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Abstract: In this article, a generalized sequential domain patching (GSDP) method for efficient
multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP
method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in
this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems
in the DTLZ series, and the results show the GSDP method saved computational cost by more than
85% compared to NSGA-II method. A diversity comparison indicator (DCI) is used to evaluate
approximate Pareto fronts. The comparison results show the diversity performance of GSDP is better
than that of NSGA-II in most cases. We demonstrate the proposed GSDP method using a practical
multi-objective design example of EM-based UWB antenna for IoT applications.

Keywords: multi-objective optimization; Pareto front; microwave devices design; EM-based
simulation; generalized sequential domain patching; UWB antenna

1. Introduction

Nowadays, full-wave electromagnetic (EM) analysis has become a necessary tool for designing
microwave devices. Full-wave EM analysis methods include method of moment (MoM) [1] and the
finite-difference time domain method (FDTD) [2], et al. At present, microwave device models can be
analyzed by commercial full-wave EM-based simulation software packages such as CST and HFSS. The
full-wave EM analysis process is computationally expensive, especially for complex models. When the
model is designed using numerical optimization methods such as the quasi-Newton method [3], genetic
algorithm [4] or other population-based metaheuristic methods, the cost may become prohibitive.

In the design process of microwave devices, such as multi-port component design, many design
objectives need to be considered at the same time, such as return loss [5], insertion loss [6] and so on.
In many cases, especially IoT component design, the miniaturization of devices is also an objective
that a designer has to consider [7]. Therefore, the design process can be seen as a multi-objective
problem that takes many design objectives into consideration. These objectives require simultaneous
optimization and are usually in conflict with each other, which means that improving one objective
may degrade other objectives [8].

The commercial EM-based simulation software packages (CST [9] and HFSS [10]) allow the
inclusion of many optimization objectives. Traditionally, these objectives can be converted into a single
objective by weighted sum and then optimized by popular methods such as the genetic algorithm and
pattern search method [11]. However, this method can only find one of many possible solutions, and the
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solution found by the arbitrary setting of the weight of each objective may not be satisfactory. Currently,
the most robust multi-objective optimization algorithms with good convergence are population-based
metaheuristic multi-objective optimization methods (such as NSGA-II [12]) and multi-objective
particle swarm optimization methods [13]. In the case of EM-based component design [14–16] (each
function evaluation normally requires a full-wave EM analysis), these population-based metaheuristic
methods are not applicable because of the large amount of objective function evaluation required
and thus the very high computation cost. Multi-objective optimization can also be carried out by
constructing surrogate models of EM-based simulation of microwave devices [17–20] and combining
with optimization algorithms such as NSGA-II. The computational cost is saved, but the accuracy of
the solutions may suffer.

The sequential domain patching (SDP) method [21] overcomes the problem of a large number
of function evaluations (EM simulations) by means of searching small areas (patch) sequentially
between two optimal solutions. Since the SDP method uses EM simulation directly for multi-objective
optimization, the error is relatively small. However, the SDP method is only applicable to two-objective
optimization problems.

In this work, a generalized SDP (GSDP) method is proposed to efficiently solve EM-based
multi-objective optimization. The method is applicable to solve optimization problems of two or three
objectives, and it has the potential to be expanded to more objectives. Compared with the existing
algorithms such as NSGA-II [12], the GSDP greatly reduces the computational cost and ensures a good
diversity of optimization results.

2. GSDP Algorithm

2.1. Problem Formulation

Let Fk(x), k = 1, . . . , Nobj, be the kth design objective (x stands for a vector of design parameters).
The aim of the multi-objective optimization is to find an approximate Pareto set X so that for any x ∈ X,
there is no y for which y ≺ x. Here, ≺ is the dominance relation defined as y ≺ x (y dominates over x) if
Fk(y) ≤ Fk(x) for all k = 1, . . . , Nobj, and Fk(y) < Fk(x) for at least one k [22]. A Pareto set in design space
corresponds to a Pareto front [23] in the objective space. All the design solutions in X have the best
possible trade-offs between the considered objectives.

