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a b s t r a c t

We address a generalization of the classical 1- and 2-processor unit execution time
scheduling problem on dedicated machines. In our chromatic model of scheduling
machines have non-simultaneous availability times and tasks have arbitrary release times
and due dates. Also, the versatility of our approach makes it possible to generalize all
known classical criteria of optimality. Under these stipulations we show that the problem
of optimal scheduling of sparse tree-like instances can be solved in polynomial time.
However, if we admit dense instances then the problem becomes NP-hard, even if there
are only two machines.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a number of new approaches to the problem of parallel computer systems has been proposed. One of
them is scheduling of multiprocessor task systems [4]. According to this model any task may require for its processing more
than one processor at a time. There are two main classes of problems in multiprocessor task scheduling. In the first class of
problems, it is assumed that the number of simultaneously required processors is important [2,11] and each task requires
any fixed subset of processors whose cardinality is equal to the prescribed number. In the second class of multiprocessor
scheduling problems, the set of simultaneously required processors is assumed to be important [1,3,9,10]. In this case either
a certain fixed set of processors, or a family of processor sets on which the task can be executed is given. This paper deals
with the problem of scheduling tasks assigned to a fixed set of processors.
Since the problem of scheduling 2-processor tasks is NP-hard subject to all classical optimality criteria, in this paper we

are concerned with the special case in which the duration of every task is the same. We will call such tasks unit execution
time (UET) tasks. Consequently, all data are assumed to be positive integers. Later on we will see that such a restricted
version, although remaining NP-hard for some instances in dense systems, does allow for polynomial-time algorithms in
numerous special cases of sparse systems.
The third important assumption concerns availability constraints. Namely, we assume that the availability of tasks is

restricted and, in addition, some machines are available only in certain intervals called time windows. Time windows may
appear due to computer breakdowns or maintenance periods. Moreover, in any multitasking computer system and in hard
real-time systems in particular, urgent tasks have high priority and are pre-scheduled in certain time intervals, thus creating
multiple time windows of availability. Scheduling in time windows was considered in e.g. [1,2,5,6].
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Fig. 1. Example (a) problem instance (b) scheduling hypergraph (c) Gantt diagram.

The rest of the paper is organized as follows. In Section 2 we set up the problem more formally and model it as a cost
list edge-coloring (CLEC) problem. Section 3 is devoted to the case when two tasks sharing pairwise at most one machine
constitute a hypertree. We show that our problem can be solved efficiently by a tree coloring technique. In Section 4 we
generalize this approach to the case when besides the previous tasks there are O(1) additional multiprocessor tasks.
In the second part of the paper we consider the case where any pair of tasks can share an arbitrary number of processors.

In particular, we show that the scheduling problem is NP-hard even if the system consists of 2 machines. Since the proof is
rather complicated, we postpone it to Section 5 of the paper. The paper is concludedwith a description of how the procedure
developed in Section 4 can be used to meet the most common criteria of scheduling.

2. Mathematical model

Classical scheduling theory provides various criteria of scheduling like Cmax, Lmax, Tmax, F ,ΣwjCj and many others. All of
them can be reduced to the cost list scheduling model which is presented in this section. Let J = {J1, J2, . . . , Jm} be a set of
tasks which can be executed on a set of processorsM = {M1,M2, . . . ,Mn}. All processors are distinct, and they can execute
only one specified task at a time. Each task Ji requires the simultaneous use of a nonempty set fixi ⊆ M of processors for its
execution. All tasks are independent, nonpreemptable, and of the same length. For the sake of simplicitywemay assume that
execution time of Ji, i.e. pi = 1, for each i = 1, . . . ,m. Every processor can work on not more than one task at the same time.
Time is divided into unit length slots numbered with successive integers. Tasks have availability constraints prespecified by
lists L(Ji) ⊆ N (whereN is the set of nonnegative integers) of available time slots in which Ji can be executed. With each task
we associate a function fJi(x)which assigns to each x ∈ L(Ji) the cost of executing Ji if it is executed in time slot x. Our aim is
to find a schedule with minimum total cost.
Our problem can be described using three-field notation as P|win, pj = 1, fixj|crit , where win stands for the fact that

availability constraints are imposed on tasks. By the word crit we mean any of the criteria commonly used in classical
scheduling theory.
The cost list scheduling problem can be modeled as the cost list edge-coloring of a hypergraph. Let H = (V , E) be a

