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2-Coloring number is a parameter, which is often used in the literature to bound the game 
chromatic number and other related parameters. However, this parameter has not been 
precisely studied before.
In this paper we aim to fill this gap. In particular we show that the approximation of 
the game chromatic number by the 2-coloring number can be very poor for many graphs. 
Additionally we prove that the 2-coloring number may grow quadratically as a function of 
the maximum degree of a graph, whereas the game chromatic number is always at most 
linear.
Moreover, we establish the values of the 2-coloring number for several graph classes, such 
as complete k-partite graphs, cacti and thorny graphs, trees and subcubic graphs. It is 
shown that in all these cases one may compute the exact value in a polynomial time.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple, i.e. without loops or multiple edges. We assume 
the standard graph notation following [3]: a graph G has a vertex set V (G) and an edge set E(G) – with cardinalities n(G)

and m(G), respectively. The set of vertices adjacent to a vertex v in a graph G is denoted by NG (v), and its cardinality by 
degG(v) := |NG(v)|. Similarly, we denote by NG (v, r) the set of vertices, which are exactly at the distance r from v in G , 
where the distance of two vertices equals the length of any shortest path connecting them. Moreover, we denote by �(G)

and δ(G) the maximum and minimum degree of a vertex in the graph, by χ(G) the chromatic number of the graph, and 
by g(G) the girth of a graph, that is, the length of a shortest cycle in the graph (provided that G has at least one cycle). We 
also denote by G[A] the subgraph of G , induced by a nonempty set A ⊆ V (G).

Note that for brevity, whenever it is obvious from the context to which graph we refer, we simply drop it from the above 
(and below) notation.

Through the paper we use the notion of a linear ordering of V (G). Usually it is understood as a bijection L : V (G) →
{1, 2, . . . , n}, but sometimes it is more convenient to use a sequence (vi)i=1,2,...,n(G) of vertices of G (a permutation of set 
V (G)) where vi := L−1(i) for i = 1, 2, . . . , n(G). It is obvious that both descriptions are equivalent – and a handful of times 
we will be using both, writing (with a slight abuse of notation) that L = (vi)i=1,2,...,n(G) .

For a given linear ordering L of V (G) and v ∈ V (G) its back-neighborhood may be defined as N−
G (v, L) := {u ∈ V (G) : uv ∈

E(G) ∧ L(u) < L(v)} – that is, the set of neighbors of v , which precede it in L. Now, we are ready to define the coloring 
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number col(G) of a graph G as the minimum k for which there exists a linear ordering L on V (G) such that |N−
G (v, L)| ≤

k − 1 for every v ∈ V (G).
Coloring number can be considered as a measure of sparseness of a graph: col(G) ≤ k if and only if every subgraph of G

has a vertex of degree at most k −1, that is, if every subgraph of G is sparse. It is known that the optimal linear ordering for 
col(G) can be found in O (n + m) time using the Smallest Last algorithm [11], that is, by iterative removal from G vertices 
of the smallest degree and appending them at the beginning of the sequence.

Kierstead and Yang [10] generalized the definition of the coloring number in the following way: for a given r ≥ 1 and a 
linear ordering L of V (G) let

N−
G (v , r, L) := {u ∈ V (G) : ∃w1,w2,...,wr−1 uw1, w1 w2, . . . , wr−1v ∈ E(G)

∧ L(u) < L(v) ∧ L(wi) > L(v) for all 1 ≤ i ≤ r − 1}
be the r-back-neighborhood of a vertex v and

deg∗
G(v , r, L) :=

∣∣∣∣∣
r⋃

i=1

N−
G (v , i, L)

∣∣∣∣∣
be the r-extended degree of v . Then the r-coloring number colr(G) of a graph G is defined as follows:

colr(G) := 1 + min
L

max
v∈V (G)

deg∗
G(v , r, L),

where the minimum is taken over all possible linear orderings L. We would use the name optimal ordering for any ordering 
L, for which

max
v∈V (G)

deg∗
G(v , r, L) = colr(G) − 1,

given r and G . Note that since later on we use deg∗
G(v, r, L) only for r = 2, we may unambiguously simplify the notation 

to deg∗
G(v, L) and use the name extended degree as a synonym of 2-extended degree.

