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Abstract
This work presents a generalized Kirchhoff–Love shell theory that can explicitly capture fiber-induced anisotropy not
only in stretching and out-of-plane bending, but also in in-plane bending. This setup is particularly suitable for heteroge-
neous and fibrous materials such as textiles, biomaterials, composites and pantographic structures. The presented the-
ory is a direct extension of classical Kirchhoff–Love shell theory to incorporate the in-plane bending resistance of fibers.
It also extends existing second-gradient Kirchhoff–Love shell theory for initially straight fibers to initially curved fibers.
To describe the additional kinematics of multiple fiber families, a so-called in-plane curvature tensor—which is symmetric
and of second order—is proposed. The effective stress tensor and the in-plane and out-of-plane moment tensors are
then identified from the mechanical power balance. These tensors are all second order and symmetric in general.
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Constitutive equations for hyperelastic materials are derived from different expressions of the mechanical power bal-
ance. The weak form is also presented as it is required for computational shell formulations based on rotation-free finite
element discretizations. The proposed theory is illustrated by several analytical examples.
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Anisotropic bending, fibrous composites, in-plane bending, Kirchhoff–Love shells, nonlinear gradient theory, textiles

1. Introduction

Fiber-reinforced composites have become an important material in the sports, automotive, marine, and
aerospace industry owing to their high-specific stiffness-to-weight ratio, which allows for lightweight
designs. To produce such composites, fabric sheets are formed by warp and weft yarns (i.e. in a bundle
of fibers) loosely linked together by different technologies, resulting, for example, in woven fabrics or
non-crimp fabrics. The fabrics are then draped (molded) into desired shapes before injecting liquid resin
(adhesives). After the resin solidifies, the fibers are strongly bonded together in the final product.

In this work, we are interested in continuum models for fabric sheets both with and without matrix
material. Such models are required for the description and simulation of fiber-reinforced shell structures
and draping processes. Geometrically, fabric structures can be modeled by a surface with embedded
curves representing yarns. From the microscopic point of view, the resistance (in-plane and out-of-plane)
of fabrics results from the deformation of yarns and their interaction, that is, their linkage and contact.
In particular, axial stretching of fibers is associated with anisotropic membrane resistance, and the link-
age between yarns offers shear resistance. Twisting of a yarn can be assumed to be fully associated with
the second fundamental form of the yarn-embedding surface [1]. Bending of a yarn can have both in-
plane and out-of-plane components and is characterized by the corresponding curvatures. The out-of-
plane curvature is associated with the second fundamental form, while the in-plane curvature is associ-
ated with the gradient of the surface metric.

Fabric sheets can be modeled as thin shells from the macroscopic point of view, and Kirchhoff–Love
kinematics together with plane stress conditions are usually adopted. Membrane deformation is charac-
terized by stretching and shearing, while out-of-plane deformation is characterized by bending and
twisting. In Kirchhoff–Love shell models, two kinematical quantities—the surface metric and the second
fundamental form—are used for the two deformation types. In the literature, the general case of arbitra-
rily large deformations and nonlinear material behavior of shells has been treated extensively. See, for
example, the texts of Naghdi [2], Pietraszkiewicz [3], Libai and Simmonds [4] and references therein.
Here, we refer to this nonlinear case as classical Kirchhoff–Love shell theory. Note that although
Kirchhoff–Love shell theory is mostly discussed for solids, its application can also be extended to liquid
shells [5]. The incorporation of material anisotropy in classical Kirchhoff–Love shells due to embedded
fibers—for both stretching and out-of-plane bending—is straightforward, see, for example, the works
by Tepole et al. [6] and Wu et al. [7] and references therein. As shown by Roohbakhshan and Sauer [8],
classical Kirchhoff–Love shell theory also admits complex anisotropic bending models, for example,
due to fibers not located at the mid-surface.

While classical Kirchhoff–Love shell theory can also be regarded as a special case of Cosserat theory
[9],1 it has its own development history and has the advantage of simplicity and intuitiveness when fol-
lowing its argument structure. Therefore, it facilitates building corresponding computational as well as
physically based constitutive models. This motivated Sauer and Duong [10] to provide a unified formula-
tion for both liquid and solid shells within the framework of classical Kirchhoff–Love shell theory. Their
work aimed at providing a concise, yet general theoretical framework for corresponding computational
rotation-free shell formulations [11,12].

It should be noted that most existing shell models, including classical Kirchhoff–Love shell theory,
focus on out-of-plane bending, while the in-plane response is still based on the classical Cauchy conti-
nuum. That is, one assumes that there is no moment (or stress couple) causing in-plane bending at a
material point. This assumption is usually sufficient when only the overall material behavior is of inter-
est, as, for example, in the draping simulations of Khiêm et al. [13]. However, it fails to capture defor-
mations governed by in-plane fiber bending, which are important for obtaining accurate and convergent
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numerical results. An example of these are the localized shear bands [14,15] in the bias-extension test. In
this case, simulations with finite element shell models based on the in-plane Cauchy continuum will fail
to converge to a finite width of the shear band under mesh refinement. Another example is the asym-
metric deformation of woven fabrics with different in-plane fiber bending stiffness for different fiber
families [16,17].

Similar effects of the in-plane bending stiffness can also be found in pantographic structures [18–20]
and fibrous composites, such as biological tissues [21]. Thus, a more general model that considers the in-
plane bending response is required for fabrics, fibrous composites, and pantographic structures.

The first theoretical work considering in-plane bending was presented by Wang and Pipkin [22,23] to
model cloth and cable networks. Their theory is a special form of finite-deformation fibrous plate theory
with inextensible fibers that contain bending couples that are proportional to their curvature. Since in-
plane bending is related to the in-plane components of the second displacement gradient, it can be cap-
tured by more general continuum theories, such as Cosserat theories [24–26] and gradient theories [27–
30]. For three-dimensional (3D) fiber-reinforced solids, Spencer and Soldatos [31] introduced explicitly
the bending resistance of embedded fibers in the context of nonlinear second-gradient theory. A compu-
tational model based on Spencer and Soldatos [31] has been developed by Asmanoglo and Menzel [32].
Starting from Cosserat theory, Steigmann [33] derives a fiber-reinforced solid model that includes fiber
bending, twisting, and stretching.

Concerned with in-plane bending for thin structures, Steigmann and Dell’Isola [1] presented a conti-
nuum model for woven fabric sheets modeled as orthotropic plates, which treats fibers as Kirchhoff–
Love rods that are distributed continuously across the sheet. Although the concept of stress couples from
Cosserat theory is used, the model of Steigmann and Dell’Isola [1] can be categorized as second-gradient
theory, since their material model depends on the first and second displacement gradients. Following
this, Steigmann [34] further developed a second-gradient shell model that explicitly includes general fiber
bending, twisting, and stretching. There, a concise set of equilibrium equations, boundary conditions,
and material symmetries are discussed. However, to the best of our knowledge, the theory has not yet
been fully formulated for the general case of more than two fiber families with initially curved fibers.

Focusing on Kirchhoff–Love shells, Balobanov et al. [35] presented a new shell model derived from
the second displacement gradient theory of Mindlin [28]. A corresponding computational formulation
was also discussed in Balobanov et al. [35]. However, explicit in-plane fiber bending is not considered
and the weak form requires at least C2-continuity of the geometry. Recently, Schulte et al. [36] applied
the second-gradient theory of Steigmann [34] directly to Kirchhoff–Love shells and presented the first
rotation-free computational shell formulation accounting for in-plane bending using C1-continuous
discretization.

In this contribution, we propose a general Kirchhoff–Love shell theory that explicitly incorporates
fiber bending (both in-plane and out-of-plane), geodesic fiber twisting, and stretching. Unlike the exist-
ing approaches that derive the Kirchhoff–Love shell from a more general theory, here our theory is con-
structed directly from Kirchhoff–Love thin shell assumptions without introducing extra degrees of
freedom, such as independent directors or micro-displacements. It is shown that the in-plane fiber bend-
ing contribution can be formulated analogously to its out-of-plane counterpart. All the definitions of
stresses and moments, and the equilibrium equations thus follow in the same manner as in classical
Kirchhoff–Love shell theory. Unlike the second-gradient theory of Steigmann [34], the stress couple (or
double force) in our theory is fully equivalent to the bending moment under Kirchhoff–Love
assumptions.

Our approach provides several advantages over existing second-gradient shell theories, such as those
of Steigmann and Dell’Isola [1] and Steigmann [34]. In particular, it allows us to identify work-
conjugated pairs of symmetric stress and symmetric strain measures for all terms, including a new in-
plane stress couple and corresponding in-plane curvature tensor. Instead of using third-order tensors
for in-plane bending, as is done in current second-gradient shell theories, the stress and strain tensors in
our theory are all of second order. Their invariants thus can be easily identified and geometrically inter-
preted, which is advantageous for constructing constitutive models. Furthermore, our theory admits a
wide range of constitutive models for straight as well as initially curved fibers without limitation on the
number of fiber families and the angles between them.
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Besides, the presented work also aims at providing a general formulation that is suitable for a straight-
forward isogeometric finite element implementation [37]. Since the in-plane bending term in our theory
is analogous to the out-of-plane bending term, existing finite element formulations for out-of-plane
bending can be easily extended to in-plane bending. As for existing formulations, the corresponding
weak form requires at least C1-continuous surface discretizations in the framework of rotation-free finite
element formulations. For the purpose of verifying finite element implementations, we further provide
the analytical solution for several nonlinear benchmark examples. Here, we are restricting ourselves to
hyperelastic material models for the fabrics. Inelastic behavior, for example, due to inter- and intra-ply
fiber sliding, will be considered in future work.

In summary, our approach contains the following novelties and merits compared to earlier works:

� A concise shell theory with in-plane bending that is a direct extension of classical Kirchhoff–Love
thin shell theory;

� A general theory that can admit a wide range of constitutive models for straight or initially curved
fibers with no limitation on the number of fiber families and the angles between them;

� The introduction of a new symmetric in-plane curvature tensor;
� The identification of work-conjugated pairs of symmetric stress and symmetric strain measures;
� The weak form as it is required for rotation-free finite element formulations;
� The analytical solution for several nonlinear benchmark examples that include different modes of

fiber deformation and are useful for verifying computational formulations.

The following presentation is structured as follows: Section 2 summarizes the kinematics of thin shells
with embedded curves and introduces the in-plane curvature tensor to capture the in-plane curvature of
fibers. With this, the balance laws are presented in section 3. Different choices of work-conjugated pairs
are then discussed in section 4. Section 5 gives some examples of constitutive models for the proposed
theory. Section 6 then presents the weak form. Several analytical benchmark examples supporting the
proposed theory are presented in section 7. The article is concluded by section 8.

2. Kinematics for thin shells with embedded curves

In this section, nonlinear Kirchhoff–Love shell kinematics [2] is extended to deforming surfaces with
embedded curves. The extended kinematics allows to capture not only stretching and out-of-plane bend-
ing, but also in-plane bending of the embedded curves. Fiber-induced anisotropy is allowed in all these
modes of deformation. The description is presented fully in the general framework of curvilinear coordi-
nates. The variation of different kinematical quantities can be found in Appendix 2.

2.1. Geometric description

The mid-surface of a thin shell at time t is modeled in three-dimensional space as a two-dimensional
(2D) manifold, denoted by S. In curvilinear coordinates, S is described by the one-to-one mapping of a
point (j1 , j2) in parameter space P to the point x 2 S as

x= x (ja, t) , with a = 1, 2 : ð1Þ

The (covariant) tangent vectors along the convective coordinate curves ja at any point x 2 S can be
defined by

aa :¼ ∂x

∂ja = x,a , ð2Þ

where the comma denotes the parametric derivative. The unit normal vector can then be defined by

n :¼ a1 × a2

k a1 × a2 k
: ð3Þ
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From the tangent vectors aa in equation (2), the so-called dual tangent vectors, denoted by aa, are
defined by

aa � ab = da
b , ð4Þ

with da
b being the Kronecker delta. The covariant and dual tangent vectors are related to each other

by2aa = aab a
b and aa = aab ab, where

aab :¼ aa � ab , aab :¼ aa � ab ð5Þ

denote the co- and contravariant surface metric, respectively.
Furthermore, in order to model fibrous thin shells, a fiber (or a bundle of fibers) is geometrically rep-

resented by a curve C defined by the points x= xc(s, t), with ds = kdxk, embedded in surface S (see
Figure 1). The distribution of fibers is considered continuous such that a homogenized shell theory is
obtained. The normalized tangent vector of C , defined by

