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 A B S T R A C T

This work presents a shear elastoplasticity model for textile fabrics within the theoretical 
framework of anisotropic Kirchhoff–Love shells with bending of embedded fibers proposed 
by Duong et al. (2023). The plasticity model aims at capturing the rotational inter-ply 
frictional sliding between fiber families in textile composites undergoing large deformation. 
Such effects are usually dominant in dry textile fabrics such as woven and non-crimp fabrics. 
The model explicitly uses relative angles between fiber families as strain measures for the 
kinematics. The plasticity model is formulated directly with surface invariants without resorting 
to thickness integration. Motivated by experimental observations from the picture frame test, 
a yield function is proposed with isotropic hardening and a simple evolution equation. A 
classical return mapping algorithm is employed to solve the elastoplastic problem within the 
isogeometric finite shell element formulation of Duong et al. (2022). The verification of the 
implementation is facilitated by the analytical solution for the picture frame test. The proposed 
plasticity model is calibrated from the picture frame test and is then validated by the bias 
extension test, considering available experimental data for different samples from the literature. 
Good agreement between model prediction and experimental data is obtained. Finally, the 
applicability of the elastoplasticity model to 3D shell problems is demonstrated.

. Introduction

This work is concerned with dry textile fabric sheets that are formed by two (or more) families of fiber bundles – called warp 
nd weft yarns, which are loosely linked together by weaving, resulting in woven fabrics. These fabric structures are widely used 
n the automotive, marine and aeronautic industry due to their high specific stiffness-to-weight ratio. Our present contribution 
ims at formulating a general shear elastoplasticity model for such dry textile fabrics in the framework of nonlinear Kirchhoff–Love 
hells and rotation-free isogeometric discretization. Such fabric models are required for accurately simulating the local deformations 
uring mechanical loading. A particular motivation is the description and optimization of draping processes that are crucial for the 
roduction of fiber reinforced composites.
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 List of important symbols
 𝟏 = 𝑨𝛼 ⊗𝑨𝛼 +𝑵 ⊗𝑵 = 𝒂𝛼 ⊗ 𝒂𝛼 + 𝒏⊗ 𝒏; 3D identity tensor  
 𝑎 Model parameter of yield function 𝑓y  
 𝒂𝛼 , 𝒂𝛼 Current co- and contravariant tangent vectors at 𝒙 ∈ ; 𝛼 = 1, 2  
 𝒂̂𝛼 , 𝒂̂𝛼 Co- and contravariant tangent vectors at 𝒙̂ ∈ ̂; 𝛼 = 1, 2  
 𝑨𝛼 , 𝑨𝛼 Initial co- and contravariant tangent vectors at 𝑿 ∈ 0; 𝛼 = 1, 2  
 𝒂𝛼,𝛽 Parametric derivative of 𝒂𝛼 w.r.t. 𝜉𝛽  
 𝒂𝛼;𝛽 Covariant derivative of 𝒂𝛼 w.r.t. 𝜉𝛽  
 𝑎𝛼𝛽 , 𝑎𝛼𝛽 Current co- and contravariant surface metric at 𝒙 ∈   
 𝑎̂𝛼𝛽 , 𝑎̂𝛼𝛽 Co- and contravariant surface metric at 𝒙̂ ∈ ̂  
 𝐴 Model parameter of yield function 𝑓y  
 𝐴𝛼𝛽 , 𝐴𝛼𝛽 Initial co- and contravariant surface metric at 𝑿 ∈ 0  
 𝛼p Accumulated plastic angle strain  
 𝑏 Model parameter of yield function 𝑓y  
 𝑏𝛼𝛽 Current covariant components of the out-of-plane curvature tensor at 𝒙 ∈   
 𝑏̄𝛼𝛽 Current covariant components of the in-plane fiber curvature tensor at 𝒙 ∈  ⊂   
 𝑏̄𝑖𝛼𝛽 Current components 𝑏̄𝛼𝛽 indexed by fiber family 𝑖  
 𝐵 Model parameter of yield function 𝑓y  
 𝐵𝛼𝛽 Initial covariant components of the out-of-plane curvature tensor at 𝑿 ∈ 0  
 𝐵̄𝛼𝛽 Initial covariant components of the in-plane curvature tensor at 𝑿 ∈ 0 ⊂ 0  
 𝛽∙ Material parameters for fiber bending and torsion  
 𝑐 Model parameter of yield function 𝑓y  
 𝒄, 𝒄𝑖 Current in-plane fiber director vector of fiber  (or 𝑖) at fiber point 𝒙 ∈  ⊂   
 𝒄,𝛼 Parametric derivative of 𝒄 w.r.t. 𝜉𝛽  
 𝒄̄,𝛼 Projection of 𝒄,𝛼 onto the current tangent plane  
 𝒄0 Initial in-plane fiber director vector of fiber 0 at fiber point 𝑿 ∈ 0 ⊂ 0  
 𝒄0,𝛼 Parametric derivative of 𝒄0 w.r.t. 𝜉𝛽  
 𝑐𝛼 , 𝑐𝛼 Co- and contravariant components of vector 𝒄 at fiber point 𝒙 ∈  ⊂   
 𝑐1, 𝑐2, 𝑐3 Integration constants  
 𝑐𝛼0 Contravariant components of vector 𝒄0 at fiber point 𝑿 ∈ 0 ⊂ 0  
 𝑐𝛼;𝛽 , 𝑐𝛼;𝛽 Covariant derivatives of 𝑐𝛼 and 𝑐𝛼  
 𝑐𝛼𝛽𝛾𝛿 Components of the material tangent associated with 𝜏𝛼𝛽  
 𝑐𝛼𝛽𝛾𝛿a Components of the material tangent associated with fiber angle stress 𝜏𝛼𝛽a  
 𝐶 Model parameter of yield function 𝑓y  
 𝑪 Right Cauchy–Green tensor of the shell mid-surface  
 𝐂𝑒,𝛼 Auxiliary shape function array for the in-plane bending contribution  
  The curve representing a fiber embedded in the current shell surface   
 0 Initial configuration of fiber curve  embedded in shell surface 0  
 𝑖 The curve of fiber family 𝑖; 𝑖 = 1,… , 𝑛f  
 𝐼 The curve of fiber family 𝐼 within a pair; 𝐼 = 1, 2  
 𝛾

𝛼 Components of shape function 𝐂𝑒,𝛼 associated with 𝓵 ⊗ 𝒄  
 C Interval of the cycling loading curve  
 Ce Elastic phase of loading interval C  
 Cp Plastic phase of loading intervalC  
 d∙ Infinitesimal element of quantity ∙  
 𝛿∙ Variation of ∙  
 𝛿𝛽𝛼 Surface Kronecker delta  
 𝛥∙ Linearization of ∙  
 𝜖∙ Material parameters for fiber stretching and shearing  
 𝜀12 Shear stress component of the classical infinitesimal strain tensor  
 𝑬 Green–Lagrange strain tensor of the shell mid-surface  
 𝐸𝛼𝛽 Covariant components of tensor 𝑬 at surface point 𝒙 ∈   
 𝐸e

𝛼𝛽 Elastic part of 𝐸𝛼𝛽  
 𝒇 Prescribed surface loads  
 𝐟∙ Finite element force vectors  
 𝑓y, 𝑓 𝑛+1

y Yield function, evaluated at time 𝑡 = 𝑛 + 1  
 𝑓 trial

y Trial yield function in the predictor–corrector algorithm  
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 𝑓iso Isotropic hardening function  
 𝑭 Deformation gradient of the shell mid-surface  
 𝑭e Elastic part of deformation gradient 𝑭  
 𝑭p Plastic part of deformation gradient 𝑭  
 𝑔𝛼𝛽12 Contravariant components of a structure tensor induced by fibers 𝐼 = 1 and 2  
 𝑔𝛼𝛽𝛾𝛿12 Contravariant components of the tangent tensor induced by 𝑔𝛼𝛽12  
 𝐺in Inertial virtual work  
 𝐺ext External virtual work  
 𝐺int Internal virtual work  
 𝛤 𝛾

𝛼𝛽 Current surface Christoffel symbols of the second kind on   
 𝛤 c

𝛼𝛽 Components of vectors 𝒂𝛼,𝛽 in direction 𝒄  
 𝛤 𝓁

𝛼𝛽 Components of vectors 𝒂𝛼,𝛽 in direction 𝓵  
 ℎ = sign (𝜏); sign function of shear stress 𝜏  
 ℎe = sign (𝜏e); sign function of shear stress 𝜏e  
 ∙𝑖, ∙𝑗 Global fiber family index, taking value 𝑖, 𝑗 = 1,… , 𝑛f  
 ∙𝐼 , ∙𝐽 Local fiber family index within a pair of two fiber families, taking value 1 or 2  
 𝐼1 First invariant of tensor 𝑪  
 𝑰 = 𝑨𝛼 ⊗𝑨𝛼 = 𝑨𝛼 ⊗𝑨𝛼 ; surface identity tensor on 0  
 𝐽 = dets 𝑭 ; area stretch at 𝒙 ∈   
 𝐽e = dets 𝑭e; elastic part of area stretch 𝐽  
 𝐽p = dets 𝑭p; plastic part of area stretch 𝐽  
 𝜅n Normal curvature of current fiber configuration  at 𝒙 ∈  ⊂   
 𝜅0

n Normal curvature of reference fiber configuration 0 at 𝑿 ∈ 0 ⊂ 0  
 𝜅g Geodesic curvature of current fiber configuration  at 𝒙 ∈  ⊂   
 𝜅0

g Geodesic curvature of reference fiber configuration 0 at 𝑿 ∈ 0 ⊂ 0  
 𝐾𝛼𝛽 Covariant components of the relative out-of-plane curvature tensor  w.r.t. 0  
 𝐾e

𝛼𝛽 Elastic part of 𝐾𝛼𝛽  
 𝐾̄𝛼𝛽 Covariant components of the relative in-plane curvature tensor  w.r.t. 0  
 𝐾n Nominal change in normal curvature 𝜅n at point 𝒙 of fiber  ⊂   
 𝐾g Nominal change in geodesic curvature 𝜅g at point 𝒙 of fiber  ⊂   
 𝓵, 𝓵𝑖, 𝓵𝐼 Current unit tangent vector of fiber  (or 𝑖, 𝐼 ) at fiber point 𝒙 ∈  ⊂   
 𝓵̂𝐼 , 𝓵̂𝐽 Unit tangent vector of fiber indexed 𝐼 or 𝐽 at fiber point 𝒙̂ in ̂  
 ̄̂𝓵𝐼 Current unit tangent vector of fiber indexed 𝐼 in ̄̂ in loading interval C  
 𝓁𝛼 , 𝓁𝛼 Current co- and contravariant components of 𝓵 in ; 𝛼 = 1, 2  
 𝓁𝛼

𝐼 Contravariant components of 𝓵 indexed by fiber index 𝐼 in ; 𝐼 = 1, 2  
 𝓁𝛼𝛽 = 𝓁𝛼 𝓁𝛽 ; Current contravariant components of structural tensor 𝓵 ⊗ 𝓵 in   
 𝓁𝛼𝛽

𝐼 Current contravariant components 𝓁𝛼𝛽 indexed by fiber family 𝐼 ; 𝐼 = 1, 2  
 𝜆 Stretch of fiber  at fiber point 𝒙 ∈  ⊂   
 𝑳 Initial unit tangent vector of fiber 0 at fiber point 𝑿 ∈ 0 ⊂ 0  
 𝐿0 Reference length unit  
 𝑳𝐼 , 𝑳𝐽 Fiber direction 𝑳 indexed by fiber family 𝐼 or 𝐽 , where 𝐼, 𝐽 = 1, 2  
 𝑳𝐼 Dual fiber direction to 𝑳𝐼  of fiber family 𝐼  
 𝐿𝛼 , 𝐿𝛼 Co- and contravariant components of 𝑳; 𝛼 = 1, 2  
 𝐿𝛾

,𝛼 Parametric derivative of 𝐿𝛾 w.r.t. 𝜉𝛽  
 𝐿𝛼𝛽 , 𝐿𝛼𝛽

𝑖 = 𝐿𝛼 𝐿𝛽 ; contravariant components of tensor 𝑳⊗𝑳; possibly with fiber index 𝑖  
 𝛾

𝛼 Components of shape function 𝐂𝑒,𝛼 associated with 𝟏 − 2𝓵 ⊗ 𝓵  
 𝛬 = 𝜆2; square of the stretch of fiber  ⊂   
 𝜇 Shear modulus of shell   
 𝜇0 A stress measure, i.e. a reference stress unit  
 𝜇f Shear modulus of fabrics  
 𝑚𝜏 , 𝑚𝜈 , 𝑚̄ Components of moments causing out-of-plane, drilling, and in-plane bending  
 𝑴 Stress couple vector associated with out-of-plane bending on a cutting boundary  
 𝑴̄ Stress couple vector associated with in-plane bending on a cutting boundary  
 𝑴̄ 𝑖 Stress couple vector 𝑴̄ indexed by fiber family 𝑖  
 𝑀𝛼𝛽 Contravariant components of out-of-plane bending stress couple tensor  
 𝑀𝛼𝛽

0 Components 𝑀𝛼𝛽 scaled by 𝐽  
 𝑀̄𝛼𝛽 Contravariant components of in-plane bending stress couple tensor  
 𝑀̄𝛼𝛽

0 Components 𝑀̄𝛼𝛽 scaled by 𝐽  
3 

http://mostwiedzy.pl


T.X. Duong and R.A. Sauer Journal of the Mechanics and Physics of Solids 200 (2025) 106158 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

 𝑀̄𝛼𝛽
0𝑖 Components 𝑀̄𝛼𝛽

0  indexed by fiber family 𝑖  
 𝒏 Current unit surface normal vector of  at 𝒙 ∈   
 𝒏̂ Unit surface normal vector of ̂ at 𝒙̂ ∈ ̂  
 𝑛f Total number of fiber families embedded in   
 𝑵 Initial unit surface normal vector of 0 at 𝑿 ∈ 0  
 𝐍𝑒 Shape function array of finite element 𝑒  
 𝐍𝑒,𝛼 Parametric derivative of 𝐍𝑒 w.r.t 𝜉𝛼  
  𝛾

𝛼 Components of shape function 𝐂𝑒,𝛼 associated with 𝓵 ⊗ 𝒏  
 𝜈𝛼 , 𝜈𝛼 Co- and contravariant components of unit normal on a cutting boundary  
 𝜉𝛼 Curvilinear coordinates; 𝛼 = 1, 2  
 𝑝 External surface pressure (following surface deformation)  
  Parametric domain spanned by 𝜉1 and 𝜉2  
 𝜙, 𝜙𝑛 Relative fiber angle change during deformation, evaluated at time 𝑡 = 𝑛  
 𝜙e, 𝜙𝑛

e Elastic part of 𝜙, evaluated at time 𝑡 = 𝑛  
 𝜙p, 𝜙𝑛

p Plastic part of 𝜙, evaluated at time 𝑡 = 𝑛  
 𝜙̄, 𝜙̄e, 𝜙̄p Relative angles defined analogously to 𝜙, 𝜙e, 𝜙p but interval-wise in C  
 𝜙y Yield angle  
 𝛹̂ Helmholtz free energy per unit intermediate configuration area  
 𝑞, 𝑞𝑛 Isotropic hardening variable, evaluated at time 𝑡 = 𝑛  
 𝑞 An explicit expression of 𝑞 in terms of interval-wise relative plastic angles 𝜙̄p  
 𝑞0 Value of variable 𝑞 at the start of loading interval C  
 𝑄 Isotropic hardening variable offset by a constant  
 𝑄0 Value of variable 𝑄 at the start of loading interval C  
 R3 Three dimensional vector space  
 𝜌 Areal mass density of surface   
 𝑠 Arc-length parameter coordinate of fiber   
  Current configuration of the shell surface  
 ̂ Intermediate (fictitious) configuration of the shell surface  
 0 Reference configuration of the shell surface  
 ̄0 The shell configuration at the start of loading interval C  
 ̄̂ Intermediate configuration in between  and ̄0 within loading interval C  
 𝜕 Boundary of   
 ∙sym𝛼𝛽 = 1