2.2. Framework of GSDP Algorithm

The GSDP algorithm is designed to solve multi-objective problems of two or three objectives.
The algorithm consists of four parts. The first step is to find all the extreme Pareto-optimal design
solutions. Secondly, the Pareto set boundaries between every two extreme Pareto-optimal design
solutions are found through an updated sequential domain patch (SDP [21]) method. If the problem is
a two-objective optimization problem, the obtained boundary is defined as a “design profile”. The
profile is then refined to obtain the final approximate Pareto set.

If the problem is a three-objective optimization problem, the three Pareto set boundaries form
a design profile. The profile is then filled with Pareto-optimal design solutions using the updated SDP
method. These Pareto-optimal design solutions are refined to obtain the final approximate Pareto set.
The flowchart of the GSDP is shown in Figure 1.

2.3. Determining Extreme Pareto-Optimal Designs

The GSDP algorithm begins by obtaining the extreme Pareto-optimal designs [24]. Here, the
extreme pareto-optimal designs are a set of optimal solutions for all single objectives. The optimal
solution x∗k for kth objective, k = 1, . . . , Nobj, is defined as follows:

x∗k = argmin
x

Fk(x) (1)
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Figure 1. Algorithm flowchart of generalized sequential domain patching (GSDP). 
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arg min ( )F=

x
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Figure 1. Algorithm flowchart of generalized sequential domain patching (GSDP).

2.4. Determining Design Profile

After all the extreme Pareto-optimal designs are obtained, we use an updated SDP method to
obtain the Pareto set boundaries between every two extreme Pareto-optimal designs. There is only one
Pareto set boundary which can be obtained when it is a two-objective problem, and this boundary
forms a so-called design profile. When it is a three-objective problem, all three Pareto set boundaries
are linked together to form a design profile. This process of finding a Pareto set boundary is equivalent
to solving a two-objective optimization problem.

Suppose a two-objective optimization problem is defined as follows:

F =

{
minF1(x)
minF2(x)

, (2)

where x is the n-dimensional design parameter vector. x∗1 and x∗2 are the single objective optimal
solutions of F1 and F2, respectively,

x∗1 = argmin
x

F1(x), (3)

x∗2 = argmin
x

F2(x). (4)

The method to find the Pareto set boundary of the two objectives is described in detail as follows:

1. Determine the design space; the lower bound vector lb and upper bound vector ub can be defined
as follows:

lb j = min(x∗1 j, x∗2 j), (5)

ub j = max(x∗1 j, x∗2 j), (6)

where lb j and ub j are the jth variables of vectors lb and ub respectively; x∗1 j and x∗2 j are the jth
variables of vectors x∗1 and x∗2 respectively.

2. Set the perturbation size vector d = [d1, . . . , dn]T.
3. Let the current points x1

c = x∗1 and x2
c = x∗2.

4. Evaluate n perturbations xp
k = x1

c + [0, . . . , 0, dk, 0, . . . , 0]T (k = 1, . . . , n) around x1
c (towards x2

c
only) and select the one that leads to the largest improvement with regard to the second objective
F2 as the current point x1

c .
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5. Evaluate n perturbations xp
k = x2

c + [0, . . . , 0, dk, 0, . . . , 0]T (k = 1, . . . , n) around x2
c (towards x1

c
only) and select the one that leads to the largest improvement with regard to the first objective F1

as the current point x2
c .

6. If x1
c or x2

c exceeds the design space, the process is stopped. If both x1
c and x2

c are in the design
space, return to step 4.

In step 2, the perturbation size vector d can be obtained by the following formula:

d j =

∣∣∣∣x∗1 j − x∗2 j

∣∣∣∣
K

, (7)

where d j ( j = 1, . . . , n) means the size of the perturbations in the jth direction. The value of K is
a user-defined constant (typically between 5 and 20).