‘ :¼ ∂xc
∂s

= ‘aa
a = ‘aaa , ð6Þ

represents the fiber direction at location s. Here, ‘a :¼ ‘ � aa and ‘a :¼ ‘ � aa denote the covariant and
contravariant components of vector ‘ in the convective coordinate system, respectively. Assuming that
the deformation of fibers satisfies Euler–Bernoulli kinematics, the in-plane director for the fiber C can
be defined by

c :¼ n× ‘= caa
a = caaa , ð7Þ

where, ca :¼ c � aa and ca :¼ c � aa are the covariant and contravariant components of vector c, respec-
tively. With equations (6) and (7), bases fa1, a2, ng and fa1, a2, ng can be represented by the local
Cartesian basis f‘, c, ng as

aa = ‘a ‘+ ca c , and aa = ‘a ‘+ ca c : ð8Þ

The surface identity tensor i and the full identity 1 in R
3 can then be written as

i :¼ aa � aa = aa � aa = c� c+ ‘� ‘ , ð9Þ

and

1= i+ n� n : ð10Þ

2.2. Surface curvature

The curvature of surface S can be described by the symmetric second-order tensor

Figure 1. A fiber bundle represented by curve C is embedded in shell surface S. The red planes illustrate tangent planes.
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b :¼ baba
a� ab = bb

aa
a� ab = babaa � ab : ð11Þ

The components bab can be computed from the derivative of surface normal n as

bab :¼ �n,a � ab , ð12Þ

which leads to Weingarten’s formula

n,a = � baba
b : ð13Þ

Alternatively, components bab can be extracted from the derivatives of tangent vectors aa as

bab :¼ n � aa,b = n � aa;b , ð14Þ

where

aa,b :¼ ∂aa

∂jb
= x,ab , and aa;b :¼ (n� n)aa,b = babn ð15Þ

are the parametric and covariant derivative of aa, respectively.
3

Unlike n,a, which always lies in the tangent plane, aa,b can have both tangential and normal compo-
nents. With respect to basis fa1, a2, ng the vectors aa,b can be expressed as

aa,b = G
g
abag + babn , ð16Þ

where the tangential components

G
g
ab :¼ aa,b � ag ð17Þ

are known as the surface Christoffel symbols. They are symmetric in indices a and b. Using transforma-
tion (8.2), they can be expressed as

G
g
ab = cg Gc

ab + ‘g G‘ab , ð18Þ

where we have defined

Gc
ab :¼ c � aa,b = cg G

g
ab ,

G‘ab :¼ ‘ � aa,b = ‘g G
g
ab :

ð19Þ

The curvature tensor b defined in equation (11) has the two invariants

H :¼ 1

2
trsb=

1

2
ba

a , and k= detsb :¼ det½bb
a� : ð20Þ

They correspond to the mean and Gaussian curvatures, respectively. The curvature tensor b fully
describes the out-of-plane curvature of surface S. Thus, we can extract from it the curvature of S along
any direction. For example,

kn :¼ b : ‘� ‘= bab ‘
ab , with ‘ab :¼ ‘a ‘b , ð21Þ

represents the curvature of S in direction ‘. Hence, kn also expresses the so-called normal curvature of
the curve C embedded in S. Furthermore,

tg :¼ b : ‘� c= b : c� ‘= bab ‘
a cb , ð22Þ

denotes the so-called geodesic torsion of C.
The mentioned invariants H , k, kn, and tg are included in Table 1. They are useful in constructing

material models for (both isotropic and anisotropic) out-of-plane bending.
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2.3. Curvature of embedded curves

We aim at capturing any geodesic torsion, normal and in-plane curvature of an embedded curve C 2 S.
As seen in equations (21) and (22), the normal curvature and geodesic torsion of C can already be
described via the out-of-plane curvature tensor (11). The in-plane curvature, on the other hand, does
not follow from tensor b. Instead, it can be extracted from the so-called curvature vector of C that is
defined by the directional derivative of ‘ in direction ‘, that is,

‘, s :¼ ∂‘

∂s
= (rs ‘)‘= ‘a ‘,a : ð23Þ

Here and henceforth, rs� :¼ �,a � aa denotes the surface gradient operator.4 Following equation (6)
and considering equations (4) and (16), derivative ‘,a can be expressed as

‘,a = ‘b
;aab + ‘b bban = ‘b;a ab + ‘b bban , ð24Þ

where the semicolon denotes the covariant derivatives

‘b
;a :¼ ‘,a � ab = ‘b

,a + ‘g Gb
ga ,

‘b;a :¼ ‘,a � ab = ‘b,a � ‘g G
g
ba :

ð25Þ

The magnitude k‘, sk=: kp is called the principal curvature of C ,5 and the direction ‘, s=kp =: np is
referred to as the principal normal to C . Note that np is normal to the curve but not necessarily normal
to the surface S.

In principle, vector ‘, s can be expressed in any basis, which then induces different curvatures from the
corresponding components. Here, we express ‘, s in the basis f‘, c, ng, that is,

‘, s = kpnp = kg c+ knn , ð26Þ

where

Table 1. Various curvature measures of the surface S and of a fiber family C embedded in S.

Invariant Tensor notation Index notation Geometrical meaning

Out-of-plane and in-plane curvature tensors: b = bab aa � ab and �b = �bab aa � ab

H :¼ 1
2 trs b 1

2 ba
a

Mean curvature of S
k :¼ dets b det ½bb

a� Gaussian curvature of S
kn :¼ b : ‘� ‘= ‘, s � n bab ‘

ab Normal curvature of C 2 S
tg :¼ b : ‘� c = b : c� ‘ bab ‘

a cb Geodesic torsion of C 2 S
kg :¼ �b : ‘� ‘ �bab ‘

ab Geodesic curvature of C 2 S
kp :¼ k ‘, s k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

g + k2
n

q
Principal curvature of C 2 S

Measures for the change in normal curvature kn of C 2 S
kn :¼ b : ‘� ‘ � b0 : L� L kn � k0

n
Absolute change

kn :¼ b : l‘� ‘ � b0 : L� L knl� k0
n

Stretch-excluded change
Kn :¼ K : L� L kn l2 � k0

n
Nominal change

Measures for the change in geodesic torsion tg of C 2 S
tg :¼ b : ‘� c� b0 : L� c0 tg � t0

g
Absolute change

tg :¼ b : l‘� c� b0 : L� c0 tg l� t0
g

Stretch-excluded change

Tg :¼ K : L� c0 bab ca
0 Lb � t0

g
Nominal change

Measures for the change in geodesic curvature kg of C 2 S
kg :¼ �b : ‘� ‘� �b0 : L� L kg � k0

g
Absolute change

kg :¼ �b : l‘� ‘� �b0 : L� L kg l� k0
g

Stretch-excluded change

Kg :¼ �K : L� L kg l2 � k0
g

Nominal change

Note that the magnitude of these measures is invariant, but their sign (except for k and kp) depends on the direction of directors n and/or c. All

these measures can be shown to be frame invariant under superimposed rigid body motions of S, see Appendix 3.
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kn :¼ n � ‘, s , ð27Þ

denotes the normal curvature of C . By inserting equations (23) and (24), kn can be shown to be identical
to equation (21). On the other hand,

kg :¼ c � ‘, s ð28Þ

is the in-plane (i.e. geodesic) curvature of C . It can be computed by inserting equations (23) and (24) into
equation (28), giving

kg = ‘a;b ca ‘b = ‘a
;b ca ‘

b = ( �rs‘) : c� ‘ , ð29Þ

where

�rs‘ :¼ irs‘= ‘a;ba
a � ab = ‘a

;baa � ab ð30Þ

denotes the projected surface gradient of ‘.6

Remark 2.1. From equation (26) follows

k2
p = k2

g + k2
n : ð31Þ

Remark 2.2. The three scalars kn, kg, and tg are associated with the three bending modes of C 2 S: nor-
mal (i.e. out-of-plane) bending, geodesic (i.e. in-plane) bending, and geodesic torsion, respectively.

2.4. Definition of the in-plane curvature tensor

In principle, we can use the second-order tensor �rs‘ to characterize the in-plane curvature as the coun-
terpart to tensor b from equation (11), which characterizes the out-of-plane curvature. Tensor �rs‘ is,
however, unsymmetric. We thus construct an alternative tensor by rewriting equation (29) and using
identity c, s � ‘= � c � ‘, s that follows from c � ‘= 0, so that

kg :¼ �‘b
a ca

;b = � ‘ab ca;b = �b : ‘� ‘, ð32Þ

where

cb
;a :¼ cb

,a + cg Gb
ga , and cb;a :¼ cb,a � cg G

g
ba , ð33Þ

similar to equation (25). Here, we have defined the so-called in-plane curvature tensor of C as

�b :¼ � 1
2

�rsc+ ( �rsc)
T

h i
= � 1

2
(ca;b + cb;a)aa � ab = �bab aa � ab : ð34Þ

Components �bab thus can be computed from

�bab = �b : aa � ab = � 1
2

(ca;b + cb;a) = � 1
2

(c,a � ab + c,b � aa) , ð35Þ

where

c,a = c;a = cbab;a + cb
;aab

= cba
b
;a + cb;aa

b

= bab cbn� cb ‘b;a ‘ :

ð36Þ

The last equation is obtained from identities c � n= 0, ‘ � n= 0, and equations (24) and (13). The quan-
tities �bab, kg, cb;a, and ‘b;a can be shown to be frame invariant under superimposed rigid body motions
of S, see Appendix 3.
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Remark 2.3. Since vector ‘ is normalized, we have the identity

‘ � ‘,a = ‘b ‘
b
;a = ‘b ‘b;a = 0, ð37Þ

due to equation (24). Furthermore, equating equations (29) and (32) gives the relation

‘b cb;a = � cb ‘b;a, ð38Þ

and from equation (36), we find

cb;a = ab � c,a = � cg ‘b ‘g;a

cb
;a = ab � c,a = � cg ‘b ‘g;a :

ð39Þ

2.5. Shell deformation

To characterize the shell deformation, a reference configuration S0 is chosen. The tangent vectors Aa,
the normal vector N, the surface metric Aab, the out-of-plane curvature tensor b0 :¼ BabA

a � Ab are
defined on S0 similar to equations (2), (3), (5), and (11), respectively.The fiber embedded within the shell
surface is denoted by C0 in the reference configuration. Also, the normalized fiber direction
L= LaAa = LaA

a, the in-plane fiber director c0 = c0
aA

a, and the in-plane curvature tensor
�b0 :¼ �BabA

a � Ab = � 1
2

(c0
a;b + c0

b;a)Aa � Ab are defined similar to equations (6), (7), and (34),
respectively.

Having aab, bab, and �bab the deformation of a shell can now be characterized by the following three
tensors:

1. The surface deformation gradient:

F :¼ aa � Aa : ð40Þ

This tensor can be used to map the reference fiber direction L to ‘ as

l‘=FL= Laaa , ð41Þ

where l is the fiber stretch. Comparing equations (6) and (41) gives

‘a = La l�1 : ð42Þ

From (25) and (42) follows that

‘a;b = L̂a,b � ‘ag (L̂g
,b + ‘d G

g
db) + ‘g aa � ag,b , ð43Þ

where

L̂a
,b :¼ l�1 La

,b , and L̂a,b :¼ aag L̂
g
,b : ð44Þ

Inserting (43) into equation (39) gives

cb;a =�‘b (cg L̂g,a + ‘g Gc
ga) ,

cb
;a =�‘b (cg L̂g,a + ‘g Gc

ga) :
ð45Þ

With the surface deformation gradient, the right Cauchy–Green surface tensor is defined by
C :¼ FTF= aabA

a � Ab. Table 2 lists some invariants induced by C that can be useful for constructing
material models. The Green–Lagrange surface strain tensor, which represents the change of the surface
metric, is then defined by

Duong et al. 9
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E :¼ 1
2

(C� I) = 1
2

(aab � Aab)Aa � Ab = Eab Aa � Ab : ð46Þ

2. The change of the out-of-plane curvature tensor:

K :¼ FT bF� b0 = (bab � Bab)Aa � Ab = KabA
a � Ab : ð47Þ

3. The change of the in-plane curvature tensor:

�K :¼ FT �bF� �b0 = (�bab � �Bab)Aa � Ab = �KabA
a � Ab : ð48Þ

Here, �bab can be computed from equation (35) taking into account equation (45). This gives

�bab = 1
2
‘g(‘a Gc

gb + ‘b Gc
ga) + 1

2
cg (‘a L̂g,b + ‘b L̂g,a) : ð49Þ

Accordingly, the geodesic curvature follows from equation (32) as

kg :¼ �bab ‘
ab = ‘ab G

g
ab cg + l�1 ca ‘

b La
,b : ð50Þ

Furthermore, using relation La
,b =L,b � Aa � Lg �Ga

gb, similar to equation (25.1)—where �Gg
ab :¼ Ag � Aa,b

denote the Christoffel symbols of the initial configuration—equation (50) can be rewritten as

kg = ‘ab cg S
g
ab|fflfflfflfflffl{zfflfflfflfflffl}

=:kG
g

+ l�1 ca ‘
b La

;b|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
=:kLg

,
ð51Þ

where S
g
ab :¼ G

g
ab � �Gg

ab and La
;b :¼ Aa � L,b.

Remark 2.4. As seen in equation (51), the geodesic curvature involves the change not only in the
Christoffel symbols (term kG

g ), but also the gradient of L (term kLg ). For initially straight fiber, the geo-
desic curvature becomes

kg :¼ kG
g = ‘ab cg S

g
ab ð52Þ

as kLg vanishes. But for initially curved fibers, where kLg 6¼ 0, expression (51) should be used. This point

will be demonstrated in section 7.1.

Remark 2.5. To measure the change in the curvatures, one can use the invariants

Table 2. Various invariants of the (in-plane) right surface Cauchy–Green tensor C = aabAa � Ab, induced by multiple fiber families
Ci (i = 1, :::, nf ). Here, Lab

i : = La
i Lb

i (no sum over i).