2 (∙𝛼𝛽 + ∙𝛽𝛼); symmetrization of ∙𝛼𝛽  
 𝜎12 = 𝜏∕𝐽 ; Cauchy shear stress work-conjugate to fiber angle change 𝜙e  
 𝜎𝛼𝛽 Contravariant components of Cauchy stress tensor of the shell  
 𝑡 Time variable  
 𝒕 External load vector acting on shell boundary  
 𝑇g Nominal change in geodesic torsion 𝜏g at point 𝒙 of fiber  ⊂   
 𝜏 Kirchhoff shear stress work-conjugate to fiber angle change 𝜙e  
 𝜏012 Stress 𝜏 at the start of loading interval C  
 𝜏e Stress 𝜏 at the end of elastic phase Ce of loading interval C  
 𝜏 Kirchhoff shear stress contribution from loading interval C  
 𝜏𝑛, 𝜏𝑛+1 Kirchhoff shear stress evaluated at time 𝑡 = 𝑛 and 𝑡 = 𝑛 + 1  
 𝜏 trial Trial shear stress 𝜏 in the predictor corrector algorithms  
 𝑻 Traction vector acting on a cutting boundary  
 𝜏g Geodesic torsion of current fiber configuration  at 𝒙 ∈  ⊂   
 𝜏0g Geodesic torsion of reference fiber configuration 0 at 𝑿 ∈ 0 ⊂ 0  
 𝜏𝛼𝛽 Contravariant components of the Kirchhoff stress tensor of the shell  
 𝜏𝛼𝛽a Components of Kirchhoff stress tensor induced by fiber angle change 𝜙e  
 𝜃 Relative angle between current fibers 𝐼 and 𝐽 in   
 𝜃𝐼𝐽 = 𝓵𝐼 ⋅ 𝓵𝐽 ; angle cosine between current fibers 𝐼 and 𝐽 in   
 𝛩 Relative angle between initial fibers 𝐼 and 𝐽 in 0  
 𝛩𝐼𝐽 = 𝑳𝐼 ⋅𝑳𝐽 ; angle cosine between initial fibers 𝐼 and 𝐽 in 0  
 𝜃̂ Relative angle between current fibers 𝐼 and 𝐽 in ̂  
 𝜃̂𝐼𝐽 = 𝓵̂𝐼 ⋅ 𝓵̂𝐽 ; angle cosine between current fibers 𝐼 and 𝐽 in ̂  
 ̄̂𝜃12 Angle cosine 𝜃̂12 in ̄̂ within loading interval C  
 𝜃012 Angle cosine 𝜃12 at the start of loading interval C  
 𝜃max

12 Angle cosine 𝜃12 at the end of loading interval C  
 𝒗 Material velocity, i.e. the material time derivative of 𝒙  
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 𝒗̇ Material acceleration, i.e. the material time derivative of 𝒗  
  Space of admissible variations 𝛿𝒙  
 𝑊 Strain energy density function per reference area  
 𝑊f ib-angle Part of 𝑊  that is induced by fiber angle change  
 𝑊f ib-stretch Part of 𝑊  that is induced by fiber stretching  
 𝑊f ib-bending Part of 𝑊  that is induced by fiber bending  
 𝑊f ib-torsion Part of 𝑊  that is induced by fiber torsion  
 𝒙 Current position of a surface point on the current shell surface   
 𝒙,𝛼 Parametric derivative of 𝒙 w.r.t. 𝜉𝛽  
 𝒙̂ Position of a surface point on the intermediate shell surface ̂  
 𝐱𝑒 Array of positions of nodes in finite element 𝑒  
 𝑿 Initial position of 𝒙 on the reference shell surface 0

In this work, we focus on the angle plasticity of woven fabrics, which is the plasticity induced by rotational sliding between 
warp and weft yarns when the fabric undergoes deformation. Our model assumes that the plastic shear behavior of the fabric is 
governed by two main mechanisms: At small deformation, friction between warp and weft yarns is the dominant mechanism, while 
at large deformation, the fabric behavior is dominated by locking between tows (i.e. warp and weft yarns), also denoted yarn-yarn 
locking (Cao et al., 2008). Locking denotes the state when the rotation of tows becomes restricted due to their in-plane compression.

In order to formulate constitutive models for shells (including elastoplasticity), two main approaches are usually distinguished 
in the literature:

The first is characterized by numerical thickness integration that numerically reduces (or projects) the underlying 3D continuum 
to a 2D one. Examples of this type are found, among others, by Kiendl et al. (2015) and Liu et al. (2022). This approach uses 
existing 3D constitutive models and obtains their surface counterparts by numerical thickness integration. The integrand is usually 
the 3D stress function, but the method extends to other quantities, such as strain, energy and algorithms. The numerical thickness 
integration approach has been widely used for shells, since the computational procedure is straightforward, as long as the underlying 
3D material model exists. An example is the thickness integration of the classical 𝐽2-plasticity model with isotropic hardening, see 
e.g. Simo and Hughes (2006). The method has also been applied to anisotropic large strain elastoplasticity (Schieck et al., 1999) as 
well as viscoplasticity (Sansour and Wagner, 2001). Examples in the field of isogeometric Kirchhoff–Love shells are Ambati et al. 
(2018), Huynh et al. (2020) and Alaydin et al. (2021).

The second is a direct surface approach that avoids numerical integration. Now the shell equations are directly formulated (or 
theoretically derived) in surface form, which allows to make the computational formulation more efficient. The approach is also 
referred to as the stress-resultant approach in the literature, see e.g. Simo and Kennedy (1992). In order to obtain this, various 
modeling techniques can be used. Depending on the treatment of the thickness, one can further subdivide the direct surface approach 
into analytical thickness integration and surface invariant-based approaches.

In the analytical thickness integration approach, the stress resultant is obtained by (exact or approximate) analytical integration 
over the thickness of an existing 3D constitutive model, or the stress resultant is proposed directly in surface form such that the 
3D model is recovered (exactly or approximately). Therefore, this approach can usually be distinguished by the thickness variable 
that is considered as an extrinsic parameter (i.e. a geometrical quantity that is not part of the material properties). An example for 
𝐽2-plastiticy is given by Simo and Kennedy (1992), which is generalized from the two-yield-surface model of Shapiro (1961). Other 
examples are found in Skallerud et al. (2001), Zeng et al. (2001) and Dujc and Brank (2012). As noted in Simo and Kennedy (1992), 
the yield surface is expressed in terms of the stress resultants, which in turn are obtained from an analytical thickness integration. 
Since such an integration is quite complicated when applied to elastoplasticity even for simple 𝐽2-plasticity, a highly complicating 
expression for the stress resultants is obtained.

The surface invariant-based approach can also be categorized into the direct surface approach. However, in contrast to the analytical 
thickness integration, the stress resultant is usually not constructed from an existing 3D material model. Instead, it is derived from a 
surface energy density function that is constructed directly in terms of surface invariants without resorting to a thickness variable. 
Examples of this type are the shell models of Canham (1970) and Helfrich (1973). Facilitated by the representation theorem (Rivlin 
and Rideal, 1949), the invariant-based formalism – see e.g. Spencer (1984), Rubin and Jabareen (2008) and Melnik et al. (2018) 
– usually plays an important role in reducing the modeling complexity. From another perspective, surface-invariant-based models 
are usually distinguished by considering the thickness variable as an intrinsic parameter of the material model (i.e. the thickness 
variable becomes part of the material properties).

In applications of the approaches discussed above, the thickness integration approach (either numerical or analytical) usually finds 
its advantages when the shell thickness can be well-defined and well-measured, like for a metal sheet at engineering scale, so that 
thickness integration can be performed for a 3D material model. The surface invariant-based approach, on the other hand, finds its 
advantage in shell structures where the shell thickness is not well-defined to be measured accurately. An example are lipid bilayers 
that behave like a liquid in-plane and like a solid out-of-plane (Zimmerberg and Kozlov, 2006). An other example is graphene, 
where the shell thickness is at the atomic scale with bending resistance induced by electromagnetic interaction forces (Lu et al., 
2009). In particular for dry textile shells as considered in this work, the thickness is usually not well-defined or measured accurately 
either, since the thickness scale is equivalent to the scale of a yarn, which consists of fibers only loosely compacted (Allaoui et al., 
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2012). Further, the dominant mechanism for angle plasticity is frictional contact between yarns. For each neighboring pair of fiber 
families, there is a yarn-yarn contact interface along the thickness direction. Accurately accounting for all contact conditions in the 
thickness integration can become complicating.

Apart from using direct surface material models that avoid numerical thickness integration, the efficiency in shell computations 
can be further improved by using Kirchhoff–Love shell formulations based on rotation-free isogeometric discretization (Hughes 
et al., 2005) that requires only three displacement degrees of freedom per control point. Such a shell formulation was first proposed 
by Kiendl et al. (2009) for linear shells, and later extended to various types of nonlinear shells by Kiendl et al. (2015), Tepole et al. 
(2015) and Duong et al. (2017) among many others.

In shell formulations for dry textile fabrics, it is required to account for in-plane bending of embedded fibers as it becomes 
significant in certain loading scenarios (Barbagallo et al., 2017). In this case, a gradient shell theory (e.g. Steigmann (2018)) can be 
used. Corresponding computational formulations can be found in e.g. Schulte et al. (2020) and Witt et al. (2021). Alternatively to 
gradient theory, in-plane bending of embedded fibers can also be captured by Kirchhoff–Love shell theory extended to the geodesic 
curvature of embedded fibers. As demonstrated by Duong et al. (2023), such a generalized theory can be formulated directly from 
Kirchhoff–Love assumptions similarly to out-of-plane bending, without resorting to a general gradient shell theory. Its rotation-free 
isogeometric discretization and an efficient implementation was detailed in Duong et al. (2022). It is worth to mention here, that 
despite the additional kinematics, no extra degrees of freedom are required beyond the three displacement degrees of freedom in 
standard rotation-free shell formulations.

For finite element computations of textile fabrics where dissipation is not of interest, hyperelasticity is sufficient and more 
efficient. However, elastoplasticity is a more realistic behavior of textile fabrics. In this context, the first surface invariant-based
elastoplasticity model was proposed by Denis et al. (2018) for 2D plane problems. Their model considers two fiber families with an 
initial relative angle of 90 degrees and is based on a fractional derivative model with 20 parameters for both kinematic and isotropic 
hardening. It uses nested yield surfaces in order to account for the asymptotic paths of unloading curves observed in their cyclic 
load experiments for carbon fabrics.

In this contribution, we propose an angle elastoplasticity model directly in terms of surface invariants for textiles modeled by 
the (anisotropic) Kirchhoff–Love shell formulation of Duong et al. (2023). That is, this work extends the hyperelasticity framework 
of Duong et al. (2023) and its computational counterpart (Duong et al., 2022) to angle elastoplasticity. Therefore, the proposed model 
has no limitation on the number of fiber families and initial angle between them. In order to obtain a simple but still applicable model 
for loading-unloading computations, we focus on reproducing the isotropic hardening observed in the shear behavior of fabrics. To 
the best of our knowledge, this is the first time such an elastoplasticity model is formulated and applied to an isogeometric shell 
formulation.

Our model is a surface invariant-based formulation. It uses surface invariants induced by fiber angles and proposes a yield function 
with isotropic hardening in terms of these invariants. The expression of the yield function uses 7 physical constants in order to 
capture the three deformation phases usually observed in the shear response of woven fabrics. Since we formulate the direct surface 
model based on invariants, only one (scalar) internal variable appears in the model. It can be shown that the adopted surface 
invariants are induced by strain tensors of the first displacement gradient, and correspond to a multiplicative split of the surface 
deformation gradient 𝑭  into elastic and plastic parts, 𝑭e and 𝑭p (Sauer et al., 2019). Unlike classical 3D isotropic plasticity where 
det 𝑭p = 1, the plastic deformation in our formulation assumes no length change in fiber direction, which is a characteristic of many 
deforming textiles.

For the purpose of verifying finite element implementations, we further provide an analytical solution of the proposed model.
In summary, our contribution contains the following novelties and merits:
∙ It proposes a new shear elastoplasticity model for textile fabrics
∙ It has no limitation on the number of fiber families and the initial angles between them.
∙ Its strain energy is directly formulated in surface form without any thickness integration.
∙ It is based explicitly on the relative fiber angles and their elastoplastic split.
∙ It proposes a yield function with isotropic hardening for dry textile fabrics.
∙ It contains the analytical solution for elastoplasticity in the picture frame test.
∙ It contains model verification, calibration, and validation of the proposed model.
The remaining sections are organized as follows: Section 2 summarizes the hyperelastic fabric model of Duong et al. (2023) 

and extends its kinematics and constitutive equations to admit angle elstoplasticity. Section 3 then presents the proposed angle 
elastoplasticity model in detail. Its analytical solution for the picture frame test is provided in Section 4. With this, the finite element 
implementation is verified and the influence of model parameters is illustrated in Section 5. Section 6 then discusses the calibration 
and validation of the proposed model. A three dimensional example is shown in Section 7. Section 8 concludes the paper.

2. Generalized Kirchhoff–Love shell with embedded fibers

This section first summarizes the generalized hyperelastic Kirchhoff–Love shell theory with embedded fibers of Duong et al. 
(2023). Sections 2.3 and 2.4 then extend it to angle elastoplasticity by proposing a multiplicative split of the deformation gradient 
that preserves fiber length during plasticity. Adapting this enhanced kinematics to the constitutive equations is demonstrated in 
Section 2.6.
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Fig. 1. Shell surface  with an embedded fiber bundle along curve  (Duong et al., 2023). Multiple fiber families are distinguished by index 𝑖 = 1, 2, 3,… , 𝑛f . 
Vectors 𝓵𝑖, 𝒄𝑖, and 𝒏 maintain unit length during deformations by definition. The red planes illustrate tangent planes.

2.1. Surface description

This subsection summarizes the essential geometrical objects used to describe thin shells with embedded fibers under large 
deformations within the anisotropic Kirchhoff–Love shell theory of Duong et al. (2023).

A mathematical surface  representing the mid-surface of the shell in R3 at any time 𝑡 is defined by the one-to-one mapping 
from a point (𝜉1 , 𝜉2) in 2D parameter space  to the point 𝒙 ∈  as (see Fig.  1) 

𝒙 = 𝒙(𝜉𝛼 , 𝑡) . (1)

The two tangent vectors at 𝒙 ∈ 

𝒂𝛼 ∶= 𝜕𝒙
𝜕𝜉𝛼

= 𝒙,𝛼 , (2)

with 𝛼 = 1, 2 define the unit normal vector 

𝒏 ∶=
𝒂1 × 𝒂2

‖𝒂1 × 𝒂2‖
. (3)

In Eq. (2), the comma denotes the parametric derivative. From Eqs. (2) and (3), follow the components of the surface metric 
𝑎𝛼𝛽 ∶= 𝒂𝛼 ⋅ 𝒂𝛽 , (4)

and the components of the out-of-plane surface curvature 
𝑏𝛼𝛽 ∶= 𝒏 ⋅ 𝒂𝛼,𝛽 = −𝒏,𝛽 ⋅ 𝒂𝛼 . (5)

Here, the latter identity follows from 𝒏 ⋅ 𝒂𝛼 = 0. The contravariant metric components 

𝑎𝛼𝛽 ∶= [𝑎𝛼𝛽 ]−1 , (6)

relate the dual tangent vectors 𝒂𝛼 to the tangent vectors 𝒂𝛼 by1

𝒂𝛼 = 𝑎𝛼𝛽 𝒂𝛽 , (7)

which satisfies 𝒂𝛼 ⋅ 𝒂𝛽 = 𝛿𝛼𝛽 , with 𝛿𝛼𝛽  being the Kronecker delta.
Note, that vectors 𝒂𝛼,𝛽 appearing in (5) have both in-plane and out-of-plane components, i.e. 

𝒂𝛼,𝛽 = 𝛤 𝛾
𝛼𝛽 𝒂𝛾 + 𝑏𝛼𝛽 𝒏 , (8)

where the in-plane components 𝛤 𝛾
𝛼𝛽 ∶= 𝒂𝛼,𝛽 ⋅ 𝒂𝛾 denote the so-called Christoffel symbols.