It is known (see Kierstead and Kostochka [7]) that the general simple bounds for colr(G) are as follows:

χ(G) ≤ colr(G) ≤ �(G)(�(G) − 1)r−1 + 1.

The upper bound, as shown by van den Heuvel et al. [5], can be improved for G excluding Kt as a minor (that is, it cannot 
be obtained from G by contraction and removal of vertices and edges):

colr(G) ≤
(

t − 1

2

)
(2r + 1).

Moreover, it was proved [6] that there exist simple upper bound using the treewidth of G: colr(G) ≤ t w(G) + 1 for every r. 
This entails for example that for cacti and outerplanar graphs it holds that colr (G) ≤ 3.

For r = 2 we have many more results, proved in contexts of various problems. For example, it was proved in [4] that 
col2(G) ≤ 8 for planar G (and this result is strict). Originally, it was used by Chen and Schelp [2] in the context of the 
Erdős-Burr theorem, stating that for any p-degenerate graph G on n vertices, i.e. a graph with col(G) ≤ p, no monochromatic 
copy of G exists in two-edge-colored complete graph on cpn vertices for some constant cp . They showed that it holds for 
graphs with bounded col2(G) – and therefore, for example, for all planar graphs.

It was shown in [9] (although using different terminology) that the game chromatic number χg(G) ≤ 4 col2(G) + 1 for 
any planar graph G . It was generalized in slightly weaker form in [1] to the general graphs as χg(G) ≤ χ(G)(col2(G) + 1).

We just mention further that col2(G) is a parameter used in proofs and bounds of many coloring-related parameters 
such as acyclic chromatic number [10], oriented game chromatic number [8], generalized coloring number [12] and coloring 
game number [1].

In this paper we analyze the properties of col2(G). First, in Section 2 we show that col2(G) ≤ 1
2 �(G)(�(G) − 1) + 1, 

therefore improving previous bound by a factor of 2, but also that for all regular, {C3, C4}-free graphs it is true that 
col2(G) ≥ 1

8 �(G)2 + 1
4 �(G) + 1, therefore the parameter col2(G) grows quadratically with �(G). This finding leads us to a 

conclusion that col2(G) cannot be a good bound for χg(G) for these graphs, as it is known that χg(G) ≤ �(G) + 1 – so 
col2(G) = �(χ2

g (G)).
Finally, in Section 3 we use some of the above results to provide a complete classification of subcubic graphs in terms of 

their col2(G) values and present a polynomial algorithm for computing col2(G) for subcubic graphs.
Note that the existence of isolated vertices do not influence the value of col2(G). Therefore, from now on without loss 

of generality we may assume that we consider only graphs without isolated vertices, that is, with δ(G) ≥ 1.
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2. General bounds on 2-coloring number

Theorem 2.1. If G has col(G) ≥ 3, then col2(G) ≤ �(G)(col(G) − 2) + 1.

Proof. Let L be an ordering of vertices of G such that |N−
G (v, L)| ≤ col(G) − 1 for all v ∈ V (G).

Now, consider any v ∈ V (G). It has k = |N−
G (v, L)| ≤ col(G) − 1 and |NG (v) \ N−

G (v, L)| = degG(v) − k. Any vertex 
u ∈ NG(v) \ N−

G (v, L) may have at most col(G) − 2 neighbors in N−
G (v, L), therefore

deg∗
G(v , L) ≤ k + (degG(v) − k)(col(G) − 2)

= degG(v)(col(G) − 2) + k(3 − col(G)) ≤ �(G)(col(G) − 2),

which completes the proof. �
Theorem 2.2. For every graph G it holds that col2(G) ≤ 1

2 �(G)(�(G) − 1) + 2.

Proof. Let L = (vi)i=1,2,...,n(G) be a Smallest Last ordering of vertices of G . Let us look at vertex vi and its forward neighbors 
vi1 , vi j , . . . , vik such that i < i1 < i2 < . . . < ik . Let also Gi j := G[{v1, v2, . . . , vi j }].

Now we have:

∀1≤ j≤k degGi j
(vi j ) = min

1≤l≤i j

degGi j
(vl) ≤ degGi j

(vi) = degGi
(vi) + j.