As an illustration, the above method is applied to solve a two-objective optimization problem:

F =

 min f1(x) = 1− e
−(x1−

1
√

6
)

2
−(x2+

1
√

8
)

2

min f2(x) = 1− e
−(x1+

1
√

6
)

2
−(x2−

1
√

8
)

2 , (8)

where the design parameter dimension n = 2 and constant K = 15; the process to find the Pareto
set boundary is shown in Figure 2. Corresponding to the Pareto set boundary for the two-objective
problem in Figure 2, the Pareto front boundary in the objective space is shown in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 5 of 18 
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Figure 2. Illustration of the process of finding a Pareto set boundary by using an updated SDP method: 
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(a) Starting points (red square) and perturbation points (blue dot, where the best perturbations become
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Since (8) is a two-objective optimization problem, the design profile is formed by the Pareto
set boundary (shown as red dots in Figure 2b). Its corresponding Pareto front boundary (shown in
Figure 3) is called the “objective profile”. According the GSDP algorithm flowchart (shown in Figure 1),
all the solutions in the design profile need to be refined to obtain the final approximate Pareto set.
Its corresponding approximate Pareto front is shown in Figure 4. The refinement process is described
later in Section 2.6.Sensors 2019, 19, x FOR PEER REVIEW 6 of 18 
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Pareto front (objective space).
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If the problem is a three-objective optimization problem, the extreme Pareto-optimal designs X12,
X13, and X23 are obtained first, where Xij is the Pareto set boundary of the ith and jth objectives found
by updated SDP, and Fij is the Pareto front boundary corresponding to Xij. F12, F13 and F23 form
the objective profile for three objectives. The conceptual results for the obtained design profile and
objective profile for three objectives are illustrated in Figure 5.Sensors 2019, 19, x FOR PEER REVIEW 7 of 18 
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Figure 5. Conceptual illustration of three design objectives: (a) design profile (design space); (b) objective
profile (objective space).

2.5. Filling Design Profile

In the case of three design objectives ( f1, f2 and f3), the corresponding extreme optimal designs
are x∗1, x∗2 and x∗3, respectively. The design profile found following Section 2.4 is filled by the process
described below.

The process finds the appropriate design set Xi between x∗i and its opposite Pareto set boundary
Xjk (j, k = 1, 2, 3 and j, k , i) for all i = 1, 2, 3. The design sets Xi (i = 1, 2, 3) and the design profile are
combined to form the initial approximate Pareto set S. In other words, the design profile is filled by the
three similar steps shown in the flowchart in Figure 6.

Here, we only describe the process of obtaining the solution set X1 between x∗1 and X23 for ease of
reading. The processes to find X2 and X3 are similar.

1. Let Xi
23 be the ith solution in X23, i = 1.

2. If i > N, the process stops, where N is the number of solutions in X23.
3. Determine the design subspace, the lower bound vector lb and upper bound vector ub can be

defined as follows:
lb j = min(x∗1 j, Xi

23 j
), (9)
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ub j = max(x∗1 j, Xi
23 j

), (10)

where lb j and ub j are the jth variables of vectors lb and ub, respectively, and x∗1 j and Xi
23 j

are the

jth variables of vectors x∗1 and Xi
23, respectively, where Xi

23 is the ith solution in X23.

4. Set the perturbation size vector d = [d1, . . . , dn]T, d j =

∣∣∣∣∣x∗1 j−Xi
23 j

∣∣∣∣∣
K ; K is up to the user.

5. Let the current points x1
c = x∗1 and x2

c = Xi
23.

6. Evaluate n perturbations xp
k = x1

c + [0, . . . , 0, dk, 0, . . . , 0]T (k = 1, . . . , n) around x1
c (towards x2

c
only) and select the one that leads to the largest improvement with regard to F2 = a ∗ f2 + b ∗ f3 as
the current point x1

c .
7. Evaluate n perturbations xp

k = x2
c + [0, . . . , 0, dk, 0, . . . , 0]T (k = 1, . . . , n) around x2

c (towards x1
c

only) and select the one that leads to the largest improvement with regard to F1 = f1 as the
current point x2

c .
8. If x1

c and x2
c exceeds the design subspace, i = i + 1, return to step 2. If both x1

c and x2
c are still in

the design space, return to step 6.