Further, a fiber family 𝑖 embedded in surface  is characterized by its normalized fiber tangent vector, see Fig.  1, defined by 

𝓵𝑖 ∶=
𝜕𝒙
𝜕𝑠

, (9)

where 𝑠 denotes the arc length coordinate along 𝑖 such that d𝑠 = ‖d𝒙‖. Fiber direction 𝓵𝑖 and surface normal (3) define the fiber 
director vector 

𝒄𝑖 ∶= 𝒏 × 𝓵𝑖 . (10)

1 In this paper, the summation convention is applied to repeated Greek indices taking values from 1 to 2.
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In the following derivation for a single fiber family where no ambiguities arise, fiber index 𝑖 is skipped to simplify the notation. 
Vectors 𝓵 and 𝒄 can be expressed in bases {𝒂1,𝒂2,𝒏} and {𝒂1,𝒂2,𝒏} as

𝓵 = 𝓁𝛼 𝒂𝛼 = 𝓁𝛼 𝒂𝛼 , (11)

𝒄 = 𝑐𝛼 𝒂𝛼 = 𝑐𝛼 𝒂𝛼 . (12)

Here, 𝓁𝛼 and 𝓁𝛼 are the covariant and contravariant components of vector 𝓵. Likewise, 𝑐𝛼 and 𝑐𝛼 for components of 𝒄. For the sake 
of concise expressions, we further define the auxiliary quantities 

𝛤 c
𝛼𝛽 ∶= 𝒄 ⋅ 𝒂𝛼,𝛽 = 𝑐𝛾 𝛤

𝛾
𝛼𝛽 , 𝛤 𝓁

𝛼𝛽 ∶= 𝓵 ⋅ 𝒂𝛼,𝛽 = 𝓁𝛾 𝛤
𝛾
𝛼𝛽 . (13)

Similarly to Eq. (5), the components of the (symmetric) in-plane fiber curvature tensor can be defined from the parametric derivatives 
of the fiber director, 𝒄,𝛼 , as 

𝑏̄𝛼𝛽 ∶= −1
2
(𝒄,𝛼 ⋅ 𝒂𝛽 + 𝒄,𝛽 ⋅ 𝒂𝛼) . (14)

According to this, only the in-plane components of vectors 𝒄,𝛼 contribute to the in-plane fiber curvature tensor. We thus can rewrite 
Eq. (14) as 

𝑏̄𝛼𝛽 = −1
2
(𝒄̄,𝛼 ⋅ 𝒂𝛽 + 𝒄̄,𝛽 ⋅ 𝒂𝛼) = −1

2
(𝑐𝛼;𝛽 + 𝑐𝛽;𝛼) , (15)

where 
𝒄̄,𝛼 ∶= (𝒂𝛽 ⊗ 𝒂𝛽 ) 𝒄,𝛼 (16)

denote the projection of vectors 𝒄,𝛼 onto the current tangent plane. Further in Eq. (15), the semicolon denotes the covariant 
derivative, which is defined for the covariant and contravariant components of 𝒄,𝛼 as 

𝑐𝛽;𝛼 ∶= 𝒂𝛽 ⋅ 𝒄,𝛼 = 𝑐𝛽,𝛼 − 𝑐𝛾 𝛤
𝛾
𝛽𝛼 .

𝑐𝛽;𝛼 ∶= 𝒂𝛽 ⋅ 𝒄,𝛼 = 𝑐𝛽,𝛼 + 𝑐𝛾 𝛤 𝛼
𝛾𝛽 ,

(17)

respectively. As a result from definitions (16) and (17), vectors 𝒄̄,𝛼 only have in-plane components, i.e. 

𝒄̄,𝛼 = 𝑐𝛽;𝛼 𝒂𝛽 = 𝑐𝛽;𝛼 𝒂𝛽 . (18)

According to Duong et al. (2023), the curvature tensors (5) and (14) can induce useful invariants to measure curvatures of 
embedded fiber such as 

𝜅n ∶= 𝑏𝛼𝛽 𝓁𝛼𝛽 , with 𝓁𝛼𝛽 ∶= 𝓁𝛼 𝓁𝛽 ,

𝜏g ∶= 𝑏𝛼𝛽 𝓁𝛼 𝑐𝛽 ,

𝜅g ∶= 𝑏̄𝛼𝛽 𝓁𝛼𝛽 .

(19)

They denote the normal curvature, geodesic torsion, and geodesic curvature of the embedded fiber, respectively. Note, that only the 
magnitude of the curvature measures (19) is strictly invariant, while their sign depends on the direction of vectors 𝒏, 𝓵, and/or 𝒄.

2.2. Surface deformation

In order to measure shell deformations, we distinguish between the reference surface configuration 0 and the current surface 
configuration . The former can be understood as the instance of configuration  at time 𝑡 = 0. Therefore, all the geometrical objects 
defined in Section 2.1 are valid on 0, but we rename their symbols by uppercase (or 0-indexed) symbols. Namely, shell surface 0
is defined from Eq. (1) as 𝑿 = 𝒙(𝜉𝛼 , 𝑡 = 0). Tangent vectors 𝑨𝛼 , normal vector 𝑵 , metric components 𝐴𝛼𝛽 , and out-of-plane curvature 
components 𝐵𝛼𝛽 are defined analogously from Eqs. (2), (3), (4), and (5), respectively. Likewise, fiber family , its normalized fiber 
direction 𝓵 and fiber director 𝒄 are redenoted by 0, 𝑳 and 𝒄0 on 0, respectively. Similarly to Eqs. (11) and (12), vectors 𝑳 and 𝒄0
can be expressed in bases {𝑨1,𝑨2,𝑵} and {𝑨1,𝑨2,𝑵} as 𝑳 = 𝐿𝛼𝑨𝛼 = 𝐿𝛼𝑨𝛼 , and 𝒄0 = 𝑐0𝛼 𝑨

𝛼 . With these, in-plane curvature tensor 
components 𝐵̄𝛼𝛽 are defined analogously to (14) as 𝐵̄𝛼𝛽 ∶= − 1

2 (𝒄0,𝛼 ⋅𝑨𝛽 + 𝒄0,𝛽 ⋅𝑨𝛼) .
The in-plane surface deformation is characterized by the surface deformation gradient 

𝑭 ∶= 𝒂𝛼 ⊗𝑨𝛼 . (20)

It is used to define the right Cauchy–Green surface tensor 
𝑪 ∶= 𝑭 T 𝑭 = 𝑎𝛼𝛽 𝑨𝛼 ⊗𝑨𝛽 , (21)

as well as the Green–Lagrange surface strain tensor 𝑬 ∶= (𝑪 − 𝑰)∕2, that has the components 

𝐸𝛼𝛽 ∶= 1
2
(𝑎𝛼𝛽 − 𝐴𝛼𝛽 ) . (22)

Here, 𝑰 = 𝑨𝛼 ⊗𝑨𝛼 denote the surface identity tensor on 0. Further, 𝑭  pushes forward the fiber direction according to 
(23)
𝜆𝓵 = 𝑭 𝑳 ,
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where 𝜆 = ‖𝑭 𝑳‖ denotes the fiber stretch. Note that fiber direction 𝑳 ∈ 0 is a normalized vector. Alternatively to definition 
(9), current fiber direction 𝓵 can be computed from deformation map (23) by 𝓵 = 𝑭 𝑳∕𝜆. That is, by definition ‖𝓵‖ = 1 for all 
deformations.

The out-of-plane bending deformation is characterized by the relative surface curvature 
𝐾𝛼𝛽 ∶= 𝑏𝛼𝛽 − 𝐵𝛼𝛽 , (24)

and similarly the in-plane fiber bending deformation is characterized by the relative in-plane curvature 
𝐾̄𝛼𝛽 ∶= 𝑏̄𝛼𝛽 − 𝐵̄𝛼𝛽 , (25)

where components 𝑏̄𝛼𝛽 can be computed from definition (14). Further, thanks to the deformation map (23) and relation (10), 
components 𝑐𝛽;𝛼 can be rewritten from Eq. (17) as (Duong et al., 2023) 

𝑐𝛽;𝛼 = −𝓁𝛽 (𝜆−1 𝑐𝛾 𝐿
𝛾
,𝛼 + 𝓁𝛾 𝛤 c

𝛾𝛼) ,

𝑐𝛽;𝛼 = −𝓁𝛽 (𝜆−1 𝑐𝛾 𝐿
𝛾
,𝛼 + 𝓁𝛾 𝛤 c

𝛾𝛼) .
(26)

Note that for multiple fiber families, fiber-related quantities – such as Eqs. (23), (25) and (26) – are defined separately for each 
fiber family.

With deformation and strain measures (21), (24) and (25), various kinematical invariants useful for the construction of material 
models can be induced. For example (Duong et al., 2023) 

𝐼1 ∶= 𝐴𝛼𝛽 𝑎𝛼𝛽 ,

𝛬𝑖 ∶= 𝑎𝛼𝛽 𝐿
𝛼𝛽
𝑖 = 𝜆2𝑖 ,

𝑇g ∶= 𝑏𝛼𝛽 𝑐𝛼0 𝐿
𝛽 − 𝜏0g ,

𝐾n ∶= 𝜅n 𝜆2 − 𝜅0
n ,

𝐾g ∶= 𝜅g 𝜆2 − 𝜅0
g ,

(27)

are the surface shear measure, square of the fiber stretch, the nominal change in geodesic fiber torsion, normal fiber curvature, and 
geodesic fiber curvature, respectively. In Eq. (27), we have defined 𝐿𝛼𝛽 ∶= 𝐿𝛼 𝐿𝛽 , 𝜏0g ∶= 𝐵𝛼𝛽 𝐿𝛼 𝑐𝛽0 , 𝜅0

n ∶= 𝐵𝛼𝛽 𝐿𝛼𝛽 , and 𝜅0
g ∶= 𝐵̄𝛼𝛽 𝐿𝛼𝛽 .

2.3. Angle measures for shear elastoplasticity

This section presents angle measures suitable for angle elastoplasticity of textile materials under large deformations. It also shows, 
that various measures for relative fiber angles are invariants that can be properly induced by strain tensors of the displacement 
gradient.

To this end, an intermediate (fictitious) configuration ̂ is introduced following Sauer et al. (2019), see Fig.  2. The geometrical 
objects of Section 2.1 are defined analogously on ̂ using a hat, giving tangent vectors 𝒂̂𝛼 , normal vector 𝒏̂, and metric components 
𝑎̂𝛼𝛽 . With this, the deformation gradient (20) is split into plastic and elastic parts as 

𝑭 = 𝑭e 𝑭p , (28)

where

𝑭p ∶= 𝒂̂𝛼 ⊗𝑨𝛼 , (29)

𝑭e ∶= 𝒂𝛼 ⊗ 𝒂̂𝛼 . (30)

The area stretch 𝐽 ∶= dets 𝑭  can then be expressed as 
𝐽 = 𝐽e 𝐽p ,  where 𝐽e ∶= dets 𝑭e  and 𝐽p ∶= dets 𝑭p . (31)

In order to characterize angle plasticity, we consider a pair of fiber families. For multiple pairs of fiber families in , the 
kinematics in this section is simply replicated for each pair. We use uppercase Latin indices, such as 𝐼, 𝐽 – taking value 1 or 2
– to count the two fiber families locally within a pair. Summation is also implied on those repeated Latin indices unless otherwise 
stated. They should not be confused with the lowercase Latin indices used to count all the fiber families appearing in , and with 
Greek indices used for the two curvilinear coordinates.

Under deformations, the directions of fiber family 𝐼  in configurations 0, ̂, and  are 𝑳𝐼 , 𝓵̂𝐼 , and 𝓵𝐼 , respectively. The relative 
angles cosines between fibers 𝐼 and 𝐽 are defined by

𝛩𝐼𝐽 ∶= 𝑳𝐼 ⋅𝑳𝐽 , (32)

𝜃̂𝐼𝐽 ∶= 𝓵̂𝐼 ⋅ 𝓵̂𝐽 , (33)

𝜃𝐼𝐽 ∶= 𝓵𝐼 ⋅ 𝓵𝐽 (34)

in configurations 0, ̂, and , respectively. Note that in these equations 𝛩𝐼𝐼 = 𝜃̂𝐼𝐼 = 𝜃𝐼𝐼 = 1 (no sum on 𝐼), since vectors 
‖𝑳 ‖ = ‖𝓵̂ ‖ = ‖𝓵 ‖ = 1. Therefore, the mixed components become 𝛩 = cos𝛩, 𝜃̂ = cos 𝜃̂, and 𝜃 = cos 𝜃, where 𝛩, 𝜃̂, and 
𝐼 𝐼 𝐼 12 12 12

9 

http://mostwiedzy.pl


T.X. Duong and R.A. Sauer Journal of the Mechanics and Physics of Solids 200 (2025) 106158 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 2. Split of the surface deformation into elastic and plastic parts (Sauer et al., 2019). This introduces the intermediate configuration ̂ between reference 
and current configurations 0 and . The geometrical objects of Section 2.1 are defined likewise in the three configurations. In particular, fiber angle measures 
𝛩12 ∶= 𝑳1 ⋅𝑳2 = cos𝛩, 𝜃12 ∶= 𝓵1 ⋅ 𝓵2 = cos 𝜃 and 𝜃̂12 ∶= 𝓵̂1 ⋅ 𝓵̂2 = cos 𝜃̂ are defined here for a pair of two fiber families 1 and 2.

𝜃 denote the corresponding relative angles between fiber family 1 and 2 in configurations 0, ̂, and , respectively. Further, 
Eqs. (32)–(34) induce surface metrics that can be arranged in matrix form, e.g. 

[𝛩𝐼𝐽 ] =
[

1 𝛩12
𝛩12 1

]

. (35)

For the angle plasticity model proposed in this work, we employ the following measures of the relative fiber angle change during 
deformation

𝜙 ∶= 𝜃12 − 𝛩12 , (36)

𝜙e ∶= 𝜃12 − 𝜃̂12 , (37)

𝜙p ∶= 𝜃̂12 − 𝛩12 , (38)

that satisfy the additive split 
𝜙 = 𝜙e + 𝜙p . (39)

In most textile composites, since fiber tensile stiffness usually dominates over shear stiffness, we assume there is no change in 
fiber length during angle plasticity. We thus pick deformation gradient 𝑭p such that fiber lengths are preserved in configuration ̂. 
Namely, 

𝑭p = 𝓵̂𝐼 ⊗𝑳𝐼 , (40)

where 𝑳𝐼  is the fiber direction vector dual to 𝑳𝐼  in 0, defined by 
𝑳𝐼 = 𝛩𝐼𝐽 𝑳𝐽 , with [𝛩𝐼𝐽 ] ∶= [𝛩𝐼𝐽 ]−1 . (41)

By comparing Eqs. (40) and (29) we obtain an expression for 𝒂̂𝛼 in terms of the fiber directions, i.e. 
𝒂̂𝛼 = (𝑳𝐼 ⋅𝑨𝛼) 𝓵̂𝐼 = 𝑭p 𝑨𝛼 . (42)

Remark 2.1.  The angle change 𝜙, 𝜙e and 𝜙p defined from Eqs. (36)–(38) are invariants that can be properly induced by strain 
tensors related to the displacement gradient. This is shown in Appendix  A. It should be noted, that similarly to the curvature measures 
(19), only the magnitude of these measures is invariant in a strict sense, since their sign still depends on the direction of the fiber 
directions, which is exchangeable. However, it can easily be shown that (both the sign and magnitude of) the measures 𝜙, 𝜙e and 
𝜙  are frame invariant under superimposed rigid body motions of the shell surface. 
p
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2.4. Variations and linearizations of kinematical quantities

This section recalls essential variations (and linearizations) of some kinematical quantities mentioned above. Quantities that are 
not listed here can be found elsewhere, e.g in Sauer and Duong (2017) and Duong et al. (2023).

We consider a variation of the surface deformation, denoted 𝛿𝒙, which causes variations in tangent vectors 𝒂𝛼 , denoted 𝛿𝒂𝛼 = 𝛿𝒙,𝛼 . 
The variation of the kinematical quantities in Eqs. (22), (24) and (25) requires 𝛿𝑎𝛼𝛽 , 𝛿𝑏𝛼𝛽 and 𝛿𝑏̄𝛼𝛽 . They are given by (Sauer and 
Duong, 2017; Duong et al., 2023) 

𝛿𝑎𝛼𝛽 = 𝛿𝒂𝛼 ⋅ 𝒂𝛽 + 𝒂𝛼 ⋅ 𝛿𝒂𝛽 ,

𝛿𝑏𝛼𝛽 = 𝒏 ⋅ 𝛿𝒅𝛼𝛽 , with 𝛿𝒅𝛼𝛽 ∶= 𝛿𝒂𝛼,𝛽 − 𝛤 𝛾
𝛼𝛽 𝛿𝒂𝛾 ,

𝑀̄𝛼𝛽
0 𝛿𝑏̄𝛼𝛽 = −𝑀̄𝛼𝛽

0 (𝛿𝒂𝛼 ⋅ 𝒄̄,𝛽 + 𝒂𝛼 ⋅ 𝛿𝒄̄,𝛽 ) ,

(43)

where the last equation holds for any symmetric tensor 𝑀̄𝛼𝛽
0 .