hypergraph. V = V (H) is the set of vertices and E = E(H) is a multiset of nonempty subsets of V called edges. A d-edge
e is an edge that contains exactly d vertices. Ψ (e) = |e| = d denotes the dimension of edge e and Ψ (H) = maxe∈E Ψ (e)
is the dimension of hypergraph H . The degree ∆(v) of a vertex v ∈ V is the number of edges in which v occurs. ∆(H) =
maxv∈V ∆(v) is the degree of H . The neighborhood N(e) of edge e is the set of all edges in H that share at least one vertex
with e. N(H) is the cardinality of the maximal neighborhood of an edge in H .
A proper edge-coloring of hypergraph H with k colors is a function c : E(H)→ {1, . . . , k} such that no two edges which

share a vertex have the same color (number). A proper list edge-coloring of a hypergraph requires the function c to satisfy an
additional condition c(e) ∈ L(e) for each e ∈ E, where L(e) is the list of colors available to edge e. Let us consider a function
fe : L(e) → N for e ∈ E. If for all e, all elements x ∈ L(e) are assigned cost fe(x) and the aim of the coloring is to minimize
the total cost, then the problem becomes a cost list edge-coloring (CLEC) of the hypergraph.
There is a one-to-one correspondence between cost list edge-coloring of a hypergraph and the cost list scheduling

model presented in this section. Vertices of a hypergraph correspond to processors, edges to jobs and colors to time slots.
A hypergraph created for an instance of a scheduling problem is called a scheduling hypergraph. From now on the terms
‘scheduling’ and ‘edge coloring’ will be used interchangeably. In Fig. 1 we give an example of an instance of the cost list
scheduling problem, and a solution to it with total value 9. We assume in the example that fe(x) = x for all e and x.
The hypergraph coloring problem is in the general case NP-hard. For this reason we consider some sparse and specific

hypergraphs in this paper. A hyperforest H is a hypergraph such that there exists a spanning tree T (simple graph) for which
each edge of H induces a connected subtree in T . A connected hyperforest is called a hypertree. We say that a hypergraph is
linear if no two edges share more then one vertex.
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Fig. 2. (a) Hypertree S (b) Hypertrees S1, S2, . . . , Sp created after splitting hypertree S.

Fig. 3. Hypertree Si and its subhypertrees U1,U2, . . . ,Ur .

3. Cost list edge-coloring of linear hypertrees

The stated definition of a hypergraph allows 1-edges (loops) to appear, however, without loss of generality we may
consider hypergraphs without 1-edges. Indeed there is a simple procedure that allows us to eliminate all loops. Suppose
that e = {v} is a 1-edge. Associate one additional vertex v′ with e. We can replace e with edge e′ = {v, v′}. Note that such
an exchange does not affect the coloring of the hypergraph and if the hypergraph is a hypertree, the new hypergraph still
remains a hypertree. In [6] an optimal cost list coloring algorithm for trees was presented. A similar approach was applied
in [12] for the edge-chromatic sum of hypertrees. In the following we present an algorithm for cost list coloring of linear
hypertrees.

Theorem 3.1. An optimal cost list coloring of the edges of a linear hypertree T can be found in time O(nN2 logNW ), where
N = N(T ), n = |V (T )| and W is a maximal cost of colors among all edges.

Proof. Without loss of generality we assume that the list of colors L(e) associated with each edge e ∈ E(T ) is of length
|N(e)| + 1. A hypergraph with such a collection of lists is certainly colorable. All hypergraphs which do not fulfill this
condition can be reduced to hypergraphs which do. If the lists are too long we can just delete the most expensive colors
from them, because no more than |N(e)| + 1 least expensive colors will be used in optimal coloring. On the other hand,
if the lists are too short, we can extend them with very expensive colors of cost C ′ = |E(T )|maxe∈E(T ),x∈L(e)(fe(x) + 1), for
example. It is impossible to find the coloring of the initial hypergraph if and only if the cost of coloring of the modified
hypergraph exceeds C ′.
We shall sketch a procedure for determining the minimum cost of a list coloring of a hypertree T . One can easily extend

this procedure to find an optimal coloring.
In every linear loopless hypertree we can find an edge which contains at least one vertex of degree 1. Let e be such an

edge of a linear hypertree S and let e contain a vertex v such that ∆(v) = 1. We define a function CostS(e) : L(e) → N
which to every element k ∈ L(e) assigns the minimal total cost of coloring of the hypertree S under the assumption
that e is colored with color k. Values of the function CostS(e) will be obtained recursively. If S consists of only one edge
e then CostS(e)(k) = fe(k). Otherwise, let e = {v, v1, v2, . . . , vp} and let ∆(v) = 1. We decompose S into p hypertrees
S1, S2, . . . , Sp. Each Si consists of vertex v, vertex vi, an edge {v, vi} with the same list and cost function as e and the whole
connected component (which contains vertex vi) established after deletion of the edge e from S. This is presented in Fig. 2.
To count the values of the function CostSi({v, vi}) we shall create a bipartite graph K