The weighting factors a and b in step 6 are defined as follows:

a =
dl

dl + dr
, (11)

b =
dr

dl + dr
, (12)

where dl is the distance between Xi
23 and x∗2 in the design space, and dr is the distance between Xi

23
and x∗3. When x∗1 and Xi

23 are taken as starting points to locate set X1 by the process mentioned above,
the relative location of Xi

23 in X23 affects the selection of the perturbed design. As shown in Figure 7a,
if dl < dr, the selection is biased towards x∗3 and if dl > dr, the selection is biased towards x∗2. Therefore,
the weighting factors a and b are necessary to balance the bias. The process to connect x∗1 and Xi

23 is
illustrated as Figure 7.

When the filling design profile is complete, all the obtained paths and design profiles obtained in
Section 2.4 together constitute the initial approximate Pareto set.Sensors 2019, 19, x FOR PEER REVIEW 8 of 18 
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2.6. Pareto Set Refinement

In the above method, the initial approximate Pareto set and the corresponding Pareto front are
obtained, so there are still many dominated solutions in the result. These dominated solutions are
deleted to ensure the results are all non-dominated solutions (the final approximation Pareto set).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2019, 19, 3065 8 of 16

Sensors 2019, 19, x FOR PEER REVIEW 9 of 18 

 

dl
a

dl dr
=

+
, (11) 

dr
b

dl dr
=

+
, (12) 

where dl is the distance between 23

iX and 
*

2
x  in the design space, and dr is the distance between 

23

iX  and 
*

3
x . When 

*

1
x  and 23

iX  are taken as starting points to locate set 
1

X  by the process 

mentioned above, the relative location of 23

iX  in 23
X  affects the selection of the perturbed design. 

As shown in Figure 7a, if dl < dr, the selection is biased towards 
*

3
x  and if dl > dr, the selection is 

biased towards 
*

2
x . Therefore, the weighting factors a and b are necessary to balance the bias. The 

process to connect 
*

1
x  and 23

iX  is illustrated as Figure 7. 

 
(a) 

 
(b) 

Figure 7. Filling the path between 
*

1
x and 23

iX . (a) Design space. The red five-pointed star is 23

iX , 

and the black dots are the path between 
*

1
x and 23

iX . (b) Objective space. The red star is the 

corresponding representation of 23

iX  in the objective space, and the black dots are the 

corresponding representation of the path in the objective space. 

When the filling design profile is complete, all the obtained paths and design profiles obtained 

in Section 2.4 together constitute the initial approximate Pareto set. 

  

Figure 7. Filling the path between x∗1 and Xi
23. (a) Design space. The red five-pointed star is Xi

23, and
the black dots are the path between x∗1 and Xi

23. (b) Objective space. The red star is the corresponding
representation of Xi

23 in the objective space, and the black dots are the corresponding representation of
the path in the objective space.

2.7. Evaluation

The Diversity Comparison Indicator (DCI) [25] is used to assess the diversity of the obtained
Pareto front with respect to the other Pareto fronts. In this method, all the concerned Pareto fronts are
compared together and the dominated solutions are removed. The remaining solutions are put into
a grid environment. DCI considers the total contribution of each Pareto front to all the nonempty grid
cells. The DCI method can only be applied to the assessment of relative diversity of a Pareto front
against others rather than providing an absolute measure of distribution for a single Pareto front. The
DCI value is a number in the range [0, 1], and the higher the DCI value, the better the distribution of
this Pareto front.

3. Illustration and Verification Examples

In this section, we use 4 DTLZ three-objective functions to verify the GSDP algorithm.