Invariant Tensor notation Index notation Geometrical relevance

I1 : = trs C Aab aab Surface shearing of S
I2 = J2 : = detsC = (detsF)2 det½aab�= det½Aab� Surface area change of S
Li = l2

i : = C : Li � Li (no sum over i) aab Lab
i

Stretching of Ci

gij : = C : Li � Lj aab La
i Lb

j
Nominal angle between Ci & Cj, i 6¼ j

ĝij : = ‘1 � ‘2 aab ‘
a
i ‘

b
j

Absolute angle between Ci & Cj, i 6¼ j

10 Mathematics and Mechanics of Solids 00(0)
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kn :¼ b : ‘� ‘� b0 : L� L= kn � k0
n ,

kg :¼ �b : ‘� ‘� �b0 : L� L= kg � k0
g ,

tg :¼ b : ‘� c� b0 : L� c0 = tg � t0
g ,

ð53Þ

called the absolute change in the normal curvature, geodesic curvature, and geodesic torsion, respec-
tively. Here, �0 denotes the corresponding quantities in the initial configuration.

Remark 2.6. However, the curvature changes (equation (53)) are not ideal for constitutive models, as
they can lead to unphysical stress couples that respond to fiber stretching even when there is no bend-
ing. An example is pure dilatation, for example, due to thermal expansion or hydrostatic stress states as
is discussed in example 7.4. To exclude fiber stretching, we define the invariants

kn :¼ b : l‘� ‘� b0 : L� L= knl� k0
n ,

kg :¼ �b : l‘� ‘� �b0 : L� L= kgl� k0
g ,

tg :¼ b : l‘� c� b0 : L� c0 = tgl� t0
g ,

ð54Þ

called the stretch-excluded change in the normal curvature, geodesic curvature, and geodesic torsion,
respectively.

Remark 2.7. Both curvature changes (53) and (54) can cause fiber tension apart from fiber bending.
Therefore, one can use the so-called nominal change in the normal curvature, geodesic curvature, and
geodesic torsion, defined by

Kn :¼ K : L� L= knl2 � k0
n ,

Kg :¼ �K : L� L= kgl2 � k0
g ,

Tg :¼ K : L� c0 = bab ca
0 Lb � t0

g ,

ð55Þ

where K and �K are defined by equations (47) and (48), respectively. These invariants can also be found,
for example, in the works by Steigmann and Dell’Isola [1] and Schulte et al. [36]. Since the measures
(equation (55)) do not cause an axial tension in the fibers, their material tangents simplify significantly.
Note however that, like equation (53), they can cause unphysical stress couples responding to fiber
stretching.

Remark 2.8. The mentioned curvature measures (equations (53), (54), and (55)) are also listed in Table
1. It should be noted that all these measures are equivalent for inextensible fibers, that is, l = 1, which
is usually assumed for textile composites.

3. Balance laws

In this section, we discuss the balance laws for fibrous thin shells taking into account not only in-
plane stretching and out-of-plane bending, but also in-plane bending. Like in classical Kirchhoff–
Love shell theory, we directly postulate linear and angular momentum balance for our generalized
Kirchhoff–Love shell with in-plane bending. Although the presented theory is not derived from gen-
eral Cosserat theory, we show in Appendix 4 that our set of balance equations is consistent with that
of Cosserat shell theory.

We consider that the out-of-plane shear energy and the out-of-plane thickness strain energy are negli-
gible. The first condition amounts to the Kirchhoff–Love kinematical assumption of zero out-of-plane
shear strains. The second condition is satisfied here by the plane stress assumption (i.e. zero thickness
stress), which is commonly used for thin shells. It still allows for thickness changes, for example, due to
large membrane stretching. Note, however, that these assumptions on the shear strains and thickness
stress are mathematically independent of the thickness, so that the governing equations can be written

Duong et al. 11
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directly in surface form without the need of a thickness variable. Instead, the influence of the thickness
appears in the constitutive equations [2,5,10,11].

In the following, we first discuss in detail the theory with one embedded fiber family C. The extension
to multiple fiber families is straightforward and will be discussed subsequently.

In order to define internal stresses and internal moment tensors, the shell S is virtually cut into two
parts at position x as depicted in Figure 2. On the parametrized cut, denoted by I(s), we define the unit
tangent vector t :¼ ∂x=∂s and the unit normal n := t × n= naa

a at x.

3.1. Stress tensor

This section discusses Cauchy stress tensor s for thin shells under plane-stress conditions. The influence
of angular momentum balance on the stress tensor is then discussed in section 3.4.

The traction vector T appearing on the cut can have arbitrary direction (see Figure 2(b)), but we can
generally express it with respect to the basis fa1, a2, ng as

T= Taaa + T3n , ð56Þ

where Ta and T 3 are the contravariant components of T. This traction induces the Cauchy stress tensor
s . Following Cauchy’s theorem, the components of s are balanced by the traction T on an infinitesi-
mal triangular element, as shown in Figure 2(b). Under plane-stress conditions, all stresses on any cut
perpendicular to surface normal n are neglected for the (force) equilibrium of the triangular element.
That is, the components of tensor s associated with bases n� aa and n� n are considered to be zero.
This results in the asymmetry of tensor s in the form,

s = Nabaa � ab + Saaa � n , ð57Þ

Figure 2. Internal stresses and moments: (a) illustration of physical traction vector T and moment vector m̂ acting on the cut I
(red curve) through surface S with its embedded fiber C (blue curve). Both T and m̂ are general vectors in 3D space. The moment
vector m̂ can be decomposed into the component �m, causing in-plane bending, and the component m, causing out-of-plane bending
and twisting. Vectors ‘, c, n , t, and m lie in the tangent plane of S. (b) Stress and (c) moment components appearing on a triangular
element—which is in force and moment equilibrium—under the action of the traction T and moment m̂, respectively. These stress
and moment components appear on the cuts that intersect with the tangent plane (pink dash lines). Assuming plane stress
conditions, the stress and moment on any cut perpendicular to the surface normal n (gray area) are neglected for the equilibrium of
the triangular element.
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where Nab and Sa are the membrane stress and out-of-plane shear stress components of s . Accordingly,
the components of s on the cross-section perpendicular to aa are defined by

Ta :¼ sTaa = Nabab + San , ð58Þ

which is illustrated in Figure 2(b) for an infinitesimal triangular element on S. With this, we can write

s = aa � Ta : ð59Þ

Furthermore, the force equilibrium of the triangle (see Figure 2(b)) gives

T ds = (na Nab) ab ds + (na Sa) n ds =Ta nads , ð60Þ

which implies Cauchy’s formula

T= (Ta � aa) n = sT n , ð61Þ

since na = n �aa. By comparing equation (61) with equation (56), we can further write

Ta = nb Nba , T3 = na Sa : ð62Þ

Remark 3.1. Due to the presence of transverse shear components Sa, the traction vector T has both in-
plane and out-of-plane components as is seen from equation (56) and (62). As shown in section 3.4, in
general, Nab in equation (57) is not symmetric according to angular momentum balance. Instead, the
so-called effective stress—denoted by ~sab and defined in equation (93)—is symmetric according to
angular momentum balance.

Remark 3.2. The format of the Cauchy stress (57) also contains all the stresses within a cut fiber.
Indeed, consider a fiber C described by beam theory. According to beam theory, all stresses are
neglected on a cut parallel to the fiber. Accordingly, the stress tensor in the fiber C—denoted by sfib—
can be written as

sfib = s ‘� ‘+ sc ‘� c+ sn ‘� n , ð63Þ

where s, sc, and sn denote the axial stress and the two shear stresses. By inserting the basis vectors
‘= ‘aaa, and c= caaa, equation (63) becomes

sfib = Nabaa � ab + Saaa � n , ð64Þ

with

Nab = s‘ab + sc ‘
a cb ,

Sa = sn ‘
a :

ð65Þ

3.2. Generalized moment tensor

This section discusses the moment tensor m̂ for Kirchhoff–Love shells with in-plane bending. Also,
equivalent stress couple tensors m and �m are defined by introducing stress couple vectors that are equiv-
alent to the in-plane and out-of-plane bending moments.

At position x on cut I(s) (see Figure 2(c)), the bending moment vector, denoted by m̂ (with unit
moment per unit length), is allowed to have both in-plane and out-of-plane components. It can be
expressed with respect to basis ft, n, ng as

m̂ :¼ mtt + mn n + �m n , ð66Þ

where7�mn= : �m is the moment causing in-plane bending and

mt t + mn n = : m, ð67Þ
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denotes the combined moment causing out-of-plane bending and twisting.
Similar to the Cauchy stress tensor (equation (57)), all moments on a cut perpendicular to surface nor-

mal n are zero under Kirchhoff–Love assumptions. The total moment tensor m̂ induced by m̂ can thus
be expressed in the form

m̂ :¼ mabaa � ab + �maaa � n : ð68Þ

In this form, the first term mabaa � ab combines both out-of-plane bending and twisting in response to a
change in the out-of-plane curvature of S, while the second term �maaa � n is the response to a change in
the in-plane curvature of fiber C.

The components of m̂T, on the cross-section perpendicular to aa, thus read as (see Figure 2(c))

m̂
a
:¼m̂Taa = mabab + �man : ð69Þ

Here, moment vectors mabab and �man are associated with the angular velocity vector around the in-
plane axis

n× _n= (n � _aa) aa × n , ð70Þ

and the out-of-plane axis n= ‘× c= ‘aaa × c, respectively. Therefore, it is mathematically convenient to
express m̂

a
with respect to the basis fa1 × n, a2 × n, ng, that is,

m̂
a
= Mab(ab × n) + �M

ab
(ab × c)

= n×Ma + c× �M
a
,

ð71Þ

where Mab and �Mab denote the components of vectors m̂
a
in directions ab × n and ab × c, respectively.

Here, we have defined the so-called stress couple vectors for out-of-plane and in-plane bending8

Ma :¼ �Mabab , and �M
a

:¼ � �Mabab , with �Mab :¼ �ma ‘b : ð72Þ

Equation (68) thus becomes

m̂:¼Mabaa � (ab × n) + �M
ab

aa � (ab × c) : ð73Þ

Similar to equation (61), moment equilibrium of the triangle (see Figure 2(c)) results in Cauchy’s
formula

m̂= m̂
a

na = n×M+ c× �M= m̂T n , ð74Þ

where

M :¼Ma na , and �M :¼ �M
a

na ð75Þ

are referred to as the stress couple vectors associated with out-of-plane and in-plane bending, respec-
tively. By comparing equations (74) and (66), the stress couple vectors M and �M can be related to their
moment vector counterparts by

m= n×M , and �m= c× �M , with �M= � �m ‘ : ð76Þ

In line with previous works, see, for example, Sauer and Duong [10], we can also define the stress couple
tensors,8

m :¼ �Mabaa � ab , and �m :¼ � �Mabaa � ab , ð77Þ

associated with out-of-plane and in-plane bending, respectively. In view of eqution (74), we obtain the
mapping
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M= mT n , and �M= �mT n : ð78Þ

In order to relate the components of the moment vector (equation (66)) to the components of the stress
couple tensors, we can equate equations (66) and (74). This results in

mn :¼m̂ � n =m � n = Mab na tb ,
mt :¼m̂ � t =m � t = �Mab na nb ,

�m :¼m̂ � n= �m � n= �M
ab

na ‘b = �ma na ,

ð79Þ

where we have used the relations ab × n= tb n � nb t due to aa = ta t + na n .

Remark 3.3. Similar to equation (63), the moment tensor for a fiber described by beam theory—
denoted by m̂fib—can also be written in the form of equation (68), that is,

m̂fib :¼ m‘ ‘� ‘+ mc ‘� c+ �m‘� n= mabaa � ab + �maaa � n : ð80Þ

Here, m‘, mc, and �m denote twisting, out-of-plane bending, and in-plane bending moments in fiber C,
respectively, and we have identified

mab = m‘ ‘
ab + mc ‘

a cb ,
�ma = �m‘a :

ð81Þ

Remark 3.4. Furthermore, inserting �ma from equation (81) into equations (72.3) and (79.3) gives

�M
ab

= �m‘ab

�m = �m‘ � n :
ð82Þ

Therefore, we can conclude that �Mab is symmetric. Note that �m does not depend on the cut I since it is a
component of the internal moment tensor, but �m does depend on I as seen in equation (82.2). For exam-
ple, �m = 0 when the cut is parallel to the fiber, that is, when ‘ � n = 0.

3.3. Balance of linear momentum

Consider body forces f acting on an arbitrary simply-connected region R � S. The balance of linear
momentum implies that the temporal change of linear momentum is equal to the resultant of all acting
external forces. That is,

D

Dt

ð
R

r y da =

ð
R
f da +

ð
∂R

Tds , 8 2 S , ð83Þ

where y denotes the material velocity of the surface. Inserting T from equation (61), and applying the surface
divergence theorem and conservation of mass, one obtains the local form of linear momentum balance

divs sT + f= r _y , ð84Þ

where divs denotes the surface divergence operator, defined by divs� :¼ �,a � aa: Note that equation (84)
can also be written in the form [10]

Ta
;a + f= r _y , ð85Þ

since

divssT = sT
,b � ab =Ta

,a + G
b
abT

a =Ta
;a , ð86Þ

follows from equation (59).
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3.4. Balance of angular momentum

The balance of angular momentum implies that the temporal change of angular momentum is equal to
the resultant of all external moments. That is,

D

Dt

ð
R

r x×y da =

ð
R
x× f da +

ð
∂R

x×T ds +

ð
∂R

m̂ ds , ð87Þ

where m̂ includes both in-plane and out-of-plane bending moments acting on ∂R. From equations (61)
and (74), the surface divergence theorem givesð

∂R
x×Tds =

ð
R

�
aa ×Ta + x×divs sT

�
da ð88Þ

and ð
∂R

m̂ ds =

ð
R
divs m̂Tda: ð89Þ

Inserting these equations into equation (87) and applying local mass conservation givesð
R

�
aa ×Ta + divs m̂T

�
da +

ð
R
x×

�
divs sT + f� r _y

�
da = 0 : ð90Þ

The second integral in equation (90) vanishes due to equation (84). This leads to the local form of the
angular momentum balance,

aa ×Ta + divs m̂T = 0 : ð91Þ

Keeping equation (82.1) in mind, the surface divergence of tensor m̂T follows from equation (73) as

divs m̂T =
�
�Mab bg

a + �ma
;a ‘

b cg
�
ab × ag +

�
M

ba
;b + �mtg ‘

a � �mkn ca
�
aa × n , ð92Þ

where we have used aa = ‘a‘+ cac= (‘a cg � ca‘
g) ag × n. Inserting equations (92) and (58) into equa-

tion (91) then implies that the so-called effective membrane stress9

~sab :¼ Nab �Mga bb
g + �mg

;g ‘
a cb ð93Þ

is symmetric, and that the shear stress is given by

Sa = �M
ba
;b + �m (kn ca � tg ‘

a) : ð94Þ

Thus, angular momentum balance implies the symmetry of the effective stress ~sab instead of the Cauchy
stress N ab. The latter is only symmetric when there is no in-plane and out-of-plane bending resistance.