The variation of surface normal vector 𝒏, fiber direction 𝓵 and fiber director 𝒄 can be shown to be expressible in terms of 𝛿𝒂𝛼
(cf. Eqs. (204), (206), and (211) in Duong et al. (2023)) as

𝛿𝒏 = −𝒂𝛼 (𝒏 ⋅ 𝛿𝒂𝛼) . (44)

𝛿𝓵 = (𝒏⊗ 𝒏 + 𝒄 ⊗ 𝒄)𝓁𝛼 𝛿𝒂𝛼 . (45)

𝛿𝒄 = −(𝒏⊗ 𝒄) 𝛿𝒏 − (𝓵 ⊗ 𝒄) 𝛿𝓵 . (46)

Consequently, the variation 𝛿𝜙 following from Eq. (36), with (34) and (45), can be expressed fully in terms of the variation of the 
surface metric as 

𝛿𝜙 = 𝛿𝜃12 = 𝑔𝛼𝛽12 𝛿𝑎𝛼𝛽 , (47)

where we have defined 

𝑔𝛼𝛽12 ∶= 1
2

(

𝓁𝛼
1 𝓁

𝛽
2 + 𝓁𝛽

1 𝓁
𝛼
2

)

−
𝜃12
2

(

𝓁𝛼𝛽
1 + 𝓁𝛼𝛽

2

)

, with 𝓁𝛼𝛽
𝐼 ∶= 𝓁𝛼

𝐼 𝓁
𝛽
𝐼 (no sum on 𝐼). (48)

From this equation and (45), follows the linearization 

𝛥𝑔𝛼𝛽12 = 𝑔𝛼𝛽𝛾𝛿12 𝛥𝑎𝛾𝛿 , (49)

where 

𝑔𝛼𝛽𝛾𝛿12 ∶=
𝜕𝑔𝛼𝛽12
𝜕𝑎𝛾𝛿

= −
(

𝓁𝛼
1 𝓁

𝛽
2

)sym 1
2

(

𝓁𝛾𝛿
1 + 𝓁𝛾𝛿

2

)

− 1
2

(

𝓁𝛼𝛽
1 + 𝓁𝛼𝛽

2

)

𝑔𝛾𝛿12 +
𝜃12
2

(

𝓁𝛼𝛽
1 𝓁𝛾𝛿

1 + 𝓁𝛼𝛽
2 𝓁𝛾𝛿

2

)

. (50)

2.5. Weak form

This section presents the weak form and the material tangents for the generalized Kirchhoff–Love shell with embedded fibers 
of Duong et al. (2023). For all variation 𝛿𝒙 within the set of kinematically admissible variations  , the weak form follows from the 
principle of virtual work as (Duong et al., 2023) 

𝐺in + 𝐺int − 𝐺ext = 0 ∀ 𝛿𝒙 ∈  , (51)

where

𝐺in = ∫0
𝛿𝒙 ⋅ 𝜌0 𝒗̇ d𝐴 , (52)

𝐺int =
1
2 ∫0

𝜏𝛼𝛽 𝛿𝑎𝛼𝛽 d𝐴 + ∫0
𝑀𝛼𝛽

0 𝛿𝑏𝛼𝛽 d𝐴 +
𝑛f
∑

𝑖=1
∫0

𝑀̄𝛼𝛽
0𝑖 𝛿𝑏̄𝑖𝛼𝛽 d𝐴 , (53)

𝐺ext = ∫
𝛿𝒙 ⋅ 𝒇 d𝑎 + ∫𝜕

𝛿𝒙 ⋅ 𝑻 d𝑠 + ∫𝜕
𝛿𝒏 ⋅𝑴 d𝑠 +

𝑛f
∑

𝑖=1
∫𝜕

𝛿𝒄𝑖 ⋅ 𝑴̄𝑖 d𝑠 . (54)

Here, 𝒗̇ and 𝜌0 denote the material acceleration and the mass density with unit [mass/reference area], while 𝑛f , 𝜏𝛼𝛽 , 𝑀𝛼𝛽
0 , and 

𝑀̄𝛼𝛽
0𝑖  are the number of fiber families, the components of the effective stress tensor, the nominal stress couple tensor associated with 

out-of-plane bending, and the nominal stress couple tensor associated with in-plane fiber bending, respectively. Eq. (54) contains 
the external body force 𝒇 , external boundary traction 𝑻 , external out-of-plane bending moment 𝑴 , and external in-plane fiber 
bending moment 𝑴̄𝑖. Apart from these Neumann type boundary conditions, displacements and rotations can be prescribed on the 
shell boundary. Further in Eqs. (53)–(54), the variations of tensor components 𝛿𝑎𝛼𝛽 , 𝛿𝑏𝛼𝛽 , and 𝛿𝑏̄𝛼𝛽 , and vectors 𝛿𝒏 and 𝛿𝒄 are found 
in Eqs. (43), (44), and (46), respectively.
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From the linearization of internal virtual work (53) follows2

𝛥𝐺int = ∫0

[

𝑐𝛼𝛽𝛾𝛿 1
2
𝛿𝑎𝛼𝛽

1
2
𝛥𝑎𝛾𝛿 + 𝑑𝛼𝛽𝛾𝛿 1

2
𝛿𝑎𝛼𝛽 𝛥𝑏𝛾𝛿 + 𝑑𝛼𝛽𝛾𝛿𝑖

1
2
𝛿𝑎𝛼𝛽 𝛥𝑏̄𝑖𝛾𝛿

+ 𝑒𝛼𝛽𝛾𝛿 𝛿𝑏𝛼𝛽
1
2
𝛥𝑎𝛾𝛿 + 𝑓 𝛼𝛽𝛾𝛿 𝛿𝑏𝛼𝛽 𝛥𝑏𝛾𝛿 + 𝑔̄𝛼𝛽𝛾𝛿𝑖 𝛿𝑏𝛼𝛽 𝛥𝑏̄

𝑖
𝛾𝛿

+ 𝑒𝛼𝛽𝛾𝛿𝑖 𝛿𝑏̄𝑖𝛼𝛽
1
2
𝛥𝑎𝛾𝛿 + ℎ̄𝛼𝛽𝛾𝛿𝑖 𝛿𝑏̄𝑖𝛼𝛽 𝛥𝑏

𝑖
𝛾𝛿 + 𝑓 𝛼𝛽𝛾𝛿

𝑖𝑗 𝛿𝑏̄𝑖𝛼𝛽 𝛥𝑏̄
𝑗
𝛾𝛿

+ 𝜏𝛼𝛽 1
2
𝛥𝛿𝑎𝛼𝛽 + 𝑀𝛼𝛽

0 𝛥𝛿𝑏𝛼𝛽 + 𝑀̄𝛼𝛽
0𝑖 𝛥𝛿𝑏̄𝑖𝛼𝛽

]

d𝐴 ,

(55)

with the nine material tangents (Duong et al., 2023) 

𝑐𝛼𝛽𝛾𝛿 ∶= 2 𝜕𝜏
𝛼𝛽

𝜕𝑎𝛾𝛿
, 𝑑𝛼𝛽𝛾𝛿 ∶= 𝜕𝜏𝛼𝛽

𝜕𝑏𝛾𝛿
, 𝑑𝛼𝛽𝛾𝛿𝑖 ∶= 𝜕𝜏𝛼𝛽

𝜕𝑏̄𝑖𝛾𝛿
,

𝑒𝛼𝛽𝛾𝛿 ∶= 2
𝜕𝑀𝛼𝛽

0
𝜕𝑎𝛾𝛿

, 𝑓 𝛼𝛽𝛾𝛿 ∶=
𝜕𝑀𝛼𝛽

0
𝜕𝑏𝛾𝛿

, 𝑔̄𝛼𝛽𝛾𝛿𝑖 ∶=
𝜕𝑀𝛼𝛽

0

𝜕𝑏̄𝑖𝛾𝛿
,

𝑒𝛼𝛽𝛾𝛿𝑖 ∶= 2
𝜕𝑀̄𝛼𝛽

0𝑖
𝜕𝑎𝛾𝛿

, ℎ̄𝛼𝛽𝛾𝛿𝑖 ∶=
𝜕𝑀̄𝛼𝛽

0𝑖
𝜕𝑏𝛾𝛿

𝑓 𝛼𝛽𝛾𝛿
𝑖𝑗 ∶=

𝜕𝑀̄𝛼𝛽
0𝑖

𝜕𝑏̄𝑗𝛾𝛿
.

(56)

Remark 2.2.  As seen from internal virtual work (53), the bending terms contain the variations of curvature tensors 𝛿𝑏𝛼𝛽 and 𝛿𝑏̄𝛼𝛽 , 
which are defined from the second derivative of the displacement field, see Eq. (43). Therefore, a rotation-free shell formulation 
(with only three displacement degrees of freedom per node) requires at least 𝐶1-continuity of the geometry in order to transfer 
moments through the shell structure. The continuity condition can be satisfied by the isogeometric discretization (Hughes et al., 
2005). Such a finite element procedure can be found in Duong et al. (2022), which is summarized here in Appendix  B.

2.6. Constitutive equations

Given the work-conjugation pairs appearing in Eq. (53), and by using the classical procedure of Coleman and Noll (1964) for 
hyperelasticity, the stresses and stress couples in Kirchhoff–Love shells can be obtained from the derivative of a stored energy 
function per reference area, denoted by 𝑊 , with respect to the corresponding work-conjugate kinematic variables (Duong et al., 
2023). I.e. 

𝜏𝛼𝛽 = 2 𝜕𝑊
𝜕𝑎𝛼𝛽

, 𝑀𝛼𝛽
0 = 𝜕𝑊

𝜕𝑏𝛼𝛽
, 𝑀̄𝛼𝛽

0𝑖 = 𝜕𝑊
𝜕𝑏̄𝑖𝛼𝛽

. (57)

In the presence of material anisotropy and angle elastoplasticity as considered in this work, 𝑊  takes the form 
𝑊 = 𝑊

(

𝑎𝛼𝛽 , 𝑏𝛼𝛽 , 𝑏̄𝑖𝛼𝛽 ;𝐿
𝛼𝛽
𝑖 , 𝜙p

)

, (58)

while the constitutive relations (57) remains unchanged, see Sauer et al. (2019), Duong et al. (2023) and Remark  2.3. Here, 𝜙p is 
chosen as the internal variable to describe the plastic angle change between two fiber families 𝑖 and 𝑗. Alternatively to Eq. (58), 𝑊
can also be expressed in terms of invariants thanks to the representation theorem (Rivlin and Rideal, 1949). This is considered in 
the following.

A simple form of a generalized hyperelastic shell model for two-fiber-family dry fabrics is given by (Duong et al., 2023) 
𝑊 = 𝑊f ib-stretch +𝑊f ib-bending +𝑊f ib-torsion +𝑊f ib-angle , (59)

which consists of the strain energies for fiber stretching, out-of-plane and in-plane fiber bending, fiber torsion, and elastic angle 
change between the two fiber families, respectively. For angle elastoplasticity, the last term is a function of the elastic angle 𝜙e
from Eq. (37), instead of the total angle 𝜙 as in hyperelasticity, see Duong et al. (2023). A simple quadratic form for 𝑊f ib-angle is 

𝑊f ib-angle = 1
2
𝜇f 𝜙

2
e , (60)

where material parameter 𝜇f  can be identified as the shear modulus of fabrics, see Remark  3.1.
The other terms in Eq. (59) are taken as in the hyperelastic textile model of (Duong et al., 2023), 

𝑊f ib-stretch = 1
2
𝜖L

2
∑

𝑖=1

(

𝜆𝑖 − 1
)2 ,

𝑊f ib-bending = 1
2

2
∑

𝑖=1

[

𝛽n (𝐾 𝑖
n)

2 + 𝛽g (𝐾 𝑖
g)

2
]

,

𝑊f ib-torsion = 1
2
𝛽𝜏

2
∑

𝑖=1
(𝑇 𝑖

g)
2,

(61)

2 Apart from the Greek indices, summation is also implied on repeated fiber indices 𝑖, 𝑗 = 1...𝑛 .
f

12 

http://mostwiedzy.pl


T.X. Duong and R.A. Sauer Journal of the Mechanics and Physics of Solids 200 (2025) 106158 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

where 𝑇g, 𝐾n, and 𝐾g are defined in Eq. (27). Quantities 𝜖L, 𝛽n, 𝛽g, and 𝛽𝜏 are material parameters representing the stiffness for 
fabric stretching, out-of-plane fabric bending, in-plane fabric bending, and fabric torsion, respectively.

From Eqs. (61) and (57), the effective stress and moment components follow as 

𝜏𝛼𝛽 = 𝜖L
2
∑

𝑖=1
(𝜆𝑖 − 1) 1

𝜆𝑖
𝐿𝛼𝛽
𝑖 + 𝜏𝛼𝛽a ,

𝑀𝛼𝛽
0 = 𝛽n

2
∑

𝑖=1
𝐾 𝑖

n 𝐿
𝛼𝛽
𝑖 + 𝛽𝜏

1
2

2
∑

𝑖=1
𝑇 𝑖
g (𝑐

𝛼
0𝑖 𝐿

𝛽
𝑖 + 𝑐𝛽0𝑖 𝐿

𝛼
𝑖 ) ,

𝑀̄𝛼𝛽
0 ∶=

2
∑

𝑖=1
𝑀̄𝛼𝛽

0𝑖 = 𝛽g
2
∑

𝑖=1
𝐾 𝑖

g 𝐿
𝛼𝛽
𝑖 ,

(62)

where 𝜏𝛼𝛽a ∶= 2 𝜕𝑊f ib-angle∕𝜕𝑎𝛼𝛽 . The material tangents of (62) follow from Eq. (56) as 

𝑐𝛼𝛽𝛾𝛿 = +
𝑛f
∑

𝑖=1
𝜖𝑖L 𝜆

−3
𝑖 𝐿𝛼𝛽

𝑖 𝐿𝛾𝛿
𝑖 + 𝑐𝛼𝛽𝛾𝛿a

𝑓 𝛼𝛽𝛾𝛿 =
𝑛f
∑

𝑖=1
𝛽𝑖n 𝐿

𝛼𝛽
𝑖 𝐿𝛾𝛿

𝑖 +
𝑛f
∑

𝑖=1
𝛽𝑖𝜏

(

𝑐𝛼0𝑖 𝐿
𝛽
𝑖
)sym (

𝑐𝛾0𝑖 𝐿
𝛿
𝑖
)sym ,

𝑓 𝛼𝛽𝛾𝛿 ∶=
𝑛f
∑

𝑖=1
𝑓 𝛼𝛽𝛾𝛿
𝑖𝑖 =

𝑛f
∑

𝑖=1
𝛽𝑖g 𝐿

𝛼𝛽
𝑖 𝐿𝛾𝛿

𝑖 ,

𝑑𝛼𝛽𝛾𝛿 = 𝑒𝛼𝛽𝛾𝛿 = 𝑑𝛼𝛽𝛾𝛿𝑖 = 𝑒𝛼𝛽𝛾𝛿𝑖 = 𝑔̄𝛼𝛽𝛾𝛿𝑖 = ℎ̄𝛼𝛽𝛾𝛿𝑖 = 0 ,

(63)

where 𝑐𝛼𝛽𝛾𝛿a = 2 𝜕𝜏𝛼𝛽a ∕𝜕𝑎𝛼𝛽 denotes the material tangents associated with stress 𝜏𝛼𝛽a . They will be derived in Section 3.