3.1. Design Case 1: DTLZ1

The DTLZ1 [26] function is as follows:

DTLZ1 =



min f1(x) = 0.5x1x2(1 + g(x))
min f2(x) = 0.5x1(1− x2)(1 + g(x))
min f3(x) = 0.5(1− x1)(1 + g(x))

g(x) = 100
(
n− 2 +

n∑
i=3

(
(xi − 0.5)2

− cos(20π(xi − 0.5))
)) , (13)
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where xi means the ith variable of n-dimensional vector parameter x.
Here, parameter x has a dimension of n = 6. The built-in function in MATLAB fmincon is used

with the initial optimization points [0, 0, 0, 1, 1, 1] to obtain the three single-objective optimal solutions,
x∗1 = [0.0008, 0.0008, 0.5000, 0.5000, 0.5000, 0.5000], x∗2 = [0.1784, 0.8241, 0.5999, 0.4001, 0.4001, 0.4001],
x∗3 = [1.0000, 0.5404, 0.7998, 0.4002, 0.4002, 0.4000]. Then, let the three solutions be the starting points of
GSDP. The approximate Pareto front of 233 solutions is obtained by GSDP, and the process costs 5303
f1 function evaluations, 5394 f2 function evaluations and 5218 f3 function evaluations.

As a comparison, (13) is also solved using the built-in function in MATLAB gamultiobj which is
a controlled, elitist genetic algorithm (a variant of NSGA-II). To find the approximate Pareto front
of 233 solutions, each of the objective functions ( f1, f2, and f3) is evaluated 105,735 times. The
computational cost of GSDP is 95% less than that of NSGA-II. The approximate Pareto fronts P1 and
P2 obtained by the GSDP and NSGA-II, respectively, are shown in Figure 8.
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By combining P1 and P2 and deleting the dominated solutions, all the 233 solutions in the P1 are
retained, while only 37 solutions in the P2 are retained. That means 196 solutions in P2 are dominated
by the solutions in P1.

The distribution performances of the obtained two Pareto fronts are evaluated by the Diversity
Comparison Indicator (DCI) [25]. In this case, the DCI value of P1 is 0.7667, while the DCI value of P2
is 0.2333.

As demonstrated in this example, GSDP is much more efficient than NSGA-II. Moreover, the
distribution of the approximate Pareto front of GSDP is relatively better than that of NSGA-II.

3.2. Design Case 2: DTLZ2

The DTLZ2 [26] function is as follows:

DTLZ2 =


min f1(x) = cos(π2 x1) cos(π2 x2)(1 + g(x))
min f2(x) = cos(π2 x1) sin(π2 x2)(1 + g(x))
min f3(x) = sin(π2 x1)(1 + g(x))

g(x) =
n∑

i=3
(xi − 0.5)2

, (14)

where xi means the ith variable of the n-dimensional vector parameter x.
At n = 9, the built-in function in MATLAB fmincon is used with the initial optimization points [0,

0, 0, 1, 1, 0, 0, 1, 0] to obtain the three single-objective optimal solutions x∗1 = [0.9994, 0.9994, 0.5038,
0.4962, 0.4962, 0.5038, 0.5038, 0.4962, 0.5038], x∗2 = [0.9524, 0.0077, 0.5004, 0.4996, 0.4996, 0.5004, 0.5004,
0.4996, 0.5004], x∗3 = [0.0000, 0.4907, 0.5069, 0.4931, 0.4931, 0.5069, 0.5069, 0.4931, 0.5069]. Then, let
the three solutions be the starting points of GSDP. The approximate Pareto front of 833 solutions is
obtained by GSDP, and the process costs 6328 f1 function evaluations, 9208 f2 function evaluations and
6270 f3 function evaluations.

As a comparison, NSGA-II is used to obtain 833 solutions of the approximate Pareto front. Each
objective function is evaluated 268,940 times. GSDP saves about 97% of computational cost compared
to NSGA-II. The approximate Pareto fronts P1 and P2 obtained by the GSDP and NSGA-II, respectively,
are shown in Figure 9.

After combining P1 and P2 and deleting the dominated solutions, all 833 solutions in the P1 are
retained, while only 454 solutions in the P2 are retained. The DCI values of P1 and P2 are 0.4840 and
0.5426, respectively. Although the DCI of P1 is slightly less than that of P2, the GSDP has absolute
advantages in terms of computational cost.