Remark 3.5. The last term in stress expression (93) relates to the in-plane shear force in the fiber, which,
in accordance with the assumed Euler-Bernoulli kinematics, follows as the derivative of the in-plane
bending moment.

3.5. Mechanical power balance

The mechanical power balance can be obtained from local momentum balance (eqation (84)). To this
end, we can write ð

R
y � (divs sT + f� r _y)da = 0 : ð95Þ

Here, the divergence term can be transformed by the identity
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y � divs sT = divs(y sT)� sT : rsy , ð96Þ

by the divergence theorem ð
R
divs(y sT) da =

ð
∂R

y � s T n ds =

ð
∂R

y � T ds , ð97Þ

and using the relation

s T : rsy = Nabab � _aa + San � _aa : ð98Þ

Inserting equations (93) and (94) into equation (98) gives

sT : rsy =
1

2
~sab _aab �Mabn;a � _ab � �m (kn c � _n� tg ‘ � _n)�M

ba
;b n � _aa + �ma

;a ‘ � _c: ð99Þ

Considering equations (15.2), (36), and (81.2), the last two terms can be written as

M
ba
;b n� _aa = ( _n�Ma);a + Mab _n;a � ab ,

�ma
;a ‘� _c= (�ma‘� _c);a + �ma cb ‘b;a

� ��
+ �m (kn c � _n� tg ‘ � _n) :

ð100Þ

By taking equations (96), (97), (99), (100) and local mass conservation into account, equation (95)
becomes

_K + Pint = Pext , ð101Þ

where

_K =

ð
R

ry � _y da ð102Þ

is the rate of kinetic energy,

Pint =
1

2

ð
R

~sab _aabda +

ð
R

Mab _babda +

ð
R

�ma cb ‘b;a

� ��
da, ð103Þ

is the internal power, and

Pext =

ð
R

y � f da +

ð
∂R

y � T ds +

ð
∂R

_n �M ds +

ð
∂R

_c � �M ds ð104Þ

denotes the external power. The last term in Pint can be written in alternative forms, as is discussed in the
following section. The mechanical power balance (equation (101)) simplifies to the expression in Sauer
and Duong [10] for �ma [ 0 and �M= 0.

4. Work-conjugate variables and constitutive equations

As seen from expression (103), the internal stress power per current area reads

_wint :¼ 1

2
~sab _aab + Mab _bab + �ma cb ‘b;a

� ��
, ð105Þ

which directly shows work-conjugate pairs. Accordingly, cb ‘b;aA
a = c �rs‘F

�1 is a strain measure for
the change in the in-plane curvatures. As shown in Appendix 3, the strain measure cb ‘b;a is frame invar-
iant under superimposed rigid body motion of the shell. However, it is somewhat unintuitive and thus
inconvenient for the construction of material models. In the following, we will present two approaches
with alternative definitions of this strain measure.
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4.1. Geodesic curvature-based approach

This approach uses the geodesic curvature kg instead of cb ‘b;a within the in-plane bending power.
Namely, inserting �ma from equation (81.2) into equation (105) and rearranging terms gives

_wint :¼ 1

2
sab _aab + Mab _bab + �m _kg ,

with sab :¼ ~sab + �mkg ‘ab :
ð106Þ

Here, sab represents the components of an effective membrane stress tensor.10 It is symmetric as both
~sab and ‘ab are symmetric. The internal power (103) then becomes

Pint =
1

2

ð
R0

tab _aabdA +

ð
R0

M
ab
0

_babdA +

ð
R0

�m0 _kg dA, ð107Þ

where R0 2 S0 and

tab :¼ J sab , M
ab
0 :¼ J Mab , �m0 :¼ J �m : ð108Þ

These are the nominal quantities corresponding to the physical quantities sab, Mab, and �m, respectively.
Accordingly, we can assume a stored energy function of an hyperelastic shell in the form

W =
^

W (aab, bab, kg; hab) , ð109Þ

where hab collectively represents the components of the structural tensor(s), for example, ‘ab, cab, or,
ca‘b, that characterize material anisotropy due to embedded fibers. Equation (109) can equivalently be
expressed in terms of invariants. All the strain measures aab, bab, kg, and hab used in equation (109) are
frame invariant under superimposed rigid body motions as shown in Appendix 3. Using the usual argu-
ments of Coleman and Noll [38], the constitutive equations can be written as

tab = 2
∂

^

W

∂aab

, M
ab
0 =

∂
^

W

∂bab

, �m0 =
∂

^

W

∂kg
: ð110Þ

Remark 4.1. Compared to classical Kirchhoff–Love shell theory (see, for example, Naghdi [2] and Sauer
and Duong [10]), the effective membrane stress sab in equation (106.2) additionally contains the high-
order bending term �m and the in-plane fiber shear term mg

;g (see equation (93)). For slender fibers, they
are negligible since the in-plane bending stiffness is usually much smaller than the membrane stiffness.
However, these terms may become significant when there is a large (usually local) change in curvature
(e.g. at shear bands).

Remark 4.2. Although a constitutive formulation following from equation (107) appears elegant,
expression (110.3) is restricted to a material response expressible in terms of the geodesic curvature kg.
Therefore, this setup might be unsuited for complex material behavior, for example, due to fiber disper-
sion [21]. In such cases, a more sophisticated structural tensor is usually desired for the in-plane bend-
ing response, and it thus may not always be possible to express W in terms of kg. This motivates the
following director gradient-based approach.

Remark 4.3. In equation (110), the stress components tab and M
ab

0 , together with the strain compo-
nents aab and bab in equation (109), are defined in the parameter space P, where they can be treated as
independent variables without forming them into tensors. It is possible, though, to construct different
stress and strain tensors from these components, such that their scalar product results in the same
power as in equation (107). For example, tab can be the components of the Kirchhoff surface stress ten-
sor t̂ :¼ tabaa � ab, the second Piola–Kirchhoff stress tensor S, or the first Piola–Kirchhoff stress ten-

sor P but with different bases. Indeed, S=FT t̂ F= tabAa � Ab, and P=FS= tabaa � Ab. The strain
variables work-conjugate to t̂, S, and P are related to the rate of surface deformation tensor D, the
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Green–Lagrange surface strain tensor E (or 1
2
C ), and the surface deformation gradient tensor F, respec-

tively, since t̂ : D=S : _E=S : 1
2

_C=P : _F= 1
2

tab _aab. See also Remark 4 in [39].

4.2. Director gradient-based approach

In this approach, the power expression (105) is rewritten by employing relation (38) and definitions
(72.3) and (34) as

_wint :¼ 1

2
sab _aab + Mab _bab + �Mab _�bba , ð111Þ

where sab is now defined by10

sab :¼~sab + ( �M
gd

cd;g)‘ab : ð112Þ

Thus, the internal power can be written as

Pint =
1

2

ð
R0

tab _aabdA +

ð
R0

M
ab
0

_babdA +

ð
R0

�Mab
0

_�babdA, ð113Þ

where we have again used (108) and defined

�Mab
0 :¼ J �Mab : ð114Þ

Accordingly, the stored energy function can now be given in the form

W = Ŵ (aab, bab, �bab; hab) : ð115Þ

This function can also be expressed equivalently in terms of invariants, and �bab can be shown to be
frame invariant, see Appendix 3. The corresponding constitutive equations now read

tab = 2
∂Ŵ

∂aab

, M
ab
0 =

∂Ŵ

∂bab

, �Mab
0 =

∂Ŵ

∂�bab

: ð116Þ

Remark 4.4. Compared to equation (109), expression (115) allows to model more complex in-plane
bending behavior using a generalized structural tensor applied to �bab. We therefore consider this setup
in the following sections.

Remark 4.5. Equation (113) can also be written in tensor notation as

Pint =

ð
R0

S : _E dA �
ð
R0

m0 : _K dA�
ð
R0

�m0 : _�K dA, ð117Þ

where E, K, and �K are the strain tensors defined by equations (46), (47), and (48), respectively, and

S :¼ tabAa � Ab , m0 :¼ �M
ab
0 Aa � Ab , �m0 :¼ � �Mab

0 Aa � Ab , ð118Þ

are the effective second Piola–Kirchhoff surface stress tensor, and the nominal stress couple tensors asso-
ciated with out-of-plane and in-plane bending, respectively. They are symmetric and follow from the
pull-back of tensors J sabaa � ab, J m and J �m in equations (112) and (77).

Remark 4.6. In view of internal power expression (117), an alternative form of the stored energy func-
tion, apart from equation (115), is

W = ~W (E, K, �K; H) , ð119Þ
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where H denotes the structural tensor(s). However, since the temporal change of E, K, and �K only
depends on aab, bab, and �bab, respectively, the energy form (equation (119)) is equivalent to equation
(115), that is, ~W (E, K, �K) = Ŵ (aab, bab, �bab). Therefore, the stress and moment tensors (118) can be
determined either from

S=
∂ ~W

∂E
, � m0 =

∂ ~W

∂K
, � �m0 =

∂ ~W

∂ �K
, ð120Þ

or from their components tab, M
ab
0 , and �Mab

0 using equation (116).

Remark 4.7. Balance equation (101) and various constitutive equations such as (120), (116), and (110)
have been expressed directly in surface form without introducing a thickness variable. The unit of the
strain energy W is thus energy per reference area. However, the influence of the thickness is still
present—either in the material parameters of the surface form or via a through-the-thickness integra-
tion of 3D constitutive laws [11,40]. In a surface formulation, the thickness strain can be still deter-
mined from various approaches: One can enforce incompressibility or the plane stress condition [11], or
one can introduce an additional degree-of-freedom [41].

4.3. Comparison with existing second-gradient theory of Kirchhoff–Love shells

To show the consistency of our proposed theory with the existing second-gradient theory of Steigmann
[34] we insert _kg obtained from equation (51) into the power expression (107). This results in the expres-
sion (see Appendix 5)

Pint =

ð
R0

t a � _aa dA +

ð
R0

M
ab
0

_bab dA +

ð
R0

�Mab
0g

_Sg
ab dA, ð121Þ

where S
g
ab :¼ G

g
ab � �Gg

ab. The last term in equation (121) is the power due to in-plane fiber bending.

Here, the relative Christoffel symbol S
g
ab is the chosen strain measure for the in-plane curvature, and

�Mab
0g :¼ J �m‘ab cg is the in-plane bending moment corresponding to a change in S

g
ab.

In the first term of equation (121), ta :¼ J sabab denotes the effective stress vectors that are work-
conjugate to _aa, with sab now being defined by

sab :¼ ~sab � �mkg ‘ab + �m(l�1 La
;g ‘

g + Sa
gd ‘

gd)cb � �m(l�1 L
g
;d ‘

d
g + Su

gd ‘
gd ‘u)‘a cb , ð122Þ

which is generally unsymmetric. Therefore, in contrast to expressions (107) and (113), the effective stress
tab :¼ t a � ab is generally unsymmetric here. With a possible loss of generality, its symmetrization is adopted
in the work by Steigmann [34], that is, tab :¼ 1

2
(t a � ab + t b � aa), so that the internal power becomes

Pint =
1

2

ð
R0

tab _aab dA +

ð
R0

M
ab
0

_bab dA +

ð
R0

�Mab
0g

_Sg
ab dA, ð123Þ

which is equivalent to expression (63) in Steigmann [34].11

Remark 4.8. As shown in Appendix 5, the asymmetry of the effective stress (122) is due to the fact that
it still contains in-plane bending apart from surface stretching. It is unsymmetric even for initially
straight fibers in a general setting. Therefore, the symmetrization employed in Steigmann [34] is valid
only for special cases.