Remark 2.3.  By applying the classical procedure of Coleman and Noll (1964) to thin shell elastoplasticity, Sauer et al. (2019) 
show that the stresses and moments are given by (cf. Sauer et al. (2019), Eq. (157)) 

𝜎𝛼𝛽 = 1
𝐽e

𝜕𝛹̂
𝜕𝐸e

𝛼𝛽
, 𝑀𝛼𝛽 = 1

𝐽e
𝜕𝛹̂
𝜕𝐾e

𝛼𝛽
, (64)

in our notation, where 𝐸e
𝛼𝛽 ∶= (𝑎𝛼𝛽 − 𝑎̂𝛼𝛽 )∕2 and 𝐾e

𝛼𝛽 ∶= 𝑏𝛼𝛽 − 𝑏̂𝛼𝛽 are the elastic strains, and where 𝛹̂ is the Helmholtz free energy 
per unit intermediate configuration area. The energy per reference area then follows as 𝑊 = 𝐽p 𝛹̂ . Since 

𝜕𝑊
𝜕𝐸e

𝛼𝛽
= 2 𝜕𝑊

𝜕𝑎𝛼𝛽
,

𝜕𝐽p
𝜕𝐸e

𝛼𝛽
= 0, 𝜕𝑊

𝜕𝐾e
𝛼𝛽

= 𝜕𝑊
𝜕𝑏𝛼𝛽

, (65)

(cf. Eqs. (78.1), (80.1), (90.1) in Sauer et al. (2019)), this leads to the nominal stresses 𝜏𝛼𝛽 ∶= 𝐽 𝜎𝛼𝛽 and 𝑀𝛼𝛽
0 ∶= 𝐽 𝑀𝛼𝛽 as given 

in Eq. (57) above. Working with 𝛹̂ offers advantages when adapting existing hyperelasticity models to inelastic materials, as the 
functional form 𝛹̂ = 𝛹̂ (𝐸e

𝛼𝛽 , 𝐾
e
𝛼𝛽 ) (as well as stresses and material tangents) can be picked the same as that of the purely elastic case 

𝑊 = 𝑊 (𝐸𝛼𝛽 , 𝐾𝛼𝛽 ). See Vu-Bac et al. (2019) for an application to thermoelastic shells.

3. Angle elastoplasticity of textiles

This section derives the stress response due to elastoplastic angle change. It follows from a given stored energy function 
𝑊f ib-angle(𝜙e), which for example is given by Eq. (60). According to Eq. ((57).1) this stress is 

𝜏𝛼𝛽a = 2
𝜕𝑊f ib-angle

𝜕𝑎𝛼𝛽
. (66)

As seen from Eqs. (39), (37) and (47), angle measure 𝜙e can be expressed in terms of the metric 𝑎𝛼𝛽 . Therefore Eq. (66) can be 
rewritten as 

𝜏𝛼𝛽a = 2 𝜏
𝜕𝜙e
𝜕𝑎𝛼𝛽

, (67)

where we have defined the (scalar) shear stress between fiber families 
𝜏 ∶= 𝜕𝑊

𝜕𝜙e
, (68)

and where 𝜕𝜙e∕𝜕𝑎𝛼𝛽 is determined below, see Remark  3.4. In case of model (60), 𝜏 takes the simple expression 

𝜏 = 𝜇f 𝜙e . (69)

The computation of 𝜙e requires the knowledge of 𝜙 and 𝜙p according to Eq. (39). While 𝜙 is observable from the current configuration 
(using Eq. (36)), the internal variable 𝜙p requires resorting to the intermediate configuration ̂. This is discussed in the following 
subsection.
13 
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Fig. 3. Picture frame test conducted at Hong Kong University of Science and Technology (HKUST): (a) frame setup, (b) a woven fabric sample at initial 
configuration, (c) enlargement of a representative fabric cell, (d) fabric sample at deformed configuration. Here, the pictures are taken from Cao et al. (2008) 
and Zhu et al. (2007), with permission from Elsevier.

Remark 3.1.  As seen from Eq. (67), scalar stress quantity 𝜏 defined by (68) can be interpreted as a stress invariant induced by angle 
stress tensor (66), while tensor 𝜕𝜙e∕𝜕𝑎𝛼𝛽 is a structural tensor that is given explicitly in our plasticity model by Eq. (48) following 
from Remark  3.4. In case of multiple pairs of fiber families, stress 𝜏 is defined separatedly for each pair and 𝜏𝛼𝛽a  results from the 
summation over all pairs on the right hand side of Eq. (67). Stress 𝜏 is like the Kirchhoff stress in classical continuum mechanics, 
i.e. having the unit [force/reference length]. It can be transformed to the physical Cauchy stress (in the current configuration) by 
𝜎12 = 𝜏∕𝐽 , with 𝐽 defined in Eq. (31). For an initial fiber angle of 90 degrees and small angle changes, the quantity 𝜙 is equal to 
two times the infinitesimal shear strain component 𝜀12, i.e. 𝜙 = 𝜃12 = 2 𝜀12. In linear elasticity, the shear stress then is 𝜎12 = 2𝜇 𝜀12, 
where 𝜇 is the shear modulus. In other words, in this case stress 𝜏 defined in Eq. (69) is the classical shear stress, while 𝜇f  is the 
classical shear modulus of fabrics.

3.1. Underlying mechanism of angle elastoplasticity

This section discusses the major underlying mechanisms of angle elastoplasticity from the picture frame test for woven fabrics, 
which motivates our choice of the yield function in Section 3.2.

Therefore we examine the experiments conducted at Hong Kong University of Science and Technology (HKUST) as seen in Fig. 
3, whose experimental results were reported in Cao et al. (2008) and Zhu et al. (2007). In the experiment, a woven glass fabric – 
with two fiber families with 𝛩 = 90◦ (Fig.  3b) – is mounted in a square frame (Fig.  3a), which is then deformed into a rhombus 
(Fig.  3d). 

Angle shear resistance in woven fabrics is observed to be varied significantly by the frame design and preparation of 
specimens (Cao et al., 2008). This leads to a scattering of data seen in the reported curves by different research groups, see also Fig. 
11. Nevertheless, a typical response of shear force versus shear angle change during deformation looks like in Fig.  4. Overall, the 
curve is a monotonically increasing function, and there are two major events that significantly alter the trajectory of the curve. The 
first one appears at small angles (𝛾 = 1−2◦, i.e. almost at the start of deformation), followed then by a low shear resistance period. 
Meanwhile, the second happens much later (𝛾 = 35−45◦), which is followed by a drastic increase in shear resistance.
14 
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Fig. 4. Picture frame test: A typical shear force curve versus shear angle, approximately subdivided into three phases, where phases I-II result from rotational 
friction, and phase III is governed by yarn-yarn locking. The shear angle here is defined as 𝛾 ∶= 90◦ − 𝜃.

We assume there are two main physical mechanisms governing the above-mentioned shear response of woven fabrics: The first 
is elastoplastic angle change due to rotational friction between warp and weft yarns, which includes initial sticking and rotational 
sliding friction. The second is elastoplastic angle change due to yarn-yarn locking (Cao et al., 2008), where warp and weft yarns 
exert in-plane pressure on each other, constraining further relative rotations between them.

During deformation, one mechanism dominates over the other, resulting in the three phases marked in Fig.  4. In particular, when 
inspecting the experimental data of Fig.  11, we can assume that sticking and rotational sliding friction dominate phase I (at 𝛾 < 2◦, 
approximately) and phase II (𝛾 = 2−35◦), respectively. Meanwhile yarn-yarn locking begins at around 𝛾 = 35−45◦ and becomes 
dominant at larger shear angle 𝛾 (phase III). 

It should be noted that, the characterization into phases here is only meant qualitatively (yet useful for our modeling purpose). 
For example, the extent of phase II depends on the initial clearance between yarns that facilitates the shearing of the fabric, see Fig. 
3c. It can depends also on fiber density, fiber pretension, among other factors.

3.2. Proposed yield function and flow rule

Motivated by the experimental observations from the picture frame test discussed in Section 3.1, this section proposes a 
corresponding yield function and flow rule. Recall from Eq. (67) (and Remark  3.1), that only one invariant of the angle stress tensor 
is required as the work-conjugated counterpart to the angle change. This helps to significantly reduce the modeling complexity of 
angle elastoplasticity as is shown in the following.

We assume the evolution of the internal variable 𝜙p is governed by a yield function with an associated flow rule and evolution 
equations of independent hardening/softening variables.

The yield function for angle plasticity can be written in the form 
𝑓y(𝜏, 𝑞) = |𝜏| − 𝑓iso(𝑞) , (70)

where 𝑓iso(𝑞) ≥ 0 models isotropic hardening, and 𝑞 denotes the hardening variable. The yield function takes the following values 

𝑓y

{

< 0  elastic ,
= 0  plastic . (71)

To reproduce the shear behavior discussed in Section 3.1, we propose the scalar-valued function 
𝑓iso(𝑞) = 𝜏y + 𝐴 asinh(𝑎 𝑞) + 𝐵 tanh(𝑏 𝑞) + 𝐶 𝑞𝑐 , (72)

for isotropic hardening. Here, 𝜏y is the initial yield stress, while 𝐴,𝐵, 𝐶, and 𝑎, 𝑏 and 𝑐 are model parameters. In connection with 
the deformation phases shown in Fig.  4, parameter 𝜏y sets the initial sticking limit of phase I, while the four parameters 𝐴, 𝑎, 𝐵
and 𝑏 reflect the low plastic resistance of phase II, and the two parameters 𝐶 and 𝑐 capture the increased hardening of phase III by 
a power law.

With Eq. (72), Eq. (70) becomes 
𝑓y(𝜏, 𝑞) = ℎ 𝜏 − 𝜏y − 𝐴 asinh(𝑎 𝑞) − 𝐵 tanh(𝑏 𝑞) − 𝐶 𝑞𝑐 , with ℎ ∶= sign (𝜏) , (73)

which is plotted in Fig.  5a.
15 
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Fig. 5. Characteristics of the proposed yield function: (a) yield surface 𝑓y = 0 from Eq. (70) and (b) function derivative 𝑓 ′
iso(𝑞) from Eq. (72) versus hardening 

variable 𝑞. Here, we have used 𝜏y = 0.1𝜇0, 𝐴 = 0.05𝜇0, 𝑎 = 1, 𝐵 = 0.01𝜇0, 𝑏 = 55, 𝐶 = 0.7𝜇0 and 𝑐 = 5, where 𝜇0 denotes a stress measure.

We further assume the associated flow rule 

𝜙̇p = 𝛼̇p
𝜕𝑓y
𝜕𝜏

, (74)

where 𝛼p denotes the accumulated plastic angle change. Inserting (72) into Eq. (74) gives 

𝜙̇p = ℎ 𝛼̇p . (75)

For the hardening variable 𝑞, we assume the simple evolution law 
𝑞̇ = 𝛼̇p . (76)

Remark 3.2.  The parameter set [𝜏y , 𝐴, 𝑎, 𝐵, 𝑏, 𝐶, 𝑐] appearing in Eq. (73) is chosen such that it leads to a monotonically increasing 
hardening function 𝑓iso(𝑞) in accordance with the experimental behavior of Fig.  4, i.e. 𝑓 ′

iso(𝑞) > 0 as seen Fig.  5b.

Remark 3.3.  Hardening function (72) is not only motivated from reproducing the experimental observation discussed in Section 3.1. 
It is also chosen such that it provides continuous differentiability as seen in Fig.  5b. The latter is to obtain a well-behaved and smooth 
tangent matrix, which facilitates robustness of the Newton–Raphson algorithm.

3.3. Time discretization and predictor–corrector algorithm

A time integration scheme is required for solving Eqs. (75) and (76). Here, we employ the backward Euler scheme for both 
variables 𝜙p and 𝑞, i.e. 

𝜙𝑛+1
p = 𝜙𝑛

p + ℎ𝑛+1 𝛥𝛼𝑛+1p ,

𝑞𝑛+1 = 𝑞𝑛 + 𝛥𝛼𝑛+1p .
(77)

With this, the evaluation of Eq. (73) is based on a classical predictor–corrector algorithm3:
1. The trial step is to determine whether the material point is in an elastic or plastic state by assuming the former, i.e. setting 

the increment of the plastic strain to 𝛥𝛼p = 0. This gives the current elastic trial angle 

𝜙trial
e = 𝜙𝑛+1 − 𝜙𝑛

p (78)

due to Eqs. ((77).1) and (39). Thus the current trial stress (69) becomes 
𝜏 trial ∶= 𝜇f 𝜙trial

e . (79)

The verification of the elastic assumption is then based on the value of the yield function (73) computed in this step, 
𝑓 trial
y ∶= ℎtrial 𝜏 trial − 𝜏y − 𝐴 asinh(𝑎 𝑞𝑛) − 𝐵 tanh(𝑏 𝑞𝑛) − 𝐶 (𝑞𝑛)𝑐 ,

ℎtrial ∶= sign (𝜏 trial) .
(80)

3 Henceforth, unless indicated otherwise, variables without time step superscript are evaluated at the current time step 𝑛 + 1.
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2. If 𝑓 trial
y ≤ 0, then the material is indeed in an elastic state. Thus 

𝜏 = 𝜏 trial ,
𝜙e = 𝜙trial

e .
(81)

Taking the variation of the last equation in (81) and considering Eqs. (78) and (47), gives 
𝛿𝜙e = 𝛿𝜃𝑛+112 = 𝑔𝛼𝛽12 𝛿𝑎𝛼𝛽 , (82)

such that Eq. (66) leads to the stress components 
𝜏𝛼𝛽a = 2 𝜏 trial 𝑔𝛼𝛽12 . (83)

The corresponding material tangents follows from Eq. (56) as 
𝑐𝛼𝛽𝛾𝛿a = 4𝜇f 𝑔

𝛼𝛽
12 𝑔𝛾𝛿12 + 4 𝜏 trial 𝑔𝛼𝛽𝛾𝛿12 , (84)

where 𝑔𝛼𝛽12  and 𝑔
𝛼𝛽𝛾𝛿
12  are defined by Eqs. (48) and (50), respectively.

3. If 𝑓 trial
y > 0, then the state is plastic. An evaluation of plastic strain 𝛥𝛼p > 0 is then required for the correction of the trial 

state. The computation of plastic strain 𝛥𝛼p is found such that Eq. (73) satisfies 

𝑓 𝑛+1
y = ℎ𝑛+1 𝜏𝑛+1 − 𝜏y − 𝐴 asinh

(

𝑎 𝑞𝑛+1
)

− 𝐵 tanh
(

𝑏 𝑞𝑛+1
)

− 𝐶
(

𝑞𝑛+1
)𝑐 = 0 , (85)

where 𝜏𝑛+1 is now computed from 
𝜏𝑛+1 = 𝜇f

(

𝜙𝑛+1 − 𝜙𝑛+1
p

)

. (86)

By considering Eqs. ((77).1), (79) and (78), Eq. (86) becomes 
𝜏𝑛+1 = 𝜏 trial − ℎ𝑛+1 𝜇f 𝛥𝛼p . (87)

Given that parameters 𝜇f > 0 and 𝛥𝛼p > 0, Eq. (87) leads to 

ℎ𝑛+1 = ℎtrial . (88)

Inserting Eqs. (88), (87) and ((77).2) into (85) gives 
𝑔(𝛥𝛼p) ∶= ℎtrial 𝜏 trial − 𝜇f 𝛥𝛼p − 𝜏y

− 𝐴 asinh
[

𝑎
(

𝑞𝑛 + 𝛥𝛼p
)]

− 𝐵 tanh
[

𝑏
(

𝑞𝑛 + 𝛥𝛼p
)]

− 𝐶
(

𝑞𝑛 + 𝛥𝛼p
)𝑐 = 0 ,

(89)

which is solved for 𝛥𝛼p using Newton’s method. For this, the derivative 

𝑔′ = −𝜇f −
𝐴𝑎

√

1 + 𝑎2 (𝑞𝑛 + 𝛥𝛼p)2
− 𝐵 𝑏 sech2

[

𝑏
(

𝑞𝑛 + 𝛥𝛼p
)]

− 𝐶 𝑐
(

𝑞𝑛 + 𝛥𝛼p
)𝑐−1

(90)

is needed. With 𝛥𝛼p evaluated, the elastic angle strain and stress can then be updated from 
𝜙𝑛+1
p = 𝜙𝑛

p + ℎtrial 𝛥𝛼p ,

𝜙𝑛+1
e = 𝜙𝑛+1 − 𝜙𝑛+1

p ,

𝑞𝑛+1 = 𝑞𝑛 + 𝛥𝛼p ,

𝜏𝑛+1 = 𝜇f 𝜙𝑛+1
e .

(91)

From Eq. ((91).2) follows the elastic angle variation 
𝛿𝜙e = 𝛿𝜙𝑛+1

e = 𝛿𝜙𝑛+1 = 𝛿𝜃𝑛+112 = 𝑔𝛼𝛽12 𝛿𝑎𝛼𝛽 , (92)

the stress components (66)
𝜏𝛼𝛽a = 2 𝜏 𝑔𝛼𝛽12 , (93)

and the corresponding material tangent (56)
𝑐𝛼𝛽𝛾𝛿a = 4

(

𝜇f + 𝜇2
f ∕𝑔

′) 𝑔𝛼𝛽12 𝑔𝛾𝛿12 + 4 𝜏 𝑔𝛼𝛽𝛾𝛿12 . (94)

The resulting predictor–corrector algorithm is summarized in Table  1.