3.3. Design Case Validation Summary

In addition to the above test results, the GSDP method is tested using more three-objective
functions with variables of various dimensions. We summarize the results in Table 1. P1 and P2
represent the approximate Pareto fronts obtained by the GSDP and NSGA-II, respectively. P1 and
P2 have the same number of solutions. It can be seen that for a variety of problems and variable
dimensions, the GSDP method performs better than or similar to NSGA-II in terms of distribution, but
GSDP saves more than 85% in computational cost for all the testing cases.
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Table 1. Comparison results of GSDP and NSGA-II methods. DCI: Diversity Comparison Indicator.

Functions
(Dimension of

Design
Parameter)

Number of
Solutions in

P1 or P2

Function
Evaluation

Times Using
GSDP (P1)

Function
Evaluation

Times Using
NSGA-II (P2)

Time
Saving

DCI
(P1)

DCI
(P2)

DTLZ1 (6) 233 15,915 317,205 95% 0.7667 0.2333
DTLZ2 (9) 833 21,806 806,820 97% 0.4840 0.5426
DTLZ1 (5) 470 13,299 232,650 94% 0.9424 0.0576

DTLZ2 (11) 348 10,043 124,236 92% 0.4737 0.5533
DTLZ3 (12) 1921 58,338 1,192,941 95% 0.9602 0.0398
DTLZ4 (7) 530 24,358 179,670 86% 0.4148 0.6049

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2019, 19, 3065 12 of 16

4. UWB Antenna Multi-Objective Design Example

The proposed GSDP method is applied to the multi-objective optimization of a microwave device:
a UWB antenna [27]. The antenna is implemented on an FR4 substrate (ε = 4.3, h = 1.55 mm, tanδ =

0.02). Here, f1 (the first objective) is used to minimize |S11|(dB) between 4 GHz and 10 GHz, while
f2 (the second objective) is used to minimize the difference of the realized gain between 4 GHz and
10 GHz and f3 (the third objective) is used to minimize the UWB antenna size. The antenna structure
and design parameter vector x = [a, b, d, kL, ds, dW, dWs, L0, Lg, Ls, Ws] are shown in Figure 10.
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Figure 10. UWB antenna structure: (a) the front view; (b) back view. The gray part is the metal patch
and the green part is the dielectric substrate.

Here, W0 = 0.731 is fixed. The first step of the GSDP method is to find the three extreme optimal
design solutions using single-objective optimization (here, a genetic algorithm is used): x∗1 = [1.1149,
0.5310, 4.3989, 6.2208, 1.4515, 2.3120, 1.3032, 12.5860, 8.6279, 8.0845, 0.5176], x∗2 = [0.5991, 0.4793, 4.9893,
6.4903, 1.7809, 2.0737, 2.5576, 9.5941, 6.2921, 8.8158, 0.4254], x∗3 = [1.1813, 0.3480, 2.3139, 3.6562, 0.6466,
1.1315, 1.1168, 5.3947, 3.6096, 5.3438, 0.2531]. Then, the approximate Pareto front is found by GSDP as
shown in Figure 11.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18 

 

Some of the solutions in the Pareto front shown in Figure 11 may not applicable to the design of 

UWB antennae. For example, the 
1

f  ( 11
S ) value is greater than -7 dB. These solutions are discarded. 

Then, the final UWB antenna multi-objective design results are shown in Figure 12. Eight solutions 

( (1)x , (2)x ,…, (8)x ) are selected according to customized specifications (e.g., all are below −9 dB 

between 4 GHz and 10 GHz, all the realized gain (dBi) variation are below 2.6 between 4 GHz and 10 

GHz, and sizes are below 400 mm2). Their objective values and parameter values are shown in Table 

2. The 
11

(dB)S  responses (reflection coefficient) and the realized gain (dBi) are shown in Figure 13.  

 

Figure 11. The approximate Pareto front found by GSDP. 

A total of 3466 CST simulations are used to optimize the UWB antenna, which includes 1600 

simulations to obtain the extreme optimal solutions (single-objective optimization process). This 

takes about 48.14 h on an Intel(R) Core i5-6500 processor with 8 GB RAM. If the NSGA-II method 

were used for the three-objective optimization of this UWB antenna (11 design variables), the 

computational cost is estimated at more than 100,000 CST EM simulations (see DTLZ2(11) in Table 

1), which is prohibitive. 