Remark 4.9. The power term �Mab
0g

_Sg
ab in the gradient theory of Steigmann [34] can become ill-defined

for initially curved fibers when _Gg
ab approaches zero even though there is a change in geodesic curva-

ture. This can solely result from the choice of parametrization, as seen, for example, in section 7.1. In
contrast, the internal power expressions (103), (107), and (113) presented above overcome this
limitation.
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4.4. Extension to multiple fiber families

In case of nf fiber families Ci, i = 1, :::, nf, we define the tangent ‘i and director ci for each Ci. The in-
plane curvatures (equation (48)) and the moment �m in equation (66) are then defined for each fiber fam-
ily Ci. Then Pint in equation (113) simply becomes

Pint =
1

2

ð
R0

tab _aab dA +

ð
R0

M
ab
0

_bab dA +
Xnf

i = 1

ð
R0

�Mab
0i

_�b
i

ab dA: ð124Þ

In accordance with equation (124), the form of the stored energy function is extended from equation
(115) to

W = Ŵ (aab, bab, �bi
ab; h

ab
i ) : ð125Þ

This function can equivalently be expressed in terms of the invariants, for example, as

W =
^

W (I1, J , Li, gij, H , k, ki
n, ti

g, ki
g) , ð126Þ

since all these invariants are functions of aab, bab, and �bi
ab. The constitutive equations thus read

tab = 2
∂Ŵ

∂aab

, M
ab
0 =

∂Ŵ

∂bab

, �Mab
0i =

∂Ŵ

∂�bi
ab

, ð127Þ

where �Mab
0i are the components of the nominal stress couple tensor associated with in-plane bending of

fiber i. They correspond to the change in the in-plane curvature �bi
ab of fiber i.

5. Constitutive examples

This section presents constitutive examples for the presented theory considering unconstrained and con-
strained fibers. We restrict ourselves here to two families of fibers. Note, however, that our approach
allows for any number of fiber families.

5.1. A simple generalized fabric model

A simple generalized shell model for two-fiber-family fabrics that are initially curved and bonded to a
matrix is given by

W = Wmatrix + Wfib� stretch + Wfib�bending + Wfib� torsion + Wfib�angle , ð128Þ

where

Wmatrix = U(J) +
1

2
m (I1 � 2� 2 ln J) ,

Wfib� stretch =
1

8
eL
X2

i = 1

(Li � 1)2 ,

Wfib�bending =
1

2

X2

i = 1

½bn (Ki
n)

2
+ bg (Ki

g)
2� ,

Wfib� torsion =
1

2
bt

X2

i = 1

(Ti
g)2,

Wfib�angle =
1

4
ea (g12 � g0

12)2

ð129Þ
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are the strain energies for matrix deformation, fiber stretching, out-of-plane and in-plane fiber bending,
fiber torsion, and the linkage between the two fiber families, respectively. U(J) is the surface dilatation
energy. In the above expression,

ffiffiffiffi
L
p

, Tg, Kn, Kg, and g12 denote the fiber stretch, the norminal change
in geodesic fiber torsion, normal fiber curvature and geodesic fiber curvature, and the relative angle
between fiber families, respectively (see Tables 1 and 2). Symbols m, e�, and b� are material parameters.
eL can be taken as zero during fiber compression (Li\1) to mimic buckling phenomenologically.

From equations (116) and (129), we then find the effective stress and moment components for the
director gradient-based formulation (section 4.2) (see Appendix 2 and Sauer and Duong [10] for the
required derivatives of kinematical quantities) as

tab = J ∂U
∂J

aab + m(Aab � aab) + 1
2

eL
P2
i = 1

(Li � 1)L
ab
i + ea (g12 � g0

12)(La
1 L

b
2 )

sym
,

M
ab
0 = bn

P2
i = 1

Ki
nL

ab
i + bt

P2
i = 1

Ti
g (ca

0i L
b
i )

sym
,

�Mab
0 = bg

P2
i = 1

Ki
gL

ab
i ,

ð130Þ

where (�ab)sym = ( 1
2

)(�ab + �ba) denotes symmetrization.

5.2. Fiber inextensibility constraints

For most textile materials, the deformation is usually characterized by very high tensile stiffness in fiber
direction and low in-plane shear and bending stiffness. In this case, one may model the very high tensile
stiffness along the fiber direction i by the inextensibility constraint

gi :¼ Li � 1 = 0 , Li . 1 , ð131Þ

where Li is defined in Table 2. This constraint then replaces the Wfib� stretch term in equation (128). To
enforce this constraint, we can employ the Lagrange multiplier method in the strain energy function

Ŵ :¼ W +
Pnf
i = 1

qi gi , ð132Þ

where qi (i = 1, :::, nf) denote the corresponding Lagrange multipliers. The stress components in this
case become

tab = 2
∂Ŵ

∂aab

= 2
∂W

∂aab

+
Xnf

i = 1

2qi L
ab
i : ð133Þ

This leads to the same stress and moment components as in equation (130.1) with the exception that
eL (Li � 1)=2 is now replaced by 2qi.

6. Weak form

This section presents the weak form for the generalized Kirchhoff–Love shell. The weak form is obtained
by the same steps as the mechanical power balance in section 3.5, simply by replacing velocity y by varia-
tion dx. This gives

Gin + Gint � Gext = 0 8dx 2 V , ð134Þ

where according to equations (101), (102), (104), and (124)
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Gin =

ð
S0

dx � r0 _y dA ,

Gint =
1

2

ð
S0

tab daab dA +

ð
S0

M
ab
0 dbab dA +

Xnf

i = 1

ð
S0

�Mab
0i d�bi

ab dA ,

Gext =

ð
S

dx � fda +

ð
∂S

dx � Tds +

ð
∂S

dn �Mds +
Xnf

i = 1

ð
∂S

dci � �M ids:

ð135Þ

Using equation (127), Gint can also be expressed as the variation of potential (125) w.r.t. its arguments,

Gint =

ð
S0

dW dA =

ð
S0

∂W

∂aab

daab dA +

ð
S0

∂W

∂bab

dbab dA +
Xnf

i = 1

ð
S0

∂W

∂�bi
ab

d�bi
ab dA: ð136Þ

For constrained materials, for example, equation (132), Gint becomes

Gint =

ð
S0

dŴ dA =

ð
S0

1

2
tab daab + M

ab
0 dbab +

Xnf

i = 1

�Mab
0i d�bi

ab

 !
dA +

Xnf

i = 1

ð
S0

∂Ŵ

∂qi

dqidA: ð137Þ

For the constitutive example in section 5, tab, M
ab
0 and �Mab

0 are given by equations (133), (130.2), and
(130.3), respectively, while ∂Ŵ=∂qi = gi.

The linearization of weak form (134) and its discretization can be found in the work by Duong et al.
[37].

7. Analytical solutions

This section illustrates the preceding theory by several analytical examples considering simple homoge-
neous deformation states. They are useful elementary test cases for the verification of computational
formulations.

7.1. Geodesic curvature of a circle embedded in an expanding flat surface

The first example presents the computation of geodesic curvature kg from equations (51) and (52) and
confirms that only equation (51) gives the correct value for initially curved fibers. This illustrates the lim-
itation of existing second-gradient Kirchhoff–Love shell theory for cases where _Gg

ab = 0 due to the choice
of the surface parametrization.

To this end, we consider a circular fiber C0 2 S0 with initial radius R expanding according to the
deformation gradient F= lI to C 2 S with the current radius r as shown in Figure 3. Therefore, the geo-
desic curvatures of C0 and C are expected to simply be k0

g = 1=R and kg = 1=r, respectively.

With respect to the convective coordinates (j1 = X , j2 = Y ) shown in Figure (3(left)), the position vec-
tor on any point of S0 and S can be represented by

X=Xs(j
1, j2) :¼ j1 e1 + j2 e2 ,

x= xs(j
1, j2) :¼ lj1 e1 + lj2e2 :

ð138Þ

The surface tangent and normal vectors follow from equation (138) as

A1 = e1 , A2 = e2 , and N= e3 ,
a1 = le1 , a2 = le2 , and n= e3 ,

ð139Þ

Duong et al. 23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


so that

A1 = e1 , A2 = e2 ,
a1 = 1

l
e1 , a2 = 1

l
e2 :

ð140Þ

The surface deformation gradient then reads

F= aa � Aa = l(e1 � e1 + e2 � e2) , ð141Þ

and the surface Christoffel symbols take the form

�Gg
ab :¼ Aa,b � Ag = 0 , G

g
ab :¼ aa,b � ag = 0 : ð142Þ

In the reference configuration, the fiber is parametrized by the arc-length coordinate s as

X=Xc(s) :¼ R cos s
R
e1 + R sin s

R
e2 : ð143Þ

From equations (143) and (141) follows

L :¼Xc, s = � sin s
R
e1 + cos s

R
e2 = � Y

R
A1 + X

R
A2 ,

l‘ :¼FL= � Y
R
a1 + X

R
a2 ,

‘ :¼FL
l

= � Y
R
e1 + X

R
e2 ,

c :¼n× ‘= � X
R
e1 � Y

R
e2 :

ð144Þ

In this equation (j1, j2) = (X , Y ) 2 C0. Thus,

½L̂a
,b� :¼

1

l
½La

,b�=
1

lR

0 �1

1 0

� 	
, ð145Þ

and

½‘a� :¼ ½‘ � aa�= 1

lR

�Y

X

� 	
, ½ca� :¼ ½c � aa�= �

l

R

X

Y

� 	
: ð146Þ

Inserting these expressions into equation (51), and using the identity X 2 + Y 2 = R2 gives the geodesic
curvature

kG
g = 0 , kLg =

1

lR
=

1

r
, kg = kG

g + kLg =
1

r
: ð147Þ

Figure 3. Computation of geodesic curvature kg: A circular fiber C is embedded in the planar surface S that is expanded by the
homogeneous deformation F = lI.
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For C0, setting l = 1 directly yields k0
g = 1=R.

In contrast, equation (52) obviously fails to reproduce the correct geodesic curvatures since the
Christoffel symbols are zero everywhere solely due to the choice of the surface parametrization.
Furthermore, since _Gg

ab = 0, the in-plane bending term of the internal power is ill-defined in second-
gradient theory (equation (123)), whereas we get a well-defined power from equation (51) with equa-
tions (103), (107), and (113). It correctly captures the change in geodesic curvature.

7.2. Biaxial stretching of a sheet containing diagonal fibers

The second example presents an analytical solution for homogeneous biaxial stretching of a rectangular
sheet from dimension L×H to ‘× h, such that ‘= l‘L and h = lh H . The sheet contains a matrix mate-
rial and two fiber families distributed diagonally as shown in Figure 4. The strain energy function in this
example is taken from equation (129) as

W =
m

2
(I1 � 2� ln J) +

1

8
eL
X2

i = 1

(Li � 1)2 +
1

4
ea (g12 � g0

12)2 : ð148Þ

Therefore, the stress components follow as

tab = m(Aab � aab) +
X2

i = 1

ti L
ab
i + ea (g12 � g0

12)(La
1 L

b
2 )sym , ð149Þ

where ti :¼ 1
2

eL (Li � 1) denotes the nominal fiber tension. The parameterization can be chosen such
that the surface tangent vectors are A1 = L e1, A2 = H e2, a1 = ‘ e1, and a2 = h e2, where ea are the basis
vectors shown in Figure 4. The fiber directions are L1 = (L e1 + H e2)=D, L2 = (L e1 � H e2)=D, where
D2 :¼ L2 + H2. We thus find

½Aab� =
1=L2 0

0 1=H2

� 	
, ½aab�= 1=‘2 0

0 1=h2

� 	
, ½Lab

1 �=
1

D2

1 1

1 1

� 	
,

½Lab
2 � =

1

D2

1 �1

�1 1

� 	
, and ½La

1 L
b
2 �

sym =
1

D2

1 0

0 �1

� 	
:

ð150Þ

Furthermore, we find the fiber stretch and angles

Lf :¼L1 = L2 = (‘2 + h2)=D2 ,
g0

12 = Aab La
1 L

b
2 = (L2 � H2)=D2 ,

g12 = aab La
1 L

b
2 = (‘2 � h2)=D2 :

ð151Þ

Inserting equation (151) into equation (149) gives the stress tensor s = J�1tabaa � ab, where J :¼ l‘lh

The resultant reaction forces at the boundaries then follow as

F1 = h e1 s e1 = h
J

m(l2
‘ � 1) + 2 ‘2

D2 t + ea
‘2

D2 (g12 � g0
12)

h i
,

F2 = ‘ e2 s e2 = ‘
J

m(l2
h � 1) + 2 h2

D2 t � ea
h2

D2 (g12 � g0
12)

h i
,

ð152Þ

where t :¼ t1 = t2 = 1
2

eL (Lf � 1).

Remark 7.1. The presented solution (152) includes pure shear by simply setting lh = 1=l‘.
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Remark 7.2. For uniaxial tension, for example, in the e1 direction and with free horizontal boundaries,
condition F2 = 0 in equation (152.2) gives the solution of lh, which in turn can be inserted to equation
(152.1) for the resultant reaction force F1(l‘) as

F1 =
H

l‘D4
½D4 m(l2

‘ � 1) + (eL + ea)l4
‘ L4 + (eL � ea)l2

‘ l2
h H2 L2 + (eL � g0

12 ea)l2
‘ L2 D2� , ð153Þ

where

l2
h =

1

2a
�b +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + 4am

p� �
, ð154Þ

while a :¼ H2

D4 eL + eað Þ, and b :¼ m + (eL � ea)
l2
‘ L2 H2

D4 � eL
H2

D2 + g0
12 ea

H2

D2.

