that although albumin is negatively charged as
a whole molecule under physiological conditions, its polyelectrolytic nature allows it to
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contain regions with positive charges. Hence, it can interact with both cationic and anionic
surfactants [91]. According to MD simulation results reported by Adamczyk et al. [92],
subdomain IA poses the highest negative charge density, while IB and IIIA are positively
charged. In particular, the IIIA domain was found to be the most positively charged [92],
which makes interaction with the positively charged amino groups of the phospholipid
less favorable. Nevertheless, domain III readily interacts with dissolved fatty acids [93–95],
suggesting an affinity of this fragment for negatively charged oxygen atoms, which are also
present in the phospholipid headgroups. Indeed, as clearly shown in Figure 3C,D, oxygen
atoms of the phosphate group in DPPE form intermolecular interactions with the protein.
The analysis of ionic molecular contacts reveals that no such interactions are formed by
amino acids from domains IIIA and IIIB in the case of DPPC, irrespective of the cation type.
HSA interacts with DPPC primarily through domains IA, IIA, and IIB. In the case of domain
IA, ionic interactions are formed at 29%, 24%, 23%, and 21% when the complexes contain
Ca2+, Mg2+, K+, and Na+ ions, respectively. This indicates that Ca2+ and Mg2+ cations form
slightly more ionic contacts with domain IA than K+ and Na+ cations. For domain IIA,
the highest number of interactions was identified: 46% (Ca2+), 41% (Mg2+), 53% (K+), and
43% (Na+). Interestingly, the presence of K+ cations contributes to the greatest number of
interactions involving DPPC. In this case, domain IIB shows no clear preference for cations
in terms of the number of ionic contacts formed. This part of albumin is characterized by a
negligible number of ionic contacts (1% regardless of the ions contributing to stabilizing
the given complex).

In the case of DPPE complexes, ionic interactions were identified in all HSA domains.
The highest number of such molecular contacts was identified for domain IA: 29% (Ca2+),
32% (Mg2+), 33% (K+), and 32% (Na+), and the lowest for domains IB: 10% (Ca2+), 9%
(Mg2+), 10% (K+), and 9% (Na+) and IIIA: 12% (Ca2+), 9% (Mg2+), and 8% for the complexes
stabilized by Na+ and K+. Domain IIIB, in most cases except for the complexes in the
presence of K+, is characterized by a higher percentage of ionic interactions: 16% (Ca2+),
12% (Mg2+), 12% (K+), and 8% (Na+). Domain IIA forms fewer interactions than domain
IA. For domain IIA, most interactions with DPPE occur in the presence of K+ and Na+ (22%
and 23%, respectively). The presence of divalent cations causes the formation of slightly
fewer ionic contacts: 19% (Ca2+) and 20% (Mg2+).

Similar to previously discussed ionic interactions, DPPE forms more hydrogen bonds
with HSA than DPPC (Figure 7). However, this difference is less pronounced. It is worth
noting that the methylated ammonium group in DPPC is completely blocked from form-
ing hydrogen bonds. Consequently, hydrogen bonds in DPPC are exclusively formed
with oxygen atoms in the phosphate group acting as acceptors. In contrast, DPPE’s
amine groups can engage in hydrogen bonding with the oxygen atom of the ASP residue
(d = 1.87 ± 0.15 Å, Figure 3D). This, in turn, results in enhanced stability of HSA-DPPE
complexes relative to those formed with DPPC (Figure 3B).

The contributions of specific HSA domains to hydrogen bond formation are detailed
in Table S2 (Supplementary Materials). In complexes formed by DPPC, only IA, IB, and
IIB domains participate in hydrogen bonding. Notably, for DPPC/HSA/Mg2+ systems, no
hydrogen bond interactions with the IB subdomain are detected. In the case of Na+, K+,

and Ca2+, the IB subdomain forms a negligibly small number of intermolecular contacts
with DPPC. In contrast, in DPPC/HSA/K+ complexes, hydrogen bonds involving domain
IIA contribute significantly, exceeding 50% of the total interactions. Interestingly, ionic
interactions involving domain IIA also account for more than 50% of the total interactions
(Table S1, Supplementary Materials). Moreover, in the majority of DPPC complexes, domain
IIA likewise forms most of the hydrogen bonds and ionic contacts.

For complexes formed with DPPE, domain IA is the primary contributor to hydrogen
bond formation, regardless of the metal ions present in the complexes. Likewise, the DPPC
system, the domain responsible for the majority of hydrogen bonds, also forms the most
ionic contacts.
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all cases studied. The symbols PC and PE represent the phospholipid membranes formed by DPPC
and DPPE, respectively.

The dynamic nature of hydrogen bonding networks in aqueous environments pro-
foundly impacts the behavior of biomolecules. One intriguing aspect of the interactions
between phospholipid bilayers and HSA is their impact on biomechanical properties. This
includes indirect contacts, such as water bridges. As is well-known, liposomes exhibit excel-
lent lubricating properties. Interestingly, an appropriately large addition of proteins (such
as albumin or γ-globulin) to solutions containing phospholipids can lead to an increase in
friction between surfaces filled with model synovial fluids [31,96,97]. Low concentrations
of albumin can promote lubrication. This suggests a negative impact of forming a dense
network of direct interactions between the components on lubricating performance. A
significant excess of water relative to the protein is advantageous, as the formation of
water bridges between components of the synovial fluid plays a crucial role in reducing
friction [98,99]. This is understandable, as effective lubrication at the molecular level is
closely linked to the mobility of synovial fluid components.