 

Figure 12. The applicable designs for the UWB antenna. 

  

Figure 11. The approximate Pareto front found by GSDP.

Some of the solutions in the Pareto front shown in Figure 11 may not applicable to the design of
UWB antennae. For example, the f1 (|S11|) value is greater than −7 dB. These solutions are discarded.
Then, the final UWB antenna multi-objective design results are shown in Figure 12. Eight solutions (x(1),
x(2), . . . , x(8)) are selected according to customized specifications (e.g., all are below −9 dB between
4 GHz and 10 GHz, all the realized gain (dBi) variation are below 2.6 between 4 GHz and 10 GHz,
and sizes are below 400 mm2). Their objective values and parameter values are shown in Table 2.
The S11(dB) responses (reflection coefficient) and the realized gain (dBi) are shown in Figure 13.
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Figure 13. The selected design results (x(1), x(2), . . . , x(8) ref. Table 2) on the approximate Pareto set
obtained by GSDP: (a) All S11(dB) responses are below −9 dB between 4 GHz and 10 GHz; (b) All the
realized gain (dBi) variationd are below 2.6 between 4 GHz and 10 GHz.
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Table 2. Objective values and parameter values of selected designs found by GSDP.

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

f1 −10.7307 −10.0570 −10.3724 −9.2783 −10.4177 −10.2159 −9.1132 −10.7473
f2 2.4739 2.0232 2.5810 1.7619 2.369881 2.0293 2.2915 1.8562
f3 145.9946 347.8369 140.0131 369.7517 164.1404 350.5260 162.1286 353.8818
a 1.1813 0.5991 1.1813 1.1149 1.1813 0.5991 1.1813 1.1149
b 0.3480 0.4793 0.3480 0.5310 0.3480 0.4793 0.3480 0.5310
d 3.0089 4.9893 2.3139 4.3989 2.3139 3.2057 2.3139 4.3989

kL 3.6562 6.4903 4.5111 6.2208 3.6562 6.4903 3.6562 6.2208
ds 0.9149 1.7809 0.6466 1.4515 0.6466 1.7809 0.6466 1.4515

dW 1.1315 2.0737 1.1315 2.3120 1.9185 2.0737 1.8398 1.9185
dWs 1.1168 1.1168 1.1168 1.3032 1.1789 2.0558 1.1168 1.3032
L0 7.3929 9.5941 7.0745 11.9876 7.9143 9.5941 8.2712 12.5860
Lg 3.6096 6.2921 3.6096 8.6279 3.6096 6.2921 3.6096 8.6279
Ls 5.3438 8.8158 6.2574 8.0845 5.3438 8.8158 5.3438 8.0845
Ws 0.2531 0.4254 0.2531 0.5176 0.2531 0.4254 0.2531 0.5176

A total of 3466 CST simulations are used to optimize the UWB antenna, which includes 1600
simulations to obtain the extreme optimal solutions (single-objective optimization process). This takes
about 48.14 h on an Intel(R) Core i5-6500 processor with 8 GB RAM. If the NSGA-II method were used
for the three-objective optimization of this UWB antenna (11 design variables), the computational cost
is estimated at more than 100,000 CST EM simulations (see DTLZ2(11) in Table 1), which is prohibitive.

5. Conclusions

An efficient multi-objective optimization method (GSDP) for EM-based microwave device design
is presented. The GSDP method generalizes the SDP method to solve multi-objective problems of
both two and three objectives. The GSDP method includes four parts: (i) determining the extreme
Pareto-optimal designs; (ii) determining the design profile; (iii) filling the design profile; and (iv)
refining the Pareto set. Each part is described in detail. The GSDP method is compared to NSGA-II in
terms of computational efficiency and the performances of Pareto fronts. The GSDP method saves
more than 85% in computational cost compared to NSGA-II with similar or better performance in
terms of Pareto front distribution (DCI). A UWB antenna multi-objective EM-based design example
demonstrates the efficiency of GSDP in finding the approximate Pareto set (front). Selected designs
from the approximate Pareto set satisfy all three customized specifications.
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