Remark 7.3. Solution (152) also captures the inextensibility of fibers. In this case, either the vertical or
the horizontal boundaries have to be stress free. In the latter case, F2 = 0 and

lh =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

H2
� l2

‘

L2

H2

r
, ð155Þ

due to D2 = ‘2 + h2. In this case, the deformation is limited by lmax
‘ = D=L. From F2 = 0, the nominal

fiber tension now follows as

t =
1

2
ea (g12 � g0

12)� 1

2

D2

h2
m (l2

h � 1) : ð156Þ

Inserting equation (156) into equation (152.1) then gives

F1 =
h

J
m(l2

‘ � 1)� ‘
2

h2
m(l2

h � 1) + 2ea
‘2

D2
(g12 � g0

12)

� 	
: ð157Þ

7.3. Picture frame test

The third example derives an analytical solution for the shear force in the picture frame test of an
L0 × L0 square sheet with two fiber families as shown in Figure 5(a) and (b). From the figure, we find
the surface tangent vectors

A1 = L0 cosu0 e1 + L0 sinu0e2 , a1 = L0 cosue1 + L0 sinue2 ,

A2 =� L0 cosu0 e1 + L0 sinu0 e2 , a2 =� L0 cosue1 + L0 sinue2 ,
ð158Þ

and the fiber directions

L1 = cosu0 e1 + sinu0 e2 , ‘1 = cosue1 + sinue2 ,

L2 = � cosu0 e1 + sinu0 e2 , ‘2 = � cosue1 + sinue2 ,
ð159Þ

Figure 4. Biaxial stretching of a rectangular sheet from dimension L×H (left) to ‘× h (right).
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where u0 = p=4. Accordingly, the components of tensors C and (L1 � L2)sym read

½Cb
a �= aag Agb =

1 � cos (2u)
� cos (2u) 1

� 	
, and ½La

1 L
b
2 �

sym
= 1

2 L2
0

0 1

1 0

� 	
, ð160Þ

respectively. From equation (160.1), the surface stretch is found as

J =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Cb

a �
q

= sin (2u) : ð161Þ

Furthermore, the strain energy function in this example is taken from equation (129) as
W = 1

4
ea (g12 � g0

12)2, so that the Cauchy stress components are

½sab�= 1

J
ea (g12 � g0

12) ½La
1 L

b
2 �

sym = � 1

2L2
0

ea cot (2u)
0 1

1 0

� 	
: ð162Þ

Here, we have used equations (160.2) and (161), g0
12 =L1 � L2 = 0, and g12 = ‘1 � ‘2 = � cos (2u).

Consider the upper left edge with normal vector n = � sinu e1 + cosu e2 = na aa, where
n1 = n � a1 = 0, and n2 = n � a2 = L0 sin (2u). The traction components on this edge can be computed
from

½ta�= ½sab nb�= �
1

2L0

e12
a cos (2u)

1

0

� 	
: ð163Þ

Therefore, the traction vector solely contains the shear contribution

t= taaa = t1a1 = � 1

2
e12
a cos (2u)( cosu e1 + sinu e2) , ð164Þ

so that the shear force (i.e. the tangential reaction) at the edge of the sheet is

Rs = t � a1

k a1 k
L0 = � 1

2
e12
a cos (2u)L0 =

1

2
e12
a sin (u)L0 , ð165Þ

where u :¼ 2 u� 908 denotes the shear angle. This solution is plotted in Figure 5(c).

Figure 5. Picture frame test: (a) initial and (b) deformed configurations containing two fiber families. (c) Exact solution of the shear
force versus shear angle u :¼ 2u� 908 .
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7.4. Annulus expansion

The fourth example presents an analytical solution for the expansion of an annulus containing distribu-
ted circular fibers and matrix material as depicted in Figure 6.

The inner and the outer rings with radius Ri and Ro, respectively, are expanded to ri and ro by the con-
stant stretch �l = ri=Ri = ro=Ro. The strain energy density (per reference area) is taken as

W = Wmatrix + Wfib�bend + Wfib� stretch , ð166Þ

where

Wmatrix =
1

2
K (J � 1)2 ,

Wfib�bend =
1

2
bk2

g :

Wfib� stretch =
1

8
eL (L� 1)2 :

ð167Þ

Here, K(R), b, and eL are material parameters for matrix dilatation, fiber bending, and fiber stretching,
respectively, and J , L, and kg are invariants induced by tensors C and �K as listed in Tables 1 and 2.

7.4.1. Kinematical quantities. According to Figure 6, the initial and current configurations as well as the initial
fiber direction can be described by

X=X(R,f) :¼ R cosf e1 + R sinf e2 ,
x= x(R,f) :¼ r cosf e1 + r sinf e2 ,
L=L(f) :¼ � sinf e1 + cosf e2 :

ð168Þ

Here r = lR, due to the homogeneous deformation, with l being the fiber stretch. From this, we find the
covariant tangent vectors

A1 =
∂X

∂R
= cosf e1 + sinf e2 ,

A2 =
∂X

∂f
= � R sinf e1 + R cosf e2 ,

a1 =
∂x

∂R
= l cosf e1 + l sinf e2 ,

a2 =
∂x

∂f
= � r sinf e1 + r cosf e2 ,

ð169Þ

Figure 6. Annulus expansion: An annulus containing matrix (gray color) and distributed circular fibers (green color) is expanded
homogeneously from its initial configuration (left) by applying Dirichlet boundary condition on both inner and outer surfaces
(middle). The expansion causes the resultant interface forces Rn and Rt on the cut through a symmetry plane (right).
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and the constant surface normal n=N= e3 during deformation. From the tangent vectors, we get

½Aab� =
1 0

0 R2

� 	
, ½Aab�=

1 0

0 1=R2

� 	
,

½aab� =
l2 0

0 r2

" #
, ½aab�= 1=l2 0

0 1=r2

" #
,

ð170Þ

and thus the contravariant tangent vectors take the form

A1 = cosf e1 + sinf e2 ,

A2 = � 1

R
sinf e1 +

1

R
cosf e2 ,

a1 =
1

l
cosf e1 +

1

l
sinf e2 ,

a2 = � 1

r
sinf e1 +

1

r
cosf e2 :

ð171Þ

The initial and current fiber direction thus can be expressed as

L= LaAa ,
‘= 1

l
FL= ‘aaa ,

ð172Þ

with

½La� :¼ ½L � Aa�= 0

1=R

� 	
, and ½‘a� :¼ ½La=l�= 0

1=r

� 	
: ð173Þ

The components of the structural tensors L� L and ‘� ‘ thus read

½Lab�= 0 0

0 1=R2

� 	
, ½‘ab�= 0 0

0 1=r2

� 	
, ½‘a

b�=
0 0

0 1

� 	
: ð174Þ

Furthermore, the fiber director is obtained as

c= n× ‘= � cosf e1 � sinf e2 = ca aa , ð175Þ

with

½ca� :¼ ½c � aa�=
�l

0

� 	
: ð176Þ

Therefore, its derivatives read

c, 1:¼ ∂c

∂R
= 0 ,

c, 2 :¼ ∂c

∂f
= sinf e1 � cosf e2 :

ð177Þ

From equation (35) then follow the components of the in-plane curvature tensor in the current config-
uration as

½�bab�=� 1
2
½c,a � ab + c,b � aa�=

0 0

0 r

� 	
: ð178Þ
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Similarly, we find the in-plane curvature tensor in the initial configuration as

½�Bab�=
0 0

0 R

� 	
: ð179Þ

Accordingly, the current geodesic curvature can be computed from equation (32) as

kg = �bab ‘
ab = 1=r : ð180Þ

Similarly, we can verify that the initial geodesic curvature satisfies k0
g = 1=R. These results lead to

kg = kgl� k0
g = 0, and thus Wfib�bend = 0 due to the particular choice of strain energy (equation (167.2)). This

means that the change in the geodesic curvature kg in this example is purely due to fiber stretching and not due
to fiber bending.

7.4.2. Analytical expression for the reaction forces. From equation (166), we find the effective membrane stress

J sab = 2
∂W

∂aab

= K (J � 1)J aab +
1

2
eL (l2 � 1)Lab : ð181Þ

Here, the component of the Cauchy stress tensor is N ab = sab since Mab = �Mab = 0 (see equation (112)
with equation (93)). Its mixed components thus read

½Na
b �= K (J � 1)

1 0

0 1

� 	
+

eL

2J
(l2 � 1)

0 0

0 l2

� 	
, ð182Þ

where we have inserted Aab and Lab from equations (170) and (174), respectively. It can be verified that
for a homogeneous deformation J = l2, the local equilibrium equation divs s = divs (Nabaa � ab) = 0 is
satisfied for the functionally graded surface bulk modulus

K(R) =
1

2
eL lnR : ð183Þ

Furthermore, the resultant reaction force at the cut in Figure 6 (right) can be computed by

Rn =

ðro

ri

(n � n) T dr = Rn ‘ ,

Rt =

ðro

ri

(t � t ) Tdr = Rt c ,

ð184Þ

since n = ‘ and t = c. Here, T= N ab nb aa denotes the traction acting on the cut. Therefore, we get

T � ‘= Na
b ‘

b
a =

1

2
eL + K


 �
(J � 1) ,

T � c= Na
b ca ‘

b = 0 :

ð185Þ

Inserting this into equation (184) and taking equation (183) into account finally results in

Rn =
1

2
eL (J � 1) �l (Ro lnRo � Ri lnRi) ,

Rt = 0 :
ð186Þ

7.5. Pure bending of a flat rectangular sheet

The last example presents the analytical solution for the pure bending of a flat rectangular sheet S0 with
dimension S × L, subjected to an external bending moment Mext along the two shorter edges, as shown in
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Figure 7. This problem was solved by Sauer and Duong [10] for an isotropic material, and here we addi-
tionally consider the influence of fiber bending. For simplicity the fibers are aligned along the bending
direction. The strain energy function is taken from (129), which reduces to

W =
m

2
(I1 � 2� ln J) +

b

2
K2
n ð187Þ

in this example.

7.5.1. Kinematical quantities. We extend the kinematical quantities derived in the work by Sauer and Duong
[10] to account for embedded fibers. The sheet is parametrized by j1 2 ½0, S� and j2 2 ½0, L�. Bending
induces (high-order) in-plane deformation, such that the current configuration S has dimension s× ‘.
The stretches along the longer and shorter edges are l‘ = ‘=L and ls = s=S, respectively, and we have
relations u :¼ k‘l‘ j and r :¼ 1=k‘, where k‘ is the homogeneous curvature of the sheet.

With this, the sheet in the initial and current configurations, and the initial fiber direction can be
described by

X(j,h) = je1 + he2 ,
x(j,h) = r sin u e1 + ls h e2 + r (1� cos u) e3 ,
L= e1 :

ð188Þ

Therefore, the initial and current tangent vectors, and current normal vector are

A1 =
∂X

∂j
= e1 , A2 =

∂X

∂h
= e2 ,

a1 =
∂x

∂j
= l‘ ( cos u e1 + sin u e3) , a2 =

∂x

∂h
= ls e2 ,

n= � sin u e1 + cos u e3 :

ð189Þ

From these, we find the components of the structural tensor

½Lab�= ½Aa (L� L)Ab�= 1 0

0 0

� 	
, ð190Þ

the surface metrics

½Aab�=
1 0

0 1

� 	
, ½Aab�= 1 0

0 1

� 	
, ð191Þ

½aab�= l2
‘ 0

0 l2
s

� 	
, ½aab�= l�2

‘ 0

0 l�2
s

� 	
, ð192Þ

the surface stretch J = l‘ls, and the components of the curvature tensor

Figure 7. Pure bending: Deformation of a rectangular sheet (left) into a circular arc (right).
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½bab�= k‘l2
‘ 0

0 0

� 	
, ½ba

b�=
k‘ 0

0 0

� 	
, ½bab�= k‘l�2

‘ 0

0 0

� 	
, H =

k‘
2
: ð193Þ

Therefore, the nominal change in the normal curvature is

Kn = bab Lab = k‘l2
‘ ð194Þ

7.5.2. Analytical relation between external moment and mean curvature. From equation (187), we find

J sab = 2
∂W

∂aab

= m(Aab � aab) ,

J Mab =
∂W

∂bab

= bKnLab :

ð195Þ

According to equations (93) and (112) with �Mab = �ma
;a = 0, the components of the Cauchy stress tensors

read

Na
b = sag agb + Mag bgb : ð196Þ

Inserting here Aab, aab, and Lab from equations (191), (192), and (190) gives

½Na
b �=

m

J

l2
‘ � 1 0

0 l2
s � 1

� 	
+

b

J
k2
‘ l4

‘

1 0

0 0

� 	
: ð197Þ

By assuming free edges, we have N 1
1 = N2

2 = 0. That is

N1
1 = m

J
(l2

‘ � 1) + b

J
k2
‘ l4

‘ = 0 ,

N2
2 = m

J
(l2

s � 1) = 0 :
ð198Þ

From the second equation follows ls = 1. The distributed external moment Mext is in equilibrium to the
distributed internal moment mt—see equation (79.2)—on any cut parallel to the shorter edge. We there-
fore have

Mext = � mt = Mab na nb =
b

J
k‘l4

‘ , ð199Þ

where n = a1=l‘, n1 = l‘, and n2 = 0. By combining equations (199) and (198.1), we get an expression
for l‘ in terms of Mext

l‘ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 1

mb
M2

ext

svuut , with the condition M2
ext ł

1

4
mb : ð200Þ

With this result and equation (199), we obtain the relation between the external moment and the mean
curvature,

H =
Mext

2bl4
‘

: ð201Þ

8. Conclusion

We have presented a generalized Kirchhoff–Love shell theory capable of capturing in-plane bending of
fibers embedded in the surface. The formulation is an extension of classical Kirchhoff–Love shell theory
that can handle multiple fiber families, possibly with initial curvature. We use a direct approach to derive
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our theory assuming Kirchhoff–Love kinematics, plane-stress conditions, and lumped mass at the mid-
surface. Like classical Kirchhoff–Love shell theory, no additional degrees-of-freedom are required such
as the independent director fields of Cosserat shell theory, and the postulated set of balance laws for the
shell only include linear and angular momentum balance.