Moreover

deg∗
G(vi , L) ≤ (degG(vi) − k) +

k∑
j=1

(degGi j
(vi j ) − 1)

≤ (degG(vi) − k) +
k∑

j=1

(degGi
(vi) + j − 1).

But now observe that degGi
(vi) = degG(vi) − k, therefore:

deg∗
G(vi , L) ≤ (k + 1)(degG(vi) − k) + 1

2
k(k − 1)

= −1

2
k2 + k

(
degG(vi) − 3

2

)
+ degG(vi).

This upper bound is a quadratic function of k, which has its maximum in k = degG(vi) − 3
2 , giving:

deg∗
G(vi , L) ≤ 1

2
degG(vi)(degG(vi) − 1) + 9

8
.

Since deg∗
G(vi, L) and degG(vi) are integers, we may strengthen this bound to deg∗

G(vi, L) ≤ 1
2 degG(vi)(degG(vi) − 1) + 1. 

Finally, we obtain:

col2(G) ≤ 1 + max
v∈V (G)

deg∗
G(v , L) ≤ 2 + 1

2
�(G)(�(G) − 1). �

Let us recall that if H is a family of graphs (H is a graph) then graph G is H-free (H-free) if and only if none of its 
induced subgraphs is isomorphic to any element of H (to H).

Theorem 2.3. For every C3-free graph G in which every vertex belongs to at most t cycles of length 4 it holds that

col2(G) ≥ 1

1 + √
8t + 1

m2(G)

n2(G)
+

(
1 − 1

1 + √
8t + 1

)
m(G)

n(G)
+ 1.

Proof. Let L = (vi)i=1,2,...,n(G) be any ordering of vertices of G . Since G contains no C3 we have N−
G (vi, 1, L) ∩

N−
G (vi, 2, L) = ∅ and deg∗

G(vi, L) = |N−
G (vi, 1, L)| +|N−

G (vi, 2, L)|. Moreover, we know that 
∑n(G)

i=1 |N−
G (vi, 1, L)| = m(G)

and |N−
G (vi, 1, L)| ≤ degG(vi).

Now we find T , the number of triples ( j, i, k) such that j < i < k and vi vk, v j vk ∈ E(G). First, summing for all fixed k
we have:

http://mostwiedzy.pl
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T =
n(G)∑
k=1

(|N−
G (vk , 1, L)|

2

)

= 1

2

n(G)∑
k=1

|N−
G (vk , 1, L)|2 − 1

2

n(G)∑
k=1

|N−
G (vk , 1, L)|

= 1

2

n(G)∑
k=1

|N−
G (vk , 1, L)|2 − 1

2
m(G).

Alternatively, for any fixed vertex vi and any fixed v j ∈ N−
G (vi, 2, L) we have at most t cycles C4 to which they both 

belong. Therefore, we have at most l paths of length 2 between them, where 
( l

2

) ≤ t – or, equivalently, 2l ≤ 1 + √
8t + 1. 

Therefore any such i and j may correspond only to at most 1
2 (1 + √

8t + 1) triples ( j, i, k):

T ≤ 1

2
(1 + √

8t + 1)

n(G)∑
i=1

|N−
G (vi , 2, L)|.

Combining the above observations we receive

n(G)∑
i=1

deg∗
G(vi , L) =

n(G)∑
i=1

|N−
G (vi , 2, L)| +

n(G)∑
i=1

|N−
G (vi , 1, L)|

≥ 2T

1 + √
8t + 1

+ m(G)

=
n(G)∑
k=1

|N−
G (vk , 1, L)|2

1 + √
8t + 1

− m(G)

1 + √
8t + 1

+ m(G)

=
n(G)∑
k=1

|N−
G (vk , 1, L)|2

1 + √
8t + 1

+
(

1 − 1

1 + √
8t + 1

)
m(G)

≥
(∑n(G)

k=1 |N−
G (vk , 1, L)|

)2

n(G)(1 + √
8t + 1)

+
(

1 − 1

1 + √
8t + 1

)
m(G)

= m2(G)

n(G)(1 + √
8t + 1)

+
(

1 − 1

1 + √
8t + 1

)
m(G)

and finally

max
1≤i≤n(G)

deg∗
G(vi , L) ≥ 1

n(G)

n(G)∑
i=1

deg∗
G(vi , L)