Remark 3.4.  As seen from Eqs. (82) and (92), the change of elastic angle 𝜙e with respect to the metric in the presented plasticity 
model is simply 

𝜕𝜙e
𝜕𝑎𝛼𝛽

= 𝑔𝛼𝛽12 (95)

for both elastic and plastic states.
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Table 1
Summary of the predictor–corrector algorithm.
 Given: current fiber angle 𝜙𝑛+1, the previous values 𝜙𝑛, 𝜙𝑛

p, 𝑞𝑛, shear stiffness 𝜇f , and yield  
 function 𝑓y .  
 1. Trial step with the elastic assumption 𝜙trial

e = 𝜙𝑛+1 − 𝜙𝑛
p, and 𝜏 trial = 𝜖 𝜙trial

e  
  ∙ Compute trial yield function 𝑓 trial

y ∶= 𝑓y(𝜏 trial , 𝑞𝑛) from Eq. (80).  
 2. If 𝑓 trial

y ≤ 0, then the step is indeed elastic.  
  ∙ Set plastic strain 𝛥𝛼p = 0.  
  ∙ Compute elastic angle strain 𝜙𝑛+1

e  and elastic shear stress 𝜏 from Eq. (81).  
  ∙ Compute stress 𝜏𝛼𝛽a  and corresponding tangents 𝑐𝛼𝛽𝛾𝛿a  from Eqs. (83) and (84).  
 3. If 𝑓 trial

y > 0, then the step is plastic:  
  ∙ Compute plastic strain 𝛥𝛼p using Newton’s method with residual (89) and gradient (90). 
  ∙ Compute elastic angle strain 𝜙𝑛+1

e  and elastic shear stress 𝜏 from Eq. (91).  
  ∙ Compute stress 𝜏𝛼𝛽a  and corresponding tangents 𝑐𝛼𝛽𝛾𝛿a  from Eqs. (93) and (94).  
 4. Update 𝜙p and 𝑞 from Eq. (77)  

4. Analytical solution of angle plasticity in the picture frame test

This section presents the analytical solution for the picture frame test shown in Figs.  3 and 6a–b. The aim is to find an analytical 
expression for the stress based on the angle plasticity model proposed in Section 3. Our solution is applicable to multiple loading 
(or unloading) cycles. To this end, we employ a so-called expanding yield surface approach: It solves for the shear stress within a 
given loading or unloading interval using the initial conditions provided from the solution at the end of the previous interval. A 
supplementary Matlab code for this is provided at https://github.com/xuanthangduong/textile-picture-frame-test.git

4.1. Various angle measures in the picture frame test

The initial configuration and fiber directions in the picture frame test are seen in Fig.  6a. In this case the angle measures from 
Eqs. (32) and (34) become

𝛩12 ∶= 𝑳1 ⋅𝑳1 = cos𝛩 = 0 , (96)

𝜃12 ∶= 𝓵1 ⋅ 𝓵2 = cos 𝜃 . (97)

For the plotting of the testing results, it is convenient to use the shear angle 
𝛾 ∶= 90◦ − 𝜃 [deg] . (98)

Consider a loading (or unloading) interval, denoted C , where 𝜃12 ∈ [𝜃012 , 𝜃max
12 ]. We define the relative angles 𝜙̄ similarly to 

Eqs. (36)–(38) but now with respect to the configuration at the start of interval C . Here, the bar indicates an interval-wise quantity. 
This means that within interval [𝜃012 , 𝜃max

12 ] the configuration at 𝜃12 is identical to the current configuration . But the configuration at 
𝜃012 now becomes the reference configuration and is denoted by ̄0. Between ̄0 and , the intermediate configuration is denoted by 
̄̂ – generally different from ̂. The directions of two fiber pairs in configurations ̄0 and ̄̂ are denoted by 𝓵0

𝐼  and 
̄̂𝓵𝐼 , respectively. 

Similarly to Eqs. (32) and (33), fiber directions 𝓵0
𝐼  and 

̄̂𝓵𝐼  constitute the relative fiber angles, denoted 𝜃012 and 
̄̂𝜃12, respectively.

With these, the relative angles within interval C  are defined as
𝜙̄ ∶= 𝜃12 − 𝜃012 , (99)

𝜙̄e ∶= 𝜃12 −
̄̂𝜃12 , (100)

𝜙̄p ∶= 𝜙̄ − 𝜙̄e . (101)

Consequently 𝜙̄ always ranges from zero to 𝜙max ∶= 𝜃max
12 − 𝜃012. Note that 𝜙max can take a negative value.

4.2. Shear stress in a loading interval 

Similar to the interval-wise angle measures defined in Eqs. (99)–(101), the shear stress can be expressed in an interval-wise 
manner as follows.

Consider a loading or unloading interval C , which proceeds from the previous interval, say C 0. Given that 𝜙̄ ranges from 0 to 
𝜙max and the fabric deforms from elastic phase Ce to plastic phase Cp, the total shear stress 𝜏 can be computed from the shear stress 
at the end of interval C 0 plus an additional stress. That is, 

𝜏 = 𝜏0 + 𝜏 , (102)

where 𝜏0 and 𝜏 denote the shear stress due to the change of fiber angles in interval C 0 and C , respectively. Here, 𝜏 follows from 
(69) with (101) as 

̄ ̄ ̄ (103)
𝜏 ∶= 𝜇f 𝜙e = 𝜇f (𝜙 − 𝜙p) .

18 

https://github.com/xuanthangduong/textile-picture-frame-test.git
http://mostwiedzy.pl


T.X. Duong and R.A. Sauer Journal of the Mechanics and Physics of Solids 200 (2025) 106158 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Here, the internal variable 𝜙̄p is still unknown and can be solved by the following approach, which we term the expanding yield 
surface approach.

4.3. Analytical solution by an expanding yield surface approach

We now aim at solving for 𝜙̄p to compute shear stress 𝜏. To this end, performing time integration over plastic phase Cp on both 
sides of the evolution Eqs. (75) and (76) gives

ℎ (𝜙̄p + 𝑐1) = 𝛼p + 𝑐2 , (104)

𝑄 ∶= 𝛼p + 𝑐2 = 𝑞 + 𝑐3 , (105)

where 𝜙̄p is the plastic angle defined in Eq. (101), 𝑄 denotes an offset of 𝑞 (and also 𝛼p) over C , and parameters 𝑐1 𝑐2, and 𝑐3 are 
constants to be determined from the initial conditions, see Eq. (116). Inserting Eq. (104) into (105) gives the explicit expression of 
the hardening variable 𝑞 in terms of 𝜙̄p as4

𝑞 = 𝛼p + 𝑐2 − 𝑐3 = ℎ (𝜙̄p + 𝑐1) − 𝑐3 =∶ 𝑞(𝜙̄p) . (106)

With this and angle 𝜙̄ given, we can solve for 𝜙̄p

𝑓y(𝜏, 𝑞) = 0 (107)

in a plastic state. Here, 
𝑓y = 𝜏 ℎ − (𝜏y + |𝜏0|) − 𝐴 asinh(𝑎 𝑞) − 𝐵 tanh(𝑏 𝑞) − 𝐶 𝑞𝑐 (108)

follows from (73) when inserting (102), and 𝜏 is expressed by Eq. (103) with (106). Therefore, 𝑓y from Eq. (108) becomes a function 
of sole (scalar) variable 𝜙̄p, and Eq. (107) can be solved for 𝜙̄p by Newton’s method using the derivative 

𝑓 ′
y = −ℎ𝜇f −

𝐴𝑎ℎ
√

1 + 𝑎2 𝑞2
− 𝐵 𝑏ℎ sech2

(

𝑏 𝑞
)

− 𝐶 𝑐 ℎ 𝑞𝑐−1 . (109)

As seen from Eq. (108), the yield stress is shifted by |𝜏0| since the current interval starts from the last point of the previous interval. 
In other words, the yield surface expands by |𝜏0|.

Further, the elastic phase in interval C  can be defined from function (108) with the condition 
𝑓y(𝜏) < 0 . (110)

Note that in this phase, hardening variable 𝑞 does not evolve. That is, it remains constant at the value from the previous loading 
interval, say 𝑞 = 𝑞0, and 𝜏 = 𝜇f 𝜙̄ from Eq. (103) since 𝜙̄p = 0, and function (108) becomes 

𝑓y = 𝜇f |𝜙̄| − (𝜏y + |𝜏0|) − 𝐴 asinh(𝑎 𝑞0) − 𝐵 tanh(𝑏 𝑞0) − 𝐶 (𝑞0)𝑐 . (111)

With this, condition (110) gives the definition of the elastic zone as 
|𝜙̄| < 𝜙y , (112)

where we have defined the so-called yield angle 𝜙y as 

𝜙y ∶= 1
𝜇f

[

𝜏y + |𝜏0| + 𝐴 asinh(𝑎 𝑞0) + 𝐵 tanh(𝑏 𝑞0) + 𝐶 (𝑞0)𝑐
]

. (113)

In particular for the initial loading interval, setting 𝜏0 = 0, and 𝑞0 = 0 in Eq. (113) gives 𝜙y = 𝜏y∕𝜇f .

4.4. Analytical solution procedure

At the start of interval C , the values of shear stress 𝜏, accumulated plastic angle 𝛼p, hardening variable 𝑞, and accumulation 𝑄
in Eq. (105) are taken over from (the end of) the previous interval C0 as 

𝜏 = 𝜏0 ,

𝛼p = 𝛼0p ,

𝑞 = 𝑞0

𝑄 = 𝑄0 ,

(114)

where 𝑄0 = 𝜏0 = 𝛼0p = 𝜏0 = 𝑞0 = 0 for the initial loading interval. With this, we can compute the yield angle 𝜙y from Eq. (113).

4 Here we keep the constants separate for the sake of comparison with the general numerical procedure in Section 3.3. Alternatively, one can combine the 
constants and eliminate variable 𝛼 .
p
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Fig. 6. Verification of the proposed angle plasticity model using the picture frame test: (a) Initial and (b) deformed configurations with two fiber families 
(marked in green). (c) Comparison of FEM results with analytical solution for multiple loading and unloading cycles. Here, the following parameters are 
used: 𝜏y = 0, 𝜇f = 𝜇0, 𝐴 = 0.05𝜇0, 𝑎 = 1, 𝐵 = 0.01𝜇0, 𝑏 = 55, 𝐶 = 0.7𝜇0 and 𝑐 = 5. A supplementary Matlab code for this is provided at 
https://github.com/xuanthangduong/textile-picture-frame-test.git.

For any given 𝜙̄ ∈ [0, 𝜙max], if 𝜙̄ falls in the elastic phase Ce, i.e. |𝜙̄| ≤ 𝜙y, the shear stress (102) becomes 

𝜏 = 𝜏0 + 𝜇f 𝜙̄ , (115)

since 𝜙̄p = 0.
On the other hand, if 𝜙̄ falls in the plastic phase Cp, i.e. |𝜙̄| > 𝜙y, we compute 𝜙̄p by solving Eq. (107) with 𝑓y defined by 

Eq. (108), where the three constants appearing in Eqs. (104) and (105) are determined from the initial conditions at the start of 
plastic phase Cp. This gives 

𝑐3 = 𝑄0 − 𝑞0,

𝑐2 = 𝑄0 − 𝛼0p ,

𝑐1 = ℎe 𝑄0 ,

ℎe = sign 𝜏e .

(116)

Here, 𝜏e denotes the shear stress (115) at the end of the elastic phase Ce (i.e. the start of plastic phase Cp), and we have used the 
condition 𝜙̄p = 0 at the start of plastic phase Cp, and the fact that 𝑄, 𝑞, and 𝛼p remain unchanged in Ce as 𝑞 and 𝛼p evolve only in 
plastic phases.

With 𝜙̄p computed, apart from stress 𝜏 from (102), variables 𝑞, 𝑄 and 𝛼p from Eqs. (106) and (104) can be computed at the end 
of the current interval, so that they are available for the initial conditions of the next loading interval.

5. Model verification using the picture frame test

This section first verifies the preceding finite element formulation using the analytical solution of the proposed angle plasticity 
model for the picture frame test given in Section 4. Second, the picture frame test is used to investigate the influence of the model 
parameters. In these results, shear forces are normalized by frame length 𝐿0 and stress measure 𝜇0.

5.1. Finite element versus analytical solutions of the picture frame test

The picture frame test consists of a square sheet of dimension 𝐿0 × 𝐿0 with two embedded fiber families that is deformed into 
a rhombus as seen Fig.  6a–b. The deformation is applied by the Dirichlet boundary condition 

𝒙̄(𝜑, 𝑿̄) =
√

2
(

cos𝜑 𝒆1 ⊗ 𝒆1 + sin𝜑 𝒆2 ⊗ 𝒆2
)

𝑿̄ . (117)

Here, 𝜑 ∶= (𝜋 − 𝜃)∕2, and 𝒙̄ and 𝑿̄ denote the current and initial position of the boundary points, respectively. The plasticity model 
from Section 2.6 is used in the test. Assuming no wrinkling occurs, the problem can be solved analytically, as is shown in Section 4. 
Fig.  6c shows that the finite element solution and analytical solution of the shear forces are identical (within machine precision). 
This verifies the implemented finite element formulation.

5.2. Parameter study based on the picture frame test

In the following, the picture frame test is used to study the influence of the parameters appearing in the angle plasticity model 
(73) on the shear response. Additionally, the agreement between simulation and exact solution is confirmed in all cases.
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Fig. 7. Parameter study based on the picture frame test during phase I: influence of (a) yield stress 𝜏y and (b) initial shear modulus 𝜇f of model (73). Here, 
unless otherwise varied and specified in the figure legends, the following parameters are used: 𝜏y = 0.5𝜇0, 𝜇f = 𝜇0, 𝐴 = 0.05𝜇0, 𝑎 = 1, 𝐵 = 0.01𝜇0, 𝑏 = 55, 
𝐶 = 0.7𝜇0 and 𝑐 = 5.

5.2.1. Influence of tensile stiffness, initial shear modulus and yield stress
Tensile fiber stiffness 𝜖L has no influence on the shear response of fabrics when it is sufficiently large. Fig.  7a–b shows the 

influence of yield stress 𝜏y and initial shear modulus 𝜇f  on to the elastic shear response of fabrics (phase I, see Section 3.1). As 
expected, parameter 𝜏y offsets the curve vertically, while 𝜇f  controls its slope within the elastic range.

5.2.2. Influence of angle plasticity parameters
Fig.  8a–d show the influence of parameters 𝐴, 𝑎, 𝐵, and 𝑏 in the proposed plasticity model (73). This set of parameters govern 

the low plastic resistance phase (phase II, see Section 3.1). Note that 𝜏y is set to zero here, so that no elasticity is present. Parameters 
𝐴 and 𝑎 change the global slope and offset of the curve as seen in Fig.  8a–b, while parameters 𝐵 and 𝑏 control the slope and offset 
at small shear angles as shown in Fig.  8c–d.

On the other hand, parameters 𝐶 and 𝑐 govern the shear response during phase III (see Section 3.1) in the fabric. They thus 
only alter the later part of the curve as seen in Fig.  9. In theory, 𝛾 = 90◦ is the limit of deformation as the frame area reaches zero. 
Although the power law with parameters 𝐶 and 𝑐 does not strictly prevent this limit state, the computation becomes infeasible due 
to a vanishing finite element Jacobian. In practice, due to a finite yarn thickness, the shear force usually changes rapidly for shear 
angles that are far from this limit state. For example, the data in Fig.  11 shows that phase III already begins around 𝛾 = 35–45◦.

6. Model calibration and validation

The section presents the calibration and validation of the proposed angle plasticity model. The case of plain weave (glass) fabrics 
is considered using experimental data provided in the literature.

6.1. Model calibration

The following three subsections discuss the calibration of all the different material parameters. The results are summarized in 
Table  2.

6.1.1. Calibration of the initial tensile and shear modulus of plain weave fabric
Tensile stiffness 𝜖L in Eq. ((61).1) can be calibrated from experimental data of uniaxial tensile tests as shown in Fig.  10a. Here, 

in order to account for the undulation of yarns within the fabric, we use the tensile data provided by Peng and Cao (2005) for fabric 
samples instead of a single yarn, and our model is fitted to the data such that the initial slopes are matched.