Our thin shell kinematics is fully characterized by the change of three symmetric tensors: aab, bab,
and the newly added �bab—denoting the in-plane curvature tensor. These tensors capture the change of
the tangent vectors a1, a2, and the in-plane fiber director c. Tensor �bab and director vector c are defined
for each fiber family separately. The corresponding stress and moments work-conjugate to aab, bab, and
�bab are the effective membrane stress sab, the out-of-plane stress couple �Mab, and the in-plane stress
couple �Mab, respectively. The symmetry of sab follows from angular momentum balance. With these
work-conjugated pairs, general constitutive equations for hyperelastic materials are derived.

The introduction of �bab for the in-plane curvature measure is an advantage over existing second-
gradient shell theory. Since it is a second-order tensor instead of a third-order tensor, its induced invar-
iants and their physical meaning can be identified in a straightforward manner from the defined kine-
matics. Furthermore, it makes in-plane bending fully analogous to out-of-plane bending for both the
internal and the external power. These features are advantageous in constructing material models and
evaluating Neumann boundary conditions.

Finally this work also provides the weak form, which is required for a finite element formulation
based on C1-continuous surface discretizations that are presented in future work [37]. Several analytical
examples are presented to serve as useful elementary test cases for the verification of nonlinear compu-
tational formulations. The presented analytical examples also confirm that the model correctly describes
the mechanics of shells with initially curved fibers.
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Notes

1. From another point of view, classical Kirchhoff–Love shell theory also falls in to the category of high-gradient theories
due to the high-gradient term in the bending energy.

2. In this article, the summation convention is applied for repeated Greek indices taking values from 1 to 2.
3. They only differ for quantities with free indices. Index-free quantities, such as n, satisfy n,a = n;a.
4. Note, that rs� can have both in-plane and out-of-plane components.
5. Since it is the sole principal invariant of the first-order tensor ‘, s

6. Unlike rs�, �rs� has only in-plane components.
7. Here and henceforth, the new terms for in-plane bending that are added to classical Kirchhoff–Love shell theory, see, for

example, Sauer and Duong [10], are denoted by a bar.
8. The sign convention for the moment components follows Steigmann [9] and Sauer and Duong [10].
9. Note that we will redefine ~sab later in equations (106.2) and (112) for various choices of the strain measure for in-plane

bending.
10. Note that generally sab 6¼ Nab = aa s ab. sab = Nab only in special cases, that is, when both in-plane and out-of-plane

bending are negligible.
11. Adapted to the notations used in this article.
12. The material time derivative and the linearization of a given quantity � follow directly from its variation d�, by replacing

d� by either _� or D�, respectively.
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Appendix 1

Notation

1 identity tensor in R
3

aa, a
a co- and contravariant tangent vectors at surface point x 2 S; a = 1, 2

Aa, A
a co- and contravariant tangent vectors at surface point X 2 S0; a = 1, 2

aa,b parametric derivative of aa w.r.t. j b

aa ;b covariant derivative of aa w.r.t. j b

aab, aab co- and contravariant surface metric at surface point x 2 S
Aab, Aab co- and contravariant surface metric at surface point X 2 S0

b out-of-plane curvature tensor of surface S at surface point x 2 S
�b in-plane curvature tensor at fiber point x of fiber C embedded in S
bab covariant components of tensor b at surface point x 2 S
�bab covariant components of tensor b at fiber point x 2 C � S
b0 out-of-plane curvature tensor of surface S0 at surface point X 2 S0
�b0 in-plane curvature tensor of fiber C0 at fiber point X 2 C0 � S0

Bab covariant components of tensor b0 at surface point X 2 S0
�Bab covariant components of tensor �b0 at fiber point X 2 C0 � S0

b� material parameters for fiber bending and torsion
c in-plane fiber director vector of fiber C at fiber point x 2 C � S
c0 in-plane fiber director vector of fiber C0 at fiber point X 2 C0 � S0

ca, ca co- and contravariant components of vector c at fiber point x 2 C � S
ca;b, ca

;b covariant derivatives of ca and ca

C right Cauchy–Green tensor of the shell mid-surface
C a curve representing a fiber embedded in shell surface S
C0 initial configuration of fiber curve C embedded in shell surface S0

D rate of surface deformation tensor
d::: variation of ...
db

a surface Kronecker delta
e� material parameters for fiber stretching and shearing
E Green–Lagrange strain tensor of the shell mid-surface
f prescribed surface loads
f a in-plane components of f
F deformation gradient of the shell mid-surface
gij nominal angle between current fiber configurations Ci and Cj in S; i 6¼ j

g0
ij

nominal angle between reference fiber configurations C0i and C0j in S0; i 6¼ j

ĝij absolute angle between fiber Ci and Cj; i 6¼ j

Gin inertial virtual work
Gext external virtual work
Gint internal virtual work

G
g
ab

surface Christoffel symbols of the second kind on S
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�Gg
ab

surface Christoffel symbols of the second kind on S0

Gc
ab projection of vectors aa,b in direction c

G‘ab
projection of vectors aa,b in direction ‘

H mean curvature of surface S at surface point x 2 S
hab collective symbol for components of various structural tensors
i fiber index; added to all fiber-related quantities in case of multiple fibers
i surface identity tensor on S
I surface identity tensor on S0

I1 first invariant of C
I parametrized interface obtained by cutting through S
j fiber index; added to all fiber-related quantities in case of multiple fibers
J surface area change
kn absolute change in normal curvature kn at point x of fiber C � S
kg absolute change in geodesic curvature kg at point x of fiber C � S
kn stretch-excluded change in normal curvature kn at point x of fiber C � S
kg stretch-excluded change in geodesic curvature kg at point x of fiber C � S
k Gaussian curvature of surface S at surface point x 2 S
kn normal curvature of current fiber configuration C at x 2 C � S
k0
n normal curvature of reference fiber configuration C0 at X 2 C0 � S0

kg geodesic curvature of current fiber configuration C at x 2 C � S
k0
g

geodesic curvature of reference fiber configuration C0 at X 2 C0 � S0

kG
g

contribution of the Christoffel symbol to geodesic curvature kg of fiber C
kLg contribution of the gradient of L to geodesic curvature kg of fiber C
kp principal curvature of fiber C at fiber point x 2 C � S
K kinetic energy of surface S; or a material constant in example 7.4
Kn nominal change in normal curvature kn at point x of fiber C � S
Kg nominal change in geodesic curvature kg at point x of fiber C � S
K relative change of the out-of-plane curvature tensor
�K relative change of the in-plane curvature tensor
‘ normalized tangent vector of fiber C at fiber point x 2 C � S
‘a, ‘

a co- and contravariant components of ‘ in S; a = 1, 2
‘ab contravariant components of structural tensor ‘� ‘ in S
‘a;b, ‘

a
;b covariant derivatives of ‘a and ‘a

l stretch of fiber C at fiber point x 2 C � S
L normalized tangent vector of fiber C0 at fiber point x 2 C0 � S0

La, La co- and contravariant components of L; a = 1, 2
Lab contravariant components of structural tensor L� L

L̂a
,b, L̂a,b parametric derivatives La

,b and La,b scaled by inverted fiber stretch l�1

L = l2; square of stretch of fiber C � S
m̂ moment vector acting on a cut I normal to n
m̂

a
moment vector acting on a cut I normal to aa

m component of m̂ causing out-of-plane bending and twisting
�m component of m̂ causing in-plane bending
mab components of moment tensor m̂ with basis aa � ab

�ma components of moment tensor m̂ with basis aa � n
mt, mn, �m components of moment vector m̂ in directions t, n , and n
m surface shear modulus
�m component of tensor m̂fib with basis ‘� n, causing in-plane bending of fiber C
�m0 moment component �m scaled by J

m stress couple tensor associated with out-of-plane bending and twisting
m0 stress couple tensor obtained by the pull-back of tensor J m.
�m stress couple tensor associated with in-plane bending of fiber C
�m0 stress couple tensor obtained by the pull-back of tensor J �m.
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m̂ (total) internal moment tensor at x 2 S
m̂fib (total) internal moment tensor within fiber C
M stress couple vector associated with out-of-plane bending at cut I?n
Ma stress couple vectors associated with out-of-plane bending at cut I?aa

�M stress couple vector associated with in-plane bending of fiber C at cut I?n
�M

a
stress couple vectors associated with in-plane bending at cut I?aa

Mab contravariant components of stress couple tensor �m
M

ab
0 stress couple components Mab scaled by J

�Mab contravariant components of stress couple tensor ��m
�Mab

0 stress couple components �Mab scaled by J

�Mab
0g

stress couple components for in-plane bending in second-gradient shell theory

n unit surface normal vector of S at surface point x 2 S
np principal normal vector of fiber C at fiber point x 2 C � S
nf number of fiber families
N unit surface normal vector of S0 at surface point X 2 S0

Nab in-plane contravariant components of Cauchy stress tensor s
rs� = �,a � aa, surface gradient operator
�rs � = irs�, projected surface gradient operator
n unit normal on cut I
na, na co- and contravariant components of n
ja curvilinear coordinates; a = 1, 2

_wint internal stress power per current area
P first Piola–Kirchhoff stress tensor of the shell surface
Pint, Pext surface internal and external power
P parametric domain spanned by j1 and j2

R, R0 arbitrary simply-connected sub-region of surface S or S0

qi Lagrange multiplier for the inextensibility constraint for fiber Ci

r areal mass density of surface S
s parameter coordinate of fiber C
S current configuration of the shell surface
S0 reference configuration of the shell surface
∂S boundary of S
S second Piola–Kirchhoff stress tensor of the shell surface
Sa contravariant, out-of-plane shear stress components
S

g
ab change in Christoffel symbols from S0 to S

s Cauchy stress tensor within the shell
sfib Cauchy stress tensor within fiber C
~sab effective membrane stress associated with in-plane curvature measure cb‘b;a

sab effective membrane stress associated with in-plane curvature measure kg or �bab

t time variable
tg absolute change in geodesic torsion tg at point x of fiber C � S
tg stretch-excluded change in geodesic torsion tg at point x of fiber C � S
Tg nominal change in geodesic torsion tg at point x of fiber C � S
T traction vector acting on cut I normal to n
Ta traction vectors acting on cut I normal to aa

Ta in-plane contravariant components of traction vector T
T3 component of traction vector T in direction n
t unit vector along cut I
t a effective stress vector work-conjugate to _aa in second-gradient shell theory
t̂ Kirchhoff stress tensor of the shell surface
tg geodesic torsion of current fiber configuration C at x 2 C � S
t0
g

geodesic torsion of reference fiber configuration C0 at X 2 C0 � S0
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ta, ta co- and contravariant components of vector t
tab contravariant components of Kirchhoff stress tensor t̂ of the shell
y velocity, that is, the material time derivative of x
V space of admissible variations dx
W strain energy density function per reference area
x current position of a surface point on the current shell surface S
xc function describing curve C
X initial position of x on the reference shell surface S0

_� material time derivative

Appendix 2

Variation of various kinematical quantities

This section provides the variation of several kinematical quantities defined in section 2. They are
required for the derivation of the mechanical work balance (section 4), the stresses and moments from a
stored energy function (section 5), the weak form (section 6), and the linearization of the weak form
[37].12 We focus here mostly on the new variables introduced above, while the expressions for existing
ones can be found elsewhere [10].

Consider a variation of position x by dx. Accordingly, the variation of the tangent vectors reads
daa = dx,a. From equation (5), the variation of daab is

daab = daa � ab + aa � dab : ð202Þ

Furthermore, from equation (15.2), we find

dab;a = n� n
�
daa,b � G

g
ab dagÞ, ð203Þ

where we have used the variation [42]

dn= � aa (n � daa) : ð204Þ

From equation (41) we have l2 = (FL) � (FL) = Lab aab. It then follows that

dl =
1

2l
Lab daab : ð205Þ

With dl, the variation of ‘ can be derived from equation (41) as

d‘= (1� ‘� ‘) ‘a daa : ð206Þ

The variation of components ‘a = ‘ � aa and ‘a = ‘ � aa read

d‘a = ‘b ca c � dab + ‘ � daa , ð207Þ

and

d‘a = � ‘ab ‘ � dab , ð208Þ

where we have used equation (206) [10]

daa = (aabn� n� ab � aa) dab : ð209Þ

With ‘ab = ‘a ‘b and equation (208), we further find

d‘ab = � ‘ab ‘gd dagd : ð210Þ

The variation of the in-plane director c is
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dc= � (n� c) dn� (‘� c) d‘ , ð211Þ

which follows from identities c � n= 0 and ‘ � n= 0. Inserting equations (204) and (206) into equation
(211) gives

dc= (can� n� ‘a ‘� c) daa : ð212Þ

Using this result and equation (209), the variation of the components of c read

dca = � ‘b
a c � dab + c � daa , ð213Þ

and

dca = � ‘ab c � dab � cbaa � dab : ð214Þ

From equation (19) follows

dGc
ab = c � daa,b + aa,b � dc : ð215Þ

Furthermore, taking the variation of L̂a
,b (see equation (44)) and using result (205) gives

dL̂a
,b = � L̂a

,b ‘
g ‘ � dag = L̂a

,b ‘g d‘g : ð216Þ

From equation (45.2), the variation of cb
;a reads

dcb
;a = � ‘bg dGc

ag � ‘b (Gc
ag + ‘g cd L̂d

,a)d‘g � (cg L̂g
,a + ‘g Gc

ga)d‘b � ‘b L̂g
,a dcg : ð217Þ

From equation (36.1) follows

dc,a = ab dcb
;a + cb

;a dab + cb dab;a + ab;a dcb : ð218Þ

The variation of the out-of-plane curvature is [10]

dbab = n � daa,b � G
g
abn � dag : ð219Þ

The variation of the in-plane curvature follows from equation (35) as

d�bab = � 1

2
(daa � c,b + aa � dc,b + dab � c,a + ab � dc,a) : ð220Þ

The variation of the normal curvature follows from equations (21) and (210) as

dkn =
∂kn
∂aab

daab +
∂kn
∂bab

dbab +
∂kn
∂�bab

d�bab , ð221Þ

with

∂kn
∂aab

= � kn ‘ab ,
∂kn
∂bab

= ‘ab ,
∂kn
∂�bab

= 0 : ð222Þ

Similarly, from equations (50.1) and (210), the variation of the geodesic curvature gives

dkg =
∂kg
∂aab

daab +
∂kg
∂bab

dbab +
∂kg
∂�bab

d�bab , ð223Þ

with
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∂kg
∂aab

= � kg ‘ab ,
∂kg
∂bab

= 0 , and
∂kg
∂�bab

= ‘ab : ð224Þ

From equations (22), (208), and (214), the variation of the geodesic torsion reads

dtg =
∂tg

∂aab

daab +
∂tg

∂bab

dbab +
∂tg

∂�bab

d�bab , ð225Þ

with
∂tg

∂�bab
= 0, and

∂tg

∂aab

=� 1

2
kn (‘a cb + ‘b ca)� 1

2
tg (cab + ‘ab),

∂tg

∂bab

=
1

2
(‘a cb + ‘b ca) :