≥ 1

1 + √
8t + 1

m2(G)

n2(G)
+

(
1 − 1

1 + √
8t + 1

)
m(G)

n(G)
,

which completes the proof. �
Corollary 2.4. For every regular C3-free graph G in which every vertex belongs to at most t cycles of length 4 it holds that

col2(G) ≥ �(G)2

4 + 4
√

8t + 1
+ 1

2

(
1 − 1

1 + √
8t + 1

)
�(G) + 1. �

Corollary 2.5. For every regular {C3, C4}-free graph G it holds that

col2(G) ≥ �(G)2

8
+ �(G)

4
+ 1. �

Theorem 2.2 and Corollary 2.5 in conjunction give us the result that col2(G) = �(�(G)2) for G regular and {C3, C4}-free. 
This means that there exists a gap between col2(G) and χg(G) for such graphs, as it is obvious that χg(G) ≤ �(G) + 1.
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Fig. 1. Graph with a cycle Cs+1 attached to the vertex vi .

3. Subcubic graphs

First, let us state simple facts about col2(G), which will be used throughout the analysis below.

Proposition 3.1. Let G be a connected graph. If �(G) ≤ 2, then exactly one of the following holds:

• G is empty and col2(G) = 1,
• G is a path of length at least 2 and col2(G) = 2,
• G is a cycle and col2(G) = 3. �

Proposition 3.2. If H is equal to G with a leaf attached to one of its vertices, then col2(H) = max{col2(G), 2}.

Proof. Let L be an optimal ordering for G and L′ be equivalent to L with w appended at the end, where w is the leaf 
attached to G to obtain H . It is easy to see that deg∗

H (v, L′) = deg∗
G(v, L′) for any v ∈ V (G). Moreover, we know that 

deg∗(w, L′) = 1, hence col2(H) ≤ max{col2(G), 2}. But on the other hand, it is obvious that if G and P2 are subgraphs of 
H , then col2(H) ≥ max{col2(G), 2}, which completes the proof. �
Corollary 3.3. col2(G) = 2 if and only if G is a nonempty forest. �
Lemma 3.4. If H is equal to:

1. graph G with an attached cycle to one of its vertices, then

col2(H) = max{col2(G), 3},

2. graph G with an attached cycle to one of its edges, then

col2(H) = max{col2(G), 3},

3. graph G with an attached path connecting its two non-adjacent vertices, then

col2(H) = max{col2(G), 2}.

Proof. Let L = (vi)i=1,2,...,n(G) be an optimal ordering for G and s be the length of the attached cycle/path.

(1) To get L′ , we append new vertices at the end of L in the order corresponding to the path, as shown in Fig. 1. Clearly, we 
have deg∗

H (v j, L′) ≤ 2 for n + 1 ≤ j ≤ n + s and it is obvious that deg∗
H (v j, L′) = deg∗

G(v j, L) for 1 ≤ j ≤ n. Therefore 
deg∗

H (v, L′) ≤ max{col2(G) − 1, 2} for all v ∈ V (H).
(2) If s ≥ 4, then we proceed exactly as above. If we attach C3 to an edge vi v j (i < j), note that it is sufficient to use the 

ordering L′ , which is constructed from L by appending a new vertex at the end. It is easy to see that deg∗
H (vk, L′) =

deg∗
G(vk, L) for all 1 ≤ k ≤ n, k �= j. However, deg∗

H (v j, L′) = deg∗
G(v j, L) too, since vi was already counted in the 

back-neighborhood of vi according to L. Therefore deg∗
H (v, L′) ≤ max{col2(G) − 1, 2} for all v ∈ V (H).

(3) We proceed exactly as in (1), the only difference is that we receive an ordering L′ satisfying deg∗
H (v, L′) ≤

max{col2(G) − 1, 1} for all v ∈ V (H).

To complete the proof it suffices to use the definition of the 2-coloring number and use the monotonicity property: this is, 
if G is a subgraph of H , then col2(G) ≤ col2(H). �

http://mostwiedzy.pl


192 R. Janczewski et al. / Theoretical Computer Science 796 (2019) 187–195

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 2. Gadgets for Proposition 3.7.

Note that Proposition 3.1 solves the problem of determining col2(G) for graphs with �(G) ≤ 2, therefore we need only 
to consider the case �(G) = 3. Moreover, we note that from Theorem 2.2 we have the bound col2(G) ≤ �(G) + 2 for all 
subcubic graphs G .