Initial fabric shear modulus 𝜇f  in Eq. (69), on the other hand, needs to be calibrated from a shear test, such as the picture frame 
test, as shown in Fig.  10b. Here, the data set from Laboratoire de Mécanique des Systèmes et des Procédés (LMSP) (Cao et al., 2008) 
is used, since it was obtained from the largest ratio of the fabric length (240 mm, excluding the clamp-affected zone) to the frame 
length (245 mm), cf. Tab. 3 in Cao et al. (2008). Such a setup maximizes the interaction between yarns in the initial loading phase, 
which may contribute to the largest initial slope among other testing setups as seen in Fig.  11a and Fig. 25 in Cao et al. (2008).
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Fig. 8. Parameter study based on the picture frame test during phase II: (a)–(d) influence of parameter 𝐴, 𝑎, 𝐵 and 𝑏, respectively, of model (73). These 
parameters govern the low plastic resistance phase (phase II). Here, unless otherwise varied and specified in the figures, the following parameters are used: 
𝜏y = 0, 𝜇f = 𝜇0, 𝐴 = 0.05 𝜇0, 𝑎 = 1, 𝐵 = 0.01𝜇0, 𝑏 = 55, 𝐶 = 0.7 𝜇0 and 𝑐 = 5.

Fig. 9. Parameter study based on the picture frame test during phase III: (a)–(b) influence of parameter 𝐶 and 𝑐, respectively, of model (73). These parameters 
govern the increased hardening phase (phase III). Here, 𝜏y = 0, 𝜇f = 𝜇0, 𝐴 = 0.05𝜇0, 𝑎 = 1, 𝐵 = 0.01𝜇0, 𝑏 = 55 are used.
22 
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Table 2
Calibrated material parameters of fabric model (59) suitable to plain weave fabrics of glass fibers. Here, we use the following data sources reported by Peng and 
Cao (2005), Cao et al. (2008) and Quenzel et al. (2022) to fit the proposed plasticity model: Laboratoire de Mécanique des Systèmes et des Procédés (LMSP), 
Katholieke Universiteit Leuven in Belgium (KUL), University of Nottingham in UK (UN), and University of Massachusetts Lowell in USA (UML). 
 Parameter Value Unit Physical meaning Calibrated from  
 𝜇f 5.0 N/mm Initial fabric shear modulus Pic. frame (LSMP): Cao et al. (2008)  
 𝜏y 10−4 N/mm Initial fabric yield stress Assumption  
 𝐴 8.8 N/mm Yield function parameter #1 Pic. frame (KUL): Cao et al. (2008)  
 𝑎 0.0024 – Yield function parameter #2 Pic. frame (KUL): Cao et al. (2008)  
 𝐵 0.0028 N/mm Yield function parameter #3 Pic. frame (KUL): Cao et al. (2008)  
 𝑏 65.0 – Yield function parameter #4 Pic. frame (KUL): Cao et al. (2008)  
 𝐶 1.0 N/mm Yield function parameter #5 Pic. frame (UN&UML): Cao et al. (2008) 
 𝑐 11.0 – Yield function parameter #6 Pic. frame (UN&UML): Cao et al. (2008) 
 𝜖L 110.0 N/mm Tensile fabric stiffness Uniaxial tensile: Peng and Cao (2005)  
 𝛽n 3.023 Nmm Out-of-plane fabric bend. stiffness Fiber cantilever: Quenzel et al. (2022)  
 𝛽g 3.023 Nmm In-plane fabric bend. stiffness Assumption  
 𝛽𝜏 3.023 Nmm Fiber torsion stiffness Assumption  

Fig. 10. Model calibration of the initial tensile stiffness 𝜖L and initial elastic shear modulus 𝜇f for plain weave dry fabric – see Eqs. ((61).1) and (69), respectively 
– from (a) uniaxial tensile test and (b) picture frame test, respectively. The former uses the experimental data of the uniaxial tensile test averaged over the 
four fabric samples provided by Peng and Cao (2005). The latter uses the data for the shear force normalized by the frame length, reported by Laboratoire de 
Mécanique des Systèmes et des Procédés (LMSP) in Cao et al. (2008). The shear angle is defined as 𝛾 ∶= 90◦ − 𝜃.

6.1.2. Calibration of the proposed yield function
The material parameters required to calibrate the proposed yield function (73) are 𝜏y, 𝐴, 𝑎, 𝐵, 𝑏, 𝐶, and 𝑐 – see also Section 3.1. 

In principle, these seven parameters can be determined from the picture frame test. However there is no unloading data available 
for glass fibers in the literature. We therefore assume that the initial yield stress 𝜏y has a small value (10−4 N/mm). This is justified 
since rotational sliding between warp and weft yarns is expected to start for small shear angles.

Apart from 𝜏y, the four parameters 𝐴, 𝑎, 𝐵, 𝑏 – governing the rotational sliding between yarns – are fitted to the experimental 
data from Cao et al. (2008), as shown in Fig.  11a. As seen, there is large scattering between the experimental data from different 
sources. In particular, the LMSP data – while its first phase is useful in determining the initial shear modulus (see Section 6.1.1) 
– becomes unsuitable for the purpose of fitting 𝐴, 𝑎, 𝐵, 𝑏, since its second phase contains the shear resistance of the yarns at the 
sample edges due to the large fabric-frame length ratio used. The data from KUL, on the other hand, is more suitable (up to the point 
of the increased hardening phase) since it was obtained from three repetitions on a single sample. It was reported that the second 
and the third repetitions gave similar data that was significantly lower than the first instance (KUL 1st). It is noticeable in Fig.  11a 
that the KUL 1st curve lies approximately at the mean of the data from UN, HKUST, and UML. This leads to our conjecture that the 
rotational sliding phase of the KUL 3rd curve is more accurate than the others, and we therefore use it to calibrate parameters 𝐴, 
𝑎, 𝐵, 𝑏 in our proposed model.

For the calibration of parameters 𝐶 and 𝑐 – governing the increased hardening behavior (phase III), see Section 3.1 – the KUL 
data is insufficient as it does not go far enough as is seen from Fig.  11a. We therefore calibrate 𝐶 and 𝑐 such that the third phase 
of the curve from our model approximately matches the slope of the UN and UML curves. This is seen in Fig.  11a.

Further, we verify the applicability of the frame length normalization employed for our calibration by plotting the shear force 
versus shear angle in Fig.  11b. As seen, the curve for our fitted model is in good agreement with the KUL 3rd curve up to a shear 
angle of 25 degrees. After that, our proposed curve deviates from the KUL 3rd curve but it still generally follows the trend of the 
UN and UML curves.
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Fig. 11. Model calibration for the yield function parameters 𝐴, 𝑎, 𝐵, 𝑏, 𝐶, and 𝑐 – see Eq. (73) – from the picture frame test for (a) the shear force normalized 
by the frame length, and (b) the shear force that has been scaled by the equivalent fabric size 𝐿0 = 180 mm. I.e. 𝐹scaled ∶= (𝐿∕𝐿0)𝐹reported, where 𝐹reported denotes 
the shear force reported from experiments with fabric length 𝐿. Here, the experimental curves for the normalized shear force and for 𝐹reported are taken from 
Fig. 25 and Fig. 22, respectively, in Cao et al. (2008) for the various data sources.

Table 3
List of considered samples for the model verification using the bias extension test. The experimental data – here extracted from 
Cao et al. (2008) cf. Fig. 38 therein – originates from different institutions: University of Nottingham in UK (UN), Hong Kong 
University of Science and Technology (HKUST), INSA-Lyon in France and Northwestern University in USA (INSA-NU).
 Sample Size [mm2] Aspect ratio Experiment data source 
 #1 100 × 200 1∶2 UN  
 #2 115 × 230 1∶2 HKUST, INSA-NU  
 #3 150 × 300 1∶2 INSA-NU  
 #4 100 × 250 1∶2.5 UN  
 #5 100 × 300 1∶3 UN, INSA-NU  
 #6 150 × 450 1∶3 INSA-NU  

6.1.3. Calibration of other parameters
Finally, we need to calibrate the bending stiffnesses 𝛽n and 𝛽g and torsional stiffness 𝛽𝜏 for fiber bending model ((61).2–3). For 

𝛽n and 𝛽g, we use the value of 3.023 N/mm from the bending test of a single yarn reported in Quenzel et al. (2022). To the best of 
our knowledge, no data for the torsion of yarns is available in the literature. We thus use 𝛽𝜏 = 3.023 N/mm in our simulations.

6.2. Model validation using the bias extension test

This section validates our calibrated plasticity model using the bias extension test for a rectangular sheet of plain weave 
fabric (Cao et al., 2008).

We consider the six samples listed in Table  3. These samples vary in size, but can be grouped into three sample classes based on 
the appearing aspect ratios 1∶2, 1∶2.5 and 1∶3. The three sample classes are discretized by 32 × 64, 32 × 80 and 32 × 96 quadratic 
NURBS finite elements, respectively. The calibrated material parameters from Table  2 are used in all subsequent computations. Here, 
it is noted that, since we use identical material parameters for the two fiber families, and in-plane bending stiffness is relatively 
small compared to the tensile fabric stiffness, the influence of the in-plane bending on the following results appears insignificant. 
However, it is still needed for the convergence of shear bands as well as computational stability. This is shown in Duong et al. 
(2022).

Fig.  12 shows the initial and deformed configurations resulting from our simulations. Regardless of difference in size, almost 
identical shapes are expected for the same aspect ratio due to the relatively small bending stiffness used (see Table  2). This is 
confirmed in our computations.

Fig.  13 further compares the deformed shape of sample #2 at displacement 30 mm (i.e. before significant damage occurs) from 
our simulation to the experiment reported by Zhu et al. (2007). As the comparison shows, our prediction is generally in good 
agreement with the experimental results in terms of overall shape and fiber angles.

Next, Fig.  14 shows the distributions of shear stress 𝜎12, elastic angle strain 𝜙e, plastic angle strain 𝜙p and total shear angle 
𝛾 ∶= 90◦ − arccos(𝜃12) resulting from our simulations for all samples. As seen from Fig.  14 (2. & 3. column), plastic angle 𝜙p is much 
larger than elastic angle 𝜙e. This reflects the small yield stress 𝜏y and consequently leads to small 𝜙e and small stress 𝜎12. As is 
also seen from the plots of shear angle 𝛾 in Fig.  14 (4. column), 𝛾 is not only non-zero at the center of the samples, but also at the 
off-center. Note that 𝛾 is observable from experiments and our computations are consistent with the optical measurement presented 
in Cao et al. (2008) (cf. Fig. 37 therein – note that the shear angle was defined there by arccos(𝜃 ) in degrees). Our simulation results 
12
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Fig. 12. Bias extension test for three sample classes of plain weave fabrics: Initial and deformed configurations resulting from our computations. The deformed 
shapes with the same aspect ratio are almost identical regardless of size. The green lines illustrate the considered two fiber families, while the red bars at top 
and bottom represent a clamped boundary with prescribed displacements.

in Fig.  14 (1&2. column) further show that nonzero 𝜙e (and hence nonzero 𝜎12) mostly concentrate at the center and the shear bands 
of the samples. This is reasonable since the total shear angle 𝛾 is also large there – see Fig.  14 (4. column) – which corresponds to the 
increased hardening phase (phase III) (which already starts at around 𝛾 = 35–45◦, as seen from Fig.  11a.). Meanwhile 𝛾 is relatively 
small (𝛾 = 25◦) away from the center, which still allows fibers to freely rotate against each other there.

Further, Fig.  15 compares our simulation results to the experimental results for the vertical reaction force (pulling force) versus 
the vertical displacement. As seen, our model generally agrees well with the experiments, especially for samples #2, #4 and #6. 
Since these experimental results have not been used for calibration they validate our proposed model. The results from sample #5 
show that the experimental results can vary strongly for different data sources. Our results lie in-between this variation.

Finally, we check if the experimental data from different sources is consistent for different sample sizes. Therefore we plot the 
normalized reaction forces in Fig.  16. As seen, our simulation curves are almost identical for the same aspect ratio. The experimental 
data curves are generally consistent at low displacements, but scattered at large displacements. Our prediction lie approximately at 
the mean values of the experimental curves as Fig.  16 show.

7. Three-dimensional example

The last example demonstrates that the proposed angle plasticity model – which is a 2D model within the tangent plane – also 
works in the presence of large 3D deformations. Therefore, the following twisting example is considered: A cylindrical textile band 
with initial radius 𝑅b = 45𝐿0 and width 67.5𝐿0, see Fig.  17, is placed in contact with two rigid cylindrical tubes with radius 𝑟c = 9𝐿0
and distance 𝐿c = 72.0009𝐿0. This placement leaves a small initial penetration necessary for stabilizing contact within the penalty 
formulation. The textile band is discretized by 7 × 34 quadratic NURBS finite elements. The material parameters from Table  2 are 
used for the textile band. For the subsequent simulation, the finite element nodes on the twisting axis are fixed in the horizontal 
directions in order to prevent rigid body motion of the textile band.

Before twisting, the textile band is first stretched by moving the cylindrical tubes apart by 𝑢̄max
𝑧 = 4.0 𝑟c within 40 load steps. 

The stretched configuration has minor angle plasticity and is shown in Fig.  19 (first column). The textile band is then twisted by 
applying a rotation to both the upper and the lower tubes in opposite directions from starting angle 𝜙 ≡ 0◦ up to 𝜙 ≡ 𝜙max∕2 with 
𝜙max = 240◦. Finally, the textile band is untwisted back to starting angle 𝜙 ≡ 0◦. The twisting and untwisting uses 2 load steps per 
degree. The contact force resulting from the above loading sequence is shown in Fig.  18a.

For an efficient contact simulation, we employ an adaptive penalty parameter for contact between the textile band and the 
cylindrical tubes as shown in Fig.  18b. Further, in order to restrict the source of dissipation to angle plasticity, sticking is assumed 
during textile self-contact (by using a very large friction coefficient). Thus no energy is dissipated due to textile self-contact, while at 
25 
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Fig. 13. Bias extension test for sample #2 at displacement 𝑢̄ = 30 mm: Overlaying our computational result (red curves) on the experiment result for the full 
view (left) and an enlarged view (right), where the green circles are corresponding points. The experimental results here are taken from Zhu et al. (2007), with 
permission from Elsevier.

the same time this helps to stabilize the textile band at large deformations (due to an increase of the effective stiffness for in-plane 
shear and out-of-plane bending at the contact zone).

In order to stabilize the textile band for fiber compression, we employ here the stabilization technique proposed by Duong et al. 
(2022) with 𝜖estab = 10𝜇0, and 𝜖vstab = 100𝜇0. Further, to deal with the instability due to shell buckling, we use mass-proportional 
(Rayleigh) damping with proportionality coefficient 𝜈 = 10−8𝜇0 𝛥𝑡, where 𝛥𝑡 denotes the (pseudo) time increment, taken as unity in 
the example.

Fig.  19(a–c) plot the shear stress, elastic angle 𝜙e, and plastic angle 𝜙p, respectively. As the figures show residual deformations 
and stresses remain after unloading. The results demonstrate that the proposed plasticity model can be also used for large 3D 
deformations.

8. Conclusion

We have presented a nonlinear shear elastoplasticity model for dry woven fabrics within the theoretical framework of Duong 
et al. (2023) that is based on general anisotropic Kirchhoff–Love shells with embedded fibers. Therefore the change of the fiber 
angle – the angle between two fiber families – is split into elastic and plastic parts. It is shown that these angle changes can be 
induced by strain tensors of the displacement gradient. With this, a yield function with isotropic hardening is proposed based on 
the observed experimental data of Cao et al. (2008). The yield function uses seven parameters to capture the three phases occurring 
in the rotational inter-ply friction between fiber families: initial sticking, rotational sliding friction with low plastic resistance, and 
increased hardening due to yarn-yarn locking. The elastoplasticity formulation is solved by a predictor–corrector algorithm, which 
is then implemented within the isogeometric Kirchhoff–Love shell formulation of Duong et al. (2022). In order to verify the finite 
element implementation, the analytical solution of the picture frame test is presented for the proposed elastoplasticity model. The 
analytical solution captures multiple loading and unloading cycles by accounting for the expanding yield surface.

The proposed plasticity model is calibrated from the picture frame test and validated by the bias extension test for six different 
samples sizes. It is observed that the proposed model consistently predicts the experiment data, especially during the sticking and 
rotational sliding phase. In the increased hardening phase, where the experiment data becomes more scattered across different 
sources, our model prediction curves lie between the mean values of the experimental data.