ð226Þ

Therefore, from equations (31), (221), and (223), the variation of the principal curvature of the fiber is

dkp =
∂kp
∂aab

daab +
∂kp
∂bab

dbab +
∂kp
∂�bab

d�bab , ð227Þ

with

∂kp
∂aab

= � kp ‘ab , kp
∂kp
∂bab

= kn ‘ab , and kp
∂kp
∂�bab

= kg ‘ab : ð228Þ

Appendix 3

Frame invariance of various strain measures

In this appendix, we show that the strain measures presented in our theory, such as aab, bab, cb ‘b;a, kg,
�bab, together with the components of the structural tensors cab, ‘ab, and ca ‘b, are invariant under super-
imposed rigid body motions of shell surface S. To this end, let the shell surface (1) be translated and
rigidly rotated by

x+ = x0 +Qx , with QTQ= 1 , ð229Þ

where x0 2 E
3 and Q 2 SO(3) are a constant translation vector and a rotation tensor. From equations

(229.1), (15.1), (2), and (6), we have

a+
a = x+

,a =Qaa ,

a+
a,b = x+

,ab =Qaa,b ,

‘+ = x+
, s =Q‘ ,

‘+,a =Q‘,a :

ð230Þ

Here, equation (230.4) follows from equation (230.3). Using the identity Qa×Qb=Q(a× b), together
with equations (3) and (7), we further obtain the following relations:

n+ =Qn ,

c+ =Qc ,

c+
,a =Qc,a ,

ð231Þ
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where the last equation follows directly from the second one. The strain measure aab (see equation (5.1))
is frame invariant since

a+
ab = a+

a � a+
b = (Qaa) � (Qab) = aa � (QTQab) = aa � ab = aab , ð232Þ

where we have employed equations (230.1) and (229.2). Similarly, the frame invariance of bab, the strain
measure for out-of-plane curvature from equation (14), follows as

b+
ab = n+ � a+

a,b = (Qn) � (Qaa,b) = n � (QTQaa,b) = n � aa,b = bab : ð233Þ

The frame invariance is also true for the in-plane curvature measure �bab (see equation (35)), that is,

�b+
ab = � 1

2
(c+

b;a + c+
a;b) = �bab , ð234Þ

since

c+
b;a = a+

b � c+
,a = (Qab) � (Qc,a) = ab � (QTQc,a) = cb;a , ð235Þ

which follows from equations (39), (230.1), and (231.3).
Similarly, the covariant derivative ‘b;a from equation (25) is frame invariant, since

‘+b;a = a+
b � ‘+,a = (Qab) � (Q‘,a) = ab � (QTQ‘,a) = ‘b;a , ð236Þ

due to equations (230.1) and (230.4).
Furthermore, following result (232), it can be shown that aa

+ =Qaa. With this, equations (230.3) and
(231.2), we can easily show the frame invariance is also true for components ‘a = ‘ � aa = ‘a

+ and
ca = c � aa = ca

+. Consequently, we have the frame invariance for all the components of the structural
tensors as

c
ab
+ = ca

+ c
b
+ = cab ,

‘ab
+ = ‘a

+ ‘
b
+ = ‘ab ,

(ca ‘b)+ = ca
+ ‘

b
+ = ca ‘b :

ð237Þ

This implies that all the invariants, constructed from the strain measures aab, bab, and �bab by these struc-
tural tensors (see Table 1), are frame invariant. Take, for example, the geodesic curvature (32). We find

k+
g = � ‘ab

+
�b+

ab = � ‘ab �bab = kg , ð238Þ

due to equations (234) and (237.2). Also, the strain measure cb ‘b;a (used, for example, in equation (105))
is frame invariant, that is

(cb ‘b;a)+ = c
b
+ ‘

+
b;a = cb ‘b;a , ð239Þ

following from c
b
+ = cb and equation (236).

Appendix 4

On deriving Kirchhoff–Love theory from Cosserat theory

In this appendix, we show that the balance equations of our generalized Kirchhoff–Love shell theory
with in-plane fiber bending are consistent with the more general balance equations of Cosserat shell the-
ory [2].

To this end, we consider a Cosserat shell S characterized by material point x 2 S and a single director
field d attached to x. The global balance equations of S are postulated as [2,9,43]
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D

Dt

ð
R

r ye da =

ð
R

f da +

ð
∂R

Tds ,

D

Dt

ð
R

rwe da =

ð
R

(l+ k) da +

ð
∂R

~M ds ,

D

Dt

ð
R

r (x×ye + d×we) da =

ð
R

(x× f+ d× l) da +

ð
∂R

(x×T+ d× ~M)ds ,

ð240Þ

where f, T, ~M, l, and k denote the body force (per area), the traction vector, the (general) stress couple
vector, the assigned director couple (unit force per area), and the intrinsic director couple (unit force per
area), respectively, and where

ye :¼y + aw,
we :¼a y + bw

ð241Þ

are the effective velocities contributing to the material and director momentum, respectively. Here, a
and b denote the inertial coefficient associated with the director velocity w :¼ _d. The three equations in
(240) correspond to the linear momentum balance, the director momentum balance, and the angular
momentum balance of the Cosserat shell.

Now we are in a position to verify that the equilibrium equations in our presented theory are consis-
tent with the equations of Cosserat shell theory.

First, we apply the kinematics and moment definition of classical Kirchhoff–Love thin shells (without
in-plane bending) to equation (240). That is, we set d= n and ~M=M. As seen in section 3.2, Kirchhoff–
Love assumptions together with plane-stress conditions allow us to define the out-of-plane bending vec-
tor M as in equation (75.1), which satisfies the condition

M � n= 0 , ð242Þ

due to equations (75.1) and (72.1). Furthermore, since we consider thin shells, the mass along the shell
thickness can be lumped at the mid-surface. That is, the inertia associated with the director field is
neglected, which implies a = 0 and b = 0. Furthermore, we assume that no external director loads are
applied on the thin shell, that is, k= l= 0. With these assumptions, equation (240) becomes

D

Dt

ð
R

r y da =

ð
R
f da +

ð
∂R

T ds ,

0=

ð
∂R

M ds ,

D

Dt

ð
R

rx×y da =

ð
R

x× f da +

ð
∂R

(x×T+ n×M) ds :

ð243Þ

Second, we extend these equilibrium equations in order to describe in-plane bending of fibers embedded
within the shell surface. The kinematics and the definitions of stress and moment for in-plane bending of
our presented theory in sections 2 and 3 are directly applied to the extended equations.

To this end, we model a fiber as a beam, where all material points on its cross section follow Euler–
Bernoulli kinematics and the mass is lumped at the center line of the beam. This allows us to introduce
an additional director field c associated with in-plane bending, analogous to n= d, that satisfies c � n= 0
and contributes no inertia. We assume that the momentum balance of director c is independent
(decoupled) from the surface director field n. As there is no stress on any cut parallel to the beam center
line, we also consider no external director loads—similar to k and l—acting on the fiber. Therefore, the
set of balance equations in equation (243) simply expands to
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D

Dt

ð
R

r y da =

ð
R
f da +

ð
∂R

T ds ,

0=

ð
∂R

M ds ,

0=

ð
∂R

�M ds ,

D

Dt

ð
R

rx×y da =

ð
R
x× f da +

ð
∂R

(x×T+ n×M+ c× �M) ds

ð244Þ

for in-plane fiber bending. Here, the third equation is the linear momentum balance of the director field
c, while vector �M denotes the stress couple associated with in-plane bending, which is defined by equa-
tion (76.3) in our theory, and thus it always points in fiber direction ‘, that is

�M � c= 0 : ð245Þ

The local balance equations can then be obtained by inserting equations (61) and (78) into equation
(244), considering equations (58), (75), (72) and mass conservation. This gives

Ta
;a + f= r _y ,

Ma
;a = 0 ,

�M
a

;a = 0 ,

aa ×Ta + n,a ×Ma + c,a × �M
a

= 0 :

ð246Þ

Since we can write

n,a ×Ma = (n×Ma);a � n×Ma
;a

c,a ×Ma = (c× �M
a

);a � c× �M
a

;a ,
ð247Þ

the last three equations in (246) can be rewritten into

aa ×Ta + m̂
a
;a = 0 , ð248Þ

where m̂
a

:¼ n×Ma + c× �M
a
is known from equation (71). Equation (248) is identical to the local

momentum balance equation (91), since m̂
a

;a = divs m̂T, which follows directly from equation (86) when
replacing s and Ta with m̂ = aa � m̂

a
and m̂

a
, respectively

Therefore, we can conclude that the linear and angular momentum balance of our presented theory is
equivalent to the set of balance equations of Cosserat theory under Kirchhoff–Love kinematics (d= n),
suitable external loads (l= k= 0), and mass lumping at the mid-surface (a = 0 and b = 0). In other
words, the linear and angular momentum balance equations (83) and (87) of our presented theory fully
characterize the equilibrium of the generalized Kirchhoff–Love shell with in-plane bending.

Remark C.1. Note here, that the total (equivalent) moment m̂ (see equation (74)) can be defined from
the couple vectors as m̂= m̂

a
na = n×Ma na + c× �M

a
na = : m+ �m, where m= n×M and �m= c× �M

are the moment vectors causing out-of-plane and in-plane bending, respectively. In contrast to the shell
theory with in-plane bending of Steigmann [34] these moment vectors are energetically equivalent to
couple vectors M and �M due to equations (242) and (245). This is due to the fact that M and �M in our
theory only do work on local rotations of the normalized vectors n and c, respectively. Physically, this
implies that M and �M are not doing work when stretching the material along n and c, respectively.

Appendix 5

Effective membrane stress in the existing second-gradient theory of Kirchhoff–Love shells

This section presents the intermediate steps to derive the effective membrane stress (equation (122))
appearing in the existing second-gradient theory of Kirchhoff–Love shells (equation (121)), where the

Duong et al. 43

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


change in the relative Christopher symbol S
g
ab is used as the strain measure of in-plane bending. It also

shows that the resulting effective membrane stress is unsymmetric for general materials, even for ini-
tially straight fibers.

To this end, we first take the time derivative of the geodesic curvature (51). This gives

_kg = _kG
g + _kLg , ð249Þ

where

_kG
g = _‘

ab
cg S

g
ab + ‘ab _cg S

g
ab + ‘ab cg

_Sg
ab ,

_kLg = _l
�1

ca ‘
b La

;b + l�1 _ca ‘
b La

;b + l�1 ca
_‘
b

La
;b :

ð250Þ

Here, the time derivatives _‘ab, _ca, _l, and _‘a can be obtained from replacing d� by _� in expressions (210),
(213), (205), and (208), respectively. By taking these into account, equation (250) becomes

_kG
g =�2kG

g ‘
abab � _aa + (‘gd Sa

gd � ‘gd ‘u Su
gd ‘

a)cbab � _aa + ‘ab cg
_Sg

ab ,

_kLg =�2kLg ‘
abab � _aa + l�1 (‘g La

;g � ‘d
g L

g
;d ‘

a)cbab � _aa :
ð251Þ

With this, inserting equation (249) into equation (106) gives

_wint :¼ sabab � _aa + Mab _bab + �m‘ab cg
_Sg

ab , ð252Þ

where sab is defined by equation (122). It is valid for initially curved fibers. For initially straight fibers,
_kLg in equation (249) vanishes, so that sab becomes

sab :¼ ~sab + �m
�
kLg � kG

g

�
‘ab + �m

h�
‘gd Sa

gd

�
cb �

�
‘gd Su

gd ‘u

�
‘a cb

i
, ð253Þ

which is unsymetric for general materials. The asymmetry is due to the fact that the derivative _ca of fiber
director components ca appearing in (equation (250.1)) contains not only surface stretching, but also in-
plane bending. In other words, _ca 6¼ ∂ca

∂abg
_abg.
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