Now we prove the crucial lemma for this section – improving by one the general bound if the coloring number of the 
graph is small:

Lemma 3.5. If G is a subcubic graph with col(G) ≤ 3, then col2(G) ≤ �(G) + 1.

Proof. Let L = (vi)i=1,2,...,n(G) be a Smallest Last ordering of the vertices of G . Let also Gi := G[{v1, v2, . . . , vi}].
From our assumption that col(G) ≤ 3 it follows that degGi

(vi) ≤ 2. Now, it is sufficient to prove that:

∀1≤i≤n∀ j≤i deg∗
Gi

(v j , L) ≤ degGi
(v j).

This inequality is obvious for i = 1. Suppose that it holds for all i < k and let us consider a vertex vk . There are 3 possible 
cases:

1. degGk
(vk) = 0 – then deg∗

Gk
(vk, L) = 0 and for all 1 ≤ j < k it holds that deg∗

Gk
(v j, L) = deg∗

Gk−1
(v j, L) ≤ degGk−1

(v j) =
degGk

(v j),
2. degGk

(vk) = 1 – then deg∗
Gk

(vk, L) = 1 and for all 1 ≤ j < k it holds that deg∗
Gk

(v j, L) = deg∗
Gk−1

(v j, L) ≤ degGk−1
(v j) ≤

degGk
(v j),

3. degGk
(vk) = 2 – then deg∗

Gk
(vk, L) = 2. Let va, vb be the neighbors of vk (a < b). We have deg∗

Gk
(va, L) =

deg∗
Gk−1

(va, L) ≤ degGk−1
(va) < degGk

(va) and deg∗
Gk

(vb, L) ≤ deg∗
Gk−1

(vb, L) + 1 ≤ degGk−1
(vb) + 1 = degGk

(vb). For 
all j ∈ {1, 2, . . . , k − 1} \ {a, b} we have, as in previous case, deg∗

Gk
(v j, L) = deg∗

Gk−1
(v j, L) ≤ degGk−1

(v j) ≤ degGk
(v j).

And since degG(v j) ≤ �(G) for all j, we obtain directly that col2(G) ≤ �(G) + 1. �
Proposition 3.6. If G is a connected cubic graph containing K3, then it holds that col2(G) ≤ 4.

Proof. Let u, v , w induce K3 in G . Let also H = G \ {u, v, w}. Then every connected component H ′ of H is subcubic with 
δ(H ′) = 2, so col(H) ≤ 3 and we may apply Lemma 3.5 to prove that col2(H) ≤ 4 and, since the proof is constructive, to 
obtain an ordering L for H which realizes this bound.

Then, we just put u, v , w at the end of L to obtain L′ . It is clear that deg∗
G(x, L′) = deg∗

H (x, L) for any x ∈ V (H) (since 
each u, v , w has exactly one neighbor in H) and max{deg∗

G(u, L′), deg∗
G(v, L′), deg∗

G(w, L′)} ≤ 3. �
Proposition 3.7. Let G be a connected K3-free cubic graph. Then col2(G) = 4 if and only if G contains one of the subgraphs presented 
in Fig. 2.

Proof. (⇒) Let L = (vi)i=1,2,...,n(G) be an optimal ordering for G . Let us pick t such that G[{vt+1, vt+2, . . . , vn}] is empty 
and G[{vt , vt+1, . . . , vn}] is not empty. Then vt has k ≥ 1 neighbors in {vt+1, vt+2, . . . , vn}. Note that if k = 1, then due 
to the fact that G is K3-free we would have deg∗(vt , L) = 4 – a contradiction.

Let us introduce a shorthand A(vi) := NG(vi) \ {vt} for i > t . By the choice of vt we know that for every vi and every 
v j ∈ A(vi) it is true that j < t .
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Fig. 3. Auxiliary ordering used when K2,3 is a subgraph of G .

If k = 2, then vt has two neighbors, u1 and u2, so we have a following situation:

Clearly if |A(u1) ∪ A(u2)| > 2, then deg∗(vt , L) > 3. However, if |A(u1) ∪ A(u2)| = 2, then it has to be true that A(u1) =
A(u2), therefore G[A(u1) ∪ A(u2) ∪ {vt , u1, u2}] is isomorphic to K2,3.