Although the presented work focuses on simulations of woven fabrics, it is highly relevant for the efficient and accurate study 
of textiles in general, since the formulation employs several recent advances in both theoretical and computational modeling: The 
underlying shell theory facilitates isogeometric discretization that offers smooth and accurate, yet efficient surface descriptions 
in comparison to classical finite element methods. The smoothness enables rotation-free formulations with only three degrees of 
freedom per control point, yet is capable of capturing the sophisticated kinematics of in-plane and out-of-plane bending. With this, 
our computational shell model can be used to study the complex deformations appearing in challenging examples such as wrinkling, 
self-contact and mold draping of textiles. 
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Fig. 14. Bias extension test of plain weave fabrics: From left to right: True shear stress 𝜎12 ∶= 𝜏∕𝐽 [N/mm] according to Eq. (68), elastic angle strain 𝜙e, plastic 
angle strain 𝜙p, and total shear angle defined by 𝛾 ∶= 90◦ − arccos(𝜃) [deg] for the three sample classes with initial aspect ratio (a) 1∶2, (b) 1∶2.5, and (c) 1∶3.
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Fig. 15. Bias extension test of plain weave fabrics: Comparison of results from computation and experiment for reaction force versus displacement for all the 
six samples. Since these experimental results have not been used for calibration they validate our proposed model.
28 

http://mostwiedzy.pl


T.X. Duong and R.A. Sauer Journal of the Mechanics and Physics of Solids 200 (2025) 106158 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 16. Bias extension test of plain weave fabrics: Comparison of results from computation and experiment for normalized reaction force versus displacement 
for the samples with equal aspect ratios. The reaction force and the displacement are normalized by the corresponding sample widths.

Fig. 17. Stretching of a textile band: Initial configuration at different views (from left to right): Side view, 3D view, and front view, respectively.

Fig. 18. Twisting of a textile band: (a) vertical reaction (i.e. contact) force and (b) penalty parameter versus load step number. The load step number in (a) is 
reversed during unloading.
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Fig. 19. Twisting of a textile band: (a) shear stress, (b) elastic angle change and (c) plastic angle change before twisting, at twisting angle 240◦ and after 
untwisting (left to right). The green lines illustrate the two considered fiber families.
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Furthermore, this work has demonstrated the ability of the surface invariant-based approach to capture finite shear elastoplasticity 
in anisotropic Kirchhoff–Love shells. It serves as a basis for developing similar plasticity models for bending, twisting, and stretching 
of anisotropic shells, gradient continua, and textiles.

It is noted that our calibration and validation is based on the experimental data that is available in the literature, which only 
captures loading but not unloading. Further calibration and validation therefore calls for the experimental investigation of unloading 
from various load levels for the same material in consideration. Another important extension of this work is exploring kinematic 
hardening in shear elastoplasticity of woven fabrics, as this may be required for the accurate description of cyclic loading. Apart from 
the shear response, a validated elastoplasticity model for bending (including out-of-plane bending, in-plane bending, and torsion) 
is still required and should be investigated in future work. These aspects also call for further experimental investigations: Ideally a 
wide range of various loading, unloading and cycling tests should be conducted for a given textile material in order to fully calibrate 
and validate all modes of deformation.
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Appendix A. Angle measures as invariants induced by strain tensors

This section shows that the angle strain measures (36)–(38) can be induced by strain tensors. To this end, similarly to Eq. (40), 
we extract the part of deformation gradient (20) that excludes the change in fiber lengths at current configuration . I.e. 

𝑭̄ ∶=
2
∑

𝐼=1
𝑭 (𝑳𝐼 ⊗𝑳𝐼 ) 𝜆−1𝐼 = 𝓵𝐼 ⊗𝑳𝐼 . (118)

The corresponding right Cauchy–Green surface tensors following from Eqs. (118) and (40) are

𝑪̄ ∶= 𝑭̄ T 𝑭̄ = 𝑎̄𝛼𝛽 𝑨𝛼 ⊗𝑨𝛽 = 𝜃𝐼𝐽 𝑳𝐼 ⊗𝑳𝐽 , (119)

𝑪p ∶= 𝑭 T
p 𝑭p = 𝑎̂𝛼𝛽 𝑨𝛼 ⊗𝑨𝛽 = 𝜃̂𝐼𝐽 𝑳𝐼 ⊗𝑳𝐽 , (120)

where 𝜃𝐼𝐽  and 𝜃̂𝐼𝐽  are defined by Eqs. (32) and (33), respectively, and where 𝑎̄𝛼𝛽 and 𝑎̂𝛼𝛽 are the components of tensors 𝑪̄ and 𝑪p, 
respectively, with respect to base 𝑨𝛼⊗𝑨𝛽 in the reference configuration. From Eqs. (119) and (120), they can be expressed in terms 
of the fiber angles as 

𝑎̄𝛼𝛽 = 𝑨𝛼 𝑪̄ 𝑨𝛽 = 𝐿𝐼𝐽
𝛼𝛽 𝜃𝐼𝐽 ,

𝑎̂𝛼𝛽 = 𝑨𝛼 𝑪p 𝑨𝛽 = 𝐿𝐼𝐽
𝛼𝛽 𝜃̂𝐼𝐽 ,

(121)

where 𝐿𝐼𝐽
𝛼𝛽 ∶= (𝑳𝐼 ⊗ 𝑳𝐽 ) ∶ (𝑨𝛼 ⊗ 𝑨𝛽 ) denote the curvilinear components of structural fiber tensors 𝑳𝐼 ⊗ 𝑳𝐽  in the reference 

configuration. Note that fiber family index 𝐼 in a fiber pair and curvilinear coordinate index 𝛼 can be raised or lowered by their 
corresponding metrics, e.g. 𝐿𝛼𝛽

𝐼𝐽 = 𝛩𝐼𝐾 𝛩𝐿𝐽 𝐿𝐾𝐿
𝛾𝛿 𝐴𝛼𝛾 𝐴𝛿𝛽 .

Also following from Eqs. (119) and (120), we find that angle measures (36)–(38) can be expressed as

𝜙 = 𝑳1 (𝑪̄ − 𝑰)𝑳2 = 𝐿𝛼𝛽
12 (𝑎̄𝛼𝛽 − 𝐴𝛼𝛽 ) , (122)

𝜙e = 𝑳1 (𝑪̄ − 𝑪p)𝑳2 = 𝐿𝛼𝛽
12 (𝑎̄𝛼𝛽 − 𝑎̂𝛼𝛽 ) , (123)

𝜙p = 𝑳1 (𝑪p − 𝑰)𝑳2 = 𝐿𝛼𝛽
12 (𝑎̂𝛼𝛽 − 𝐴𝛼𝛽 ) , (124)

i.e. they are invariants of strain tensors 𝑪̄ − 𝑰 , 𝑪̄ − 𝑪  and 𝑪 − 𝑰 , respectively.
p p
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Remark A.1.  It can be verified that deformations characterized by (40) and (118), preserve the length of fiber 𝐼 in configurations 
̂ and , respectively. Indeed

(𝑭p 𝑳𝐼 ) ⋅ (𝑭p 𝑳𝐼 ) = 𝑳𝐼 𝑪p 𝑳𝐼 = 𝜃̂𝐼𝐼 = 𝓵̂𝐼 ⋅ 𝓵̂𝐼 = 1 , (125)

(𝑭̄ 𝑳𝐼 ) ⋅ (𝑭̄ 𝑳𝐼 ) = 𝑳𝐼 𝑪̄ 𝑳𝐼 = 𝜃𝐼𝐼 = 𝓵𝐼 ⋅ 𝓵𝐼 = 1 , (126)

where Eqs. (33) and (34) have been used, and no summation is applied on index 𝐼 .

Remark A.2.  As the consequence of this length preservation in configuration ̂, the surface area changes during plastic deformation 
(i.e. 𝐽p ≠ 1).

Remark A.3.  A material model based on invariants (122)–(124) induces only the effective membrane stress ((57).1) that contributes 
to the first term of Eq. (53). Indeed, in view of Eqs. (120), (119), (118), (42) and (29), we can conclude that tensors 𝑪̄ and 𝑪p are 
only associated with the first displacement gradient, which does not affect curvature tensors (24) and (25). Invariants of this types 
usually facilitate the decomposition of stretching and bending, which is beneficial in the construction of shell material models.

Appendix B. Finite element formulation

This section recalls the finite element force vectors for Kirchhoff–Love shells with embedded fibers from Duong et al. (2022). 
It should be noted that the form of these equations is unchanged for plastic deformations. Only the constitutive model changes as 
discussed in Sections 2.6 and 3.

B.1. FE discretization

As seen from weak form (53), the last two terms in the internal virtual work contain the virtual curvatures, which require at least 
𝐶1-continuity across the surface. Here, we use an isogeometric discretization to fulfill this requirement. Since this discretization can 
provide a smooth and accurate description of the geometry, the curvature measures can be computed directly from the geometry. 
As a result, only three displacement dofs per control point are needed to properly describe the shell.

The undeformed element domain 𝛺𝑒
0 and the deformed element domain 𝛺𝑒 are interpolated as 

𝑿 = 𝐍𝑒 𝐗𝑒 ,  and 𝒙 = 𝐍𝑒 𝐱𝑒 , (127)

where 𝐗𝑒 and 𝐱𝑒 are the initial and current positions of control points, respectively. The array 

𝐍𝑒(𝜉𝛼) ∶= [𝑁1𝟏, 𝑁2𝟏, … , 𝑁𝑛e𝟏] (128)

contains the isogeometric shape functions (Borden et al., 2011) for each control point, and 𝑛e is the number of control points defining 
the element. In Eq. (128), 𝟏 ∶= 𝑰 +𝑵 ⊗𝑵 = 𝒂𝛼 ⊗ 𝒂𝛼 + 𝒏⊗ 𝒏 denotes the 3D identity tensor.

From Eq. (127) follows the interpolation of other kinematical quantities, such as 
𝛿𝒙 = 𝐍𝑒 𝛿𝐱𝑒 ,

𝒂𝛼 = 𝐍𝑒,𝛼 𝐱𝑒 ,

𝛿𝒂𝛼 = 𝐍𝑒,𝛼 𝛿𝐱𝑒 ,

𝒂𝛼,𝛽 = 𝐍𝑒,𝛼𝛽 𝐱𝑒 ,

𝒂𝛼;𝛽 = 𝐍𝑒;𝛼𝛽 𝐱𝑒 ,

𝛿𝒄̄,𝛼 = 𝐂𝑒,𝛼 𝛿𝐱𝑒 .

(129)

Here, we have defined the elemental arrays 
𝐍𝑒,𝛼 ∶= [𝑁1,𝛼𝟏, 𝑁2,𝛼𝟏, … , 𝑁𝑛e ,𝛼𝟏] ,

𝐍𝑒,𝛼𝛽 ∶= [𝑁1,𝛼𝛽𝟏, 𝑁2,𝛼𝛽𝟏, … , 𝑁𝑛e ,𝛼𝛽𝟏] ,

𝐍𝑒;𝛼𝛽 ∶= 𝐍,𝛼𝛽 − 𝛤 𝛾
𝛼𝛽 𝐍,𝛾 ,

𝐂𝑒,𝛼 ∶=
[

𝛾
𝛼 (𝟏 − 2𝓵 ⊗ 𝓵) − 𝛾

𝛼 𝓵 ⊗ 𝒄 − 𝛾
𝛼 𝓵 ⊗ 𝒏

]

𝐍,𝛾 − 𝓁𝛾 (𝓵 ⊗ 𝒄)𝐍,𝛾𝛼 ,

(130)

where the scalars 𝛾
𝛼 , 𝛾

𝛼 and  𝛾
𝛼  are defined as 

𝛾
𝛼 ∶= −𝓁𝛾 (𝜆−1 𝑐𝛽 𝐿

𝛽
,𝛼 + 𝓁𝛽 𝛤 c

𝛽𝛼
)

,

𝛾
𝛼 ∶= 𝜆−1 𝐿𝛾

,𝛼 − 𝓁𝛾 (𝜆−1 𝓁𝛽 𝐿
𝛽
,𝛼 + 𝓁𝛽 𝛤 𝓁

𝛽𝛼
)

,
 𝛾

𝛼 ∶= 𝑐𝛾 𝓁𝛽 𝑏𝛽𝛼 .

(131)

Inserting (129) into (43) gives 
𝛿𝑎𝛼𝛽 = 𝛿𝐱T𝑒

(

𝐍T
𝑒,𝛼 𝐍𝑒,𝛽 + 𝐍T

𝑒,𝛽 𝐍𝑒,𝛼
)

𝐱𝑒 ,

𝛿𝑏𝛼𝛽 = 𝛿𝐱T𝑒 𝐍
T
𝑒;𝛼𝛽 𝒏 ,

̄ 𝛼𝛽 ̄ T 𝛾T ̄ 𝛼𝛽

(132)
𝑀0 𝛿𝑏𝛼𝛽 = 𝛿𝐱𝑒 𝐂𝑒;𝛼𝛽 𝒂𝛾 𝑀0 ,
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where5

𝐂𝛾
𝑒;𝛼𝛽 ∶= −𝑐𝛾;𝛽 𝐍𝑒,𝛼 − 𝛿𝛾𝛼𝐂𝑒,𝛽 . (133)

B.2. FE force vectors

The internal FE force vectors are obtained by inserting Eqs. (129) and (132) into Eq. (53). This gives 
𝐺𝑒
int = 𝛿𝐱T𝑒

(

𝐟𝑒int𝜏 + 𝐟𝑒int𝑀 + 𝐟𝑒
int𝑀̄

)

, (134)

where 

𝐟𝑒int𝜏 ∶= ∫𝛺𝑒
0

𝜏𝛼𝛽 𝐍T
𝑒,𝛼 𝒂𝛽 d𝐴 ,

𝐟𝑒int𝑀 ∶= ∫𝛺𝑒
0

𝑀𝛼𝛽
0 𝐍T

𝑒;𝛼𝛽 𝒏 d𝐴 ,

𝐟𝑒
int𝑀̄

∶= ∫𝛺𝑒
0

𝑀̄𝛼𝛽
0 𝐂𝛾T

𝑒;𝛼𝛽 𝒂𝛾 d𝐴

(135)

denote the internal FE force vectors associated with membrane stretching, out-of-plane bending, and in-plane bending, respectively. 
Similarly, discretization of the external virtual work in Eq. (54) gives 

𝐺𝑒
ext = 𝛿𝐱T𝑒

(

𝐟𝑒ext0 + 𝐟𝑒ext𝑝 + 𝐟𝑒ext𝑡 + 𝐟𝑒ext𝑚 + 𝐟𝑒ext𝑚̄
)

+ 𝛿𝐱𝐴 ⋅ 𝐟𝐴ext𝑚𝜈
, (136)

with the external FE forces 

𝐟𝑒ext0 ∶= ∫𝛺𝑒
0

𝐍T
𝑒 𝒇0 d𝐴 ,

𝐟𝑒ext𝑝 ∶= ∫𝛺𝑒
𝐍T
𝑒 𝑝𝒏 d𝑎 ,

𝐟𝑒ext𝑡 ∶= ∫𝜕𝑡𝛺𝑒
𝐍T
𝑒 𝒕 d𝑠 ,

𝐟𝑒ext𝑚𝜏
∶= −∫𝜕𝑚𝜏𝛺𝑒

𝐍T
𝑒,𝛼 𝜈

𝛼 𝑚𝜏 𝒏 d𝑠 ,

𝐟𝑒ext𝑚̄ ∶= ∫𝜕𝑚̄𝛺𝑒
𝐍T
𝑒,𝛼 𝓁

𝛼 𝑚̄ 𝒄 d𝑠 ,

𝐟𝐴ext𝑚𝜈
∶= 𝑚𝜈 𝒏𝐴 .

(137)

Here, the external body force 𝒇 is assumed to consist of a dead load 𝒇0 and an external surface pressure 𝑝, as 𝒇 = 𝒇0∕𝐽 + 𝑝𝒏 .

Remark B.1.  The consistent tangent matrices resulting from the linearization of the virtual work can be found in the literature. For 
example, the tangents of the forces in (135) and (137) can be found in Duong et al. (2022) – see c.f. Eq. (60–64) and cf. Eq. (87) 
therein, respectively. Pressure loads, such as hydrostatic pressure, are discussed in Sauer et al. (2014), while Duong et al. (2024) 
discuss external corner forces.

Data availability

Data will be made available on request.
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