The structural and energetic details characterizing water bridges are summarized in
Table S5 (Supplementary Materials). The majority of hydrogen bonds with water (approx-
imately 80%) are formed by the phospholipid head groups, as expected due to their hy-
drophilic nature. In the most stable complex examined (DPPE/HSA/Ca2+), the average
length of these hydrogen bonds is 1.78 ± 0.20 Å, with a corresponding binding energy of
21.70 ± 4.43 kJ/mol. The higher binding energies, albeit with slightly shorter distances be-
tween atoms, are observed for hydrogen bonds connecting the phospholipid and HSA through
ASP (Ebind = 22.33 ± 3.96 kJ/mol, d = 1.82 ± 0.19 Å), GLU (Ebind = 22.26 ± 3.74 kJ/mol,
d = 1.82 ± 0.18 Å), GLY (Ebind = 21.80 ± 4.01 kJ/mol, d = 1.89 ± 0.16 Å), ILE
(Ebind = 22.57 ± 2.44 kJ/mol, d = 1.85 ± 0.16 Å), and TRP (Ebind = 21.89 ± 3.19 kJ/mol,
d = 1.96 ± 0.17 Å). However, the contribution of these interactions is low or negligible
(0.02−4.39%). For DPPC, the most stable complex, i.e., the DPPC/HSA/Ca²+, is similarly
characterized by high Ebind values (18.77−23.28 kJ/mol).

4. Conclusions

In this study, interactions between membranes composed of DPPC and DPPE phos-
pholipids and HSA were analyzed using molecular dynamics. A consequence of protein
binding to the membrane is its significant deformation (characteristic curvature). In this
way, the system achieves the most energetically favorable organization of phospholipids.
This, of course, also indicates the formation of relatively strong interactions between
the membrane and HSA, which affect changes in membrane structure. The calculated
energy-structural features indicate a high mutual affinity of HSA and studied bilayers.
Nevertheless, complexes formed by DPPE are generally more stable than those formed by
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DPPC. This is primarily due to differences in the number of ionic contacts and hydrogen
bonds. The methylated amine group in DPPC limits the number of possible interactions
with HSA, reducing its ability to form stable complexes. Consequently, DPPC forms fewer
contacts than DPPE. The other important factor influencing the stability of the considered
phospholipid membrane–HSA systems is the presence of mono- and divalent cations.
These ions significantly affect the frequency and nature of molecular interactions, such as
ionic contacts and hydrogen bonds, between the bilayer and HSA. Nevertheless, DPPE and
DPPC differ in how cations affect the stability of their complexes with HSA. Although there
is limited experimental data to directly compare with the computational results presented
in this study, there are some reports on lecithin that align with the predicted behavior of
DPPC bilayers in the presence of Na+, K+, and Ca2+.

The results obtained highlight the important role of molecular dynamics in predicting
the structure and stability of large biomolecular systems. These insights are crucial for
understanding the interactions at the molecular level. Complexes composed of proteins
and phospholipids hold substantial biomedical and pharmaceutical potential and are the
focus of various research efforts. The observed structural difference between headgroups
in DPPE and DPPC affecting the affinity of HSA to the membrane can be useful from the
perspective of liposomal technology development, where the phospholipid composition
can be precisely tailored to enhance the effectiveness of interactions with target proteins.
Furthermore, both HSA and phospholipids are present in synovial fluid, making these
insights important for understanding biolubrication mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app142411753/s1, Figure S1: Snapshot of HSA/membrane/water
system simulation box at the end of simulation. Lipid membranes are depicted in pink, HSA in
red/green/yellow, and water in the background; Figure S2: Time evolution of last 100 ns of free
energy of binding for all complexes; Figure S3: Time evolution of the last 100 ns of free energy
of binding for binding sites for all ions; Figure S4: Time evolution of 200 ns of total number of
intermolecular ionic interactions between HSA and membrane; Figure S5: Time evolution of 200 ns of
the total number of intermolecular hydrogen bonds between HSA and the membrane; Table S1: The
percentages of ionic interactions formed by particular residues (top) and HSA domain contributions
(bottom); Table S2: The binding energies, distances, and percentages of hydrogen bonds formed by
particular HSA domain contributions; Table S3: The percentages, energies, and lengths of hydrogen
bonds formed by particular HSA amino acids with the DPPC membrane; Table S4: The percentages,
energies, and lengths of hydrogen bonds formed by particular HSA amino acids with the DPPE
membrane; Table S5: Hydration of HSA and lipids expressed by the distribution of water bridges
stabilizing the DPPC/HSA/Ca2+ and DPPE/HSA/Ca2+ systems. PHG denotes the phospholipid
head group.
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38. Bełdowski, P.; Przybyłek, M.; Raczyński, P.; Dedinaite, A.; Górny, K.; Wieland, F.; Dendzik, Z.; Sionkowska, A.; Claesson, P.M.
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics. Int. J. Mol. Sci. 2021,
22, 12360. [CrossRef]

39. Arias-Moreno, X.; Abian, O.; Vega, S.; Sancho, J.; Velazquez-Campoy, A. Protein-Cation Interactions: Structural and Thermody-
namic Aspects. Curr. Protein Pept. Sci. 2011, 12, 325–338. [CrossRef] [PubMed]

40. Singh, A.; Maity, A.; Singh, N. Structure and Dynamics of dsDNA in Cell-like Environments. Entropy 2022, 24, 1587. [CrossRef]
[PubMed]

41. Sarkar, R.; Mainan, A.; Roy, S. Influence of ion and hydration atmospheres on RNA structure and dynamics: Insights from
advanced theoretical and computational methods. Chem. Commun. 2024, 60, 3624–3644. [CrossRef]

42. Bonté, F.; Juliano, R.L. Interactions of liposomes with serum proteins. Chem. Phys. Lipids 1986, 40, 359–372. [CrossRef] [PubMed]
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