Finally, if k = 3, then we have the following situation:

Graph is cubic, so |A(u1)| = |A(u2)| = |A(u3)| = 2. Since deg∗(vt , L) ≤ 3, we know that |A(u1) ∪ A(u2) ∪ A(u3)| ≤ 3. This 
leaves us with only two possibilities:

• either it is true that A(u1) = A(u2) – then G contains K2,3 with partitions {u1, u2} and A(u1) ∪ {v},
• or |A(u1) ∪ A(u2)| = 3 – but then A(u3) ⊆ A(u1) ∪ A(u2) so either A(u3) = A(ui) for i ∈ {1, 2} and G has a subgraph 

K2,3, or |A(u3) ∩ A(u1)| = |A(u3) ∩ A(u2)| = 1 and G has a subgraph BW3.

In either case we are done, since G contains K2,3 or BW3.
(⇐) It is not hard to verify that for any cubic graph col2(G) ≥ 4 – as any ordering L the last vertex v has deg∗

G(v, L) = 3.
Since G is connected, if K2,3 is a subgraph of G , then K2,3 is an induced subgraph of G and G �= K2,3. Let H be the graph 

induced in G by vertices that do not belong to this K2,3 subgraph. Then δ(H) ≤ 2 and col(H) ≤ 3 and it is sufficient to find 
an ordering L which proves that col2(H) ≤ 4 (possible by Lemma 3.5) and put the vertices of K2,3 at the end of a sequence 
in the following way to obtain L′ , as shown in Fig. 3.

We see that for all vertices u ∈ V (K2,3) we have deg∗
G(u, L′) ≤ 3 and, moreover, for all vertices u ∈ V (H) we have 

deg∗
G(u, L′) = deg∗

G(u, L) ≤ col(H) − 1 = 3.
If BW3 is a subgraph of G , then we proceed with similar argument The only difference is in the way we obtain L′—see 

Fig. 4. Therefore in both cases we can construct a required ordering which proves that col2(G) ≤ 4. �
Proposition 3.8. If G is a subcubic graph such that every vertex with degree 2 is adjacent only to non-adjacent vertices of degree 3, 
then either it contains induced C4 such that col2(G) ≤ max{col2(G \ V (C4)), 3} or col2(G) ≥ 4.

Proof. Let L be an optimal ordering for col2(G). Let v be a last vertex with degree 3 in this ordering.
If |N−

G (v, 1, L)| ≥ 2, then deg∗
G(v, L) ≥ 3 and col2(G) ≥ 4, because either it has 3 neighbors in the back or it has 2

neighbors in the back, but the neighbor in the front has degree 2 (by definition of v) and its other neighbor u is different 
from v or its neighbors (as v and u are not adjacent by assumption).

http://mostwiedzy.pl


194 R. Janczewski et al. / Theoretical Computer Science 796 (2019) 187–195

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 4. Auxiliary ordering used when BW3 is a subgraph of G .

Algorithm 1 Algorithm for col2(G) for subcubic graphs.
1: function SCS(G)
2: if G has no vertices then return 0
3: if G has connected components G1, G2, . . . Gk , k ≥ 2 then
4: return max{SC S(G1), SC S(G2), . . . , SC S(Gk)}
5: if G is empty then return 1

6: if G is a forest then return 2
7: if δ(G) = 3 then
8: if G contains induced K3, K2,3 or BW3 then return 4
9: else return 5

10: if δ(G) = 2 then
11: if G contains C = uv1 . . . vku, deg(u) = 3, deg(vi) = 2 then
12: return max{SC S(G \ V (C)), 3}
13: if G contains C = uv1 . . . vk wu, deg(u) = deg(w) = 3,

deg(vi) = 2 then
14: return max{SC S(G \ V (C)), 3}
15: if G contains P = uv1 . . . vk w , deg(u) = deg(w) = 3,

uw /∈ E(G), deg(vi) = 2, k ≥ 2 then
16: return max{SC S(G \ V (P )), 3}
17: if G contains C4 = u1 v1u2 w1 as shown in Fig. 4 then
18: return max{SC S(G \ V (C4)), 3}
19: else return 4
20: Let v be any vertex with degree 1
21: return max{SC S(G \ v), 2}