v,vi with weights on the edges. The
vertices in the first partition represent subhypertrees U1,U2, . . . ,Ur formed after splitting hypertree Si (each Uj has only
one edge ej containing vi). This is presented in Fig. 3.
The second partition of K v,vi consists of vertices representing colors L(e1) ∪ · · · ∪ L(er). There is an edge {Uj, x} in K v,vi

if and only if x ∈ L(ej). The weight of {Uj, x} is CostUj(ej)(x). The value of CostSi({v, vi})(x) is equal to the minimal weighted
matching in K v,vi − {x} plus fe(x). Using the values of all functions CostSi({v, vi}) it is possible to count CostS(e) with the
following formula CostS(e)(x) = CostS1({v, v1})(x) + · · · + CostSp({v, vp})(x) − (p − 1)fe(x). The result of the algorithm is
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the minimum value of function CostT (e)(x), where e is an arbitrary edge of T which contains at lest one vertex of degree 1.
In this way we obtain the optimal value of a cost list coloring of the hypertree.
In [7] the authors present an algorithm for finding the minimal weighted matchings in all bipartite graphs G − {v},

v ∈ V (G) with complexity O(m′
√
n′ log n′W ), where W is the maximal weight, n′ is the number of vertices and m′ is the

number of edges in G. In our case n′ ≤ ∆(vi) + ∆(vi)(N + 1) and m′ ≤ ∆(vi)(N + 1). The complexity of calculating all
the values of the function CostSi({v, vi})(x) is O(∆

3/2(vi)N3/2 log∆NW ). So the total complexity of the whole algorithm is
bounded by

∑
vi
O(∆3/2(vi)N3/2 log∆NW ) = O(n∆1/2N3/2 log∆NW ) since our hypergraph is a linear hypertree. The final

complexity result is O(nN2 logNW ) as∆(H) ≤ N(H). �

If our set of tasks generates a hypergraph which is a set of disconnected hypertrees, then we can color such a hyperforest
by coloring each connected component separately since their colorings do not interfere.

4. Cost list edge-coloring of hypergraphs with few cycles

Let us consider a class of hypergraphs which is a generalization of hypertrees. We define k-hypertrees as hypertrees with
k additional edges, deletion of which reduces a k-hypertree to a linear hypertree.

Lemma 4.1. A hypergraph H = (V , E) is a linear hypertree if and only if it is connected and |E| = |V | − 1−
∑
e∈E(Ψ (e)− 2).

Proof. A simple graph is a tree if and only if it is connected and m = n − 1, where m is the number of edges and n is the
number of vertices. Notice that hypergraphH is a linear hypertree if and only if the graph obtained by changing all the edges
ofH into trees is a tree. Hence each interchange of a connected subtree into a hyperedge in a certain tree reduces the number
of edges by Ψ (e)− 2. �

Theorem 4.1. For every fixed k there is an algorithm with complexity O(nN2+k logNW + nk+1) for an optimal cost list edge-
coloring of a k-hypertree.

Proof. We will use analogous method as in [6] for cost list coloring of graphs with few cycles. At the very beginning we
have to find out which k edges are the edges whose deletion changes a k-hypertree into a linear hypertree. In linear time
we can check whether a hypergraph is connected. By Lemma 1 we can conclude that checking if a connected hypergraph is
a linear hypertree can also be done in linear time. With a brute force method we need to examine

(m
k

)
= O(mk) = O(nk)

different k-sets of edges. Assume that deletion of edges e1, e2, . . . , ek form hypergraph H = (V , E) makes it hypertree.
We can list precolor those edges in O(N(H)k) different ways. Let us change each of those edges ei = {v1, v2, . . . , vΨ (ei)}
into Ψ (ei) pendant edges {vj, v′j}, for j = 1, . . . ,Ψ (ei), where v

′

j is a new additional vertex, and assign to each new edge a
1-element list {c(ei)} of cost 0, where c : {e1, e2, . . . , ek} → N is a precoloring function. Now we need to call the cost list
edge-coloring algorithm for hypertrees. The total cost must include the costs fei(c(ei)) of the precolored edges e1, e2, . . . , ek.
Since this step must be executed O(Nk) times the complexity of the algorithm follows. �

5. NP-completeness proof

The reader may ask: what is the complexity of the problem on non-linear hypergraphs? In this section