If |N−
G (v, 1, L)| = 1, then v has two neighbors in the front, u1 and u2 – by definition of v they have both degree 2. If 

they have different other neighbors w1 and w2, then deg∗
G(v) ≥ 3 – as it counts w1, w2 and x, the only back-neighbor of 

v . Note that w1, w2 are distinct from x, because neighbors of u1 and u2 have to be non-adjacent. However, if w1 = w2, 
then w1, v , u1 and u2 form C4 such that given any optimal ordering of G \ V (C4) we may show that col2(G) ≤ max{col2(G \
V (C4)), 3}:

Similarly, if |N−
G (v, 1, L)| = 0, then either all neighbors of v have distinct other neighbors (and then deg∗

G(v, L) ≥ 3), or at 
least one pair have a common one (and then we have C4 with two vertices with degree 2 in G). �

Finally, we may construct an algorithm computing the exact value in all cases. Note that for simplicity of the algorithm 
we assumed that G can have zero vertices. It is not hard to modify this algorithm to exclude this case.

Theorem 3.9. Algorithm 1 returns col2(G) for any subcubic graph G.

Proof. If �(G) ≤ 2 or G is a forest, then the algorithm returns correct solution, due to Proposition 3.1 and Corollary 3.3, 
respectively.
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If �(G) = 3 and G contains a cycle, then we have three cases:

(1) δ(G) = 3 – then it is obvious that col2(G) ≥ 4 as the last vertex in any ordering has deg∗
G(v, L) = 3. Moreover, from the 

Theorem 2.2 we may directly obtain a general bound for subcubic graphs col2(G) ≤ 5.
From Propositions 3.6 and 3.7 we know that col2(G) = 4 if and only if G contains K3 or either of gadgets K2,3, BW3. 
Otherwise it must be the case that col2(G) = 5.

(2) δ(G) = 2 – then it is obvious that col2(G) ≥ 3 as the last vertex in any ordering has deg∗
G(v, L) ≥ 2. Moreover, from 

Lemma 3.5 we know that col2(G) ≤ 4.
Let G be the smallest counterexample to the correctness of this algorithm. Clearly, it does not contain a path induced 
by the vertices of degree 2, as it would violate minimality by Proposition 3.4. Therefore, it has to be a graph, in which 
every vertex of degree 2 is connected to two non-adjacent vertices of degree 3.
But then, from Proposition 3.8 we know that either we can remove C4 and obtain smaller counterexample – or it has 
to be the case that col2(G) = 4 (and then we know the correct answer with certainty without falling into recursion). In 
both cases we get a contradiction, which proves this case.

(3) δ(G) = 1 – then we may remove all leaves from the graph and, due to Proposition 3.2, we finally fall into one of the 
previous cases.

Since all the theorems above are constructive, the algorithm may be easily modified not only the value of col2(G), but also 
a respective ordering – therefore it surely returns a feasible solution, which completes the proof. �
Theorem 3.10. The running time of Algorithm 1 for G on n vertices is O (n2).

Proof. Evaluating each if clause takes O (n) time – since graph is cubic, for every vertex v one may check its k-neighborhood 
(and find required gadgets containing v) for k = O (1) in constant time. If one has to find a cycle or a path, it is sufficient 
to find a vertex of degree 2 and follow from it in both directions until we find its ends (that is, vertices with degree 3).

Since we directly return an answer (lines 2, 5, 6, 8 − −9, and 19), we recurse on at least two smaller subproblems with 
total size not greater than the current number of vertices (line 4) or we’re left with one smaller subproblem (lines 12, 14, 
16, 18 and 21), it is straightforward that the total complexity of the algorithm is O (n2). �
4. Conclusion

We provide several results for col2(G) when �(G) ≤ 3. Moreover, we derive general upper and lower bound for values 
of col2(G) in the worst case, proving that col2(G) = �(�(G)2) even for C3-free graphs.

One may ask what is the minimum value of c such that col2(G) ≤ c�(G)2 + o(�(G)2). We proved that c ∈ [ 1
8 , 1

2 ]. 
Moreover, there is a question whether computation of col2(G) can be done in polynomial time for �(G) > 3 – or maybe at 
some point this problem becomes NP-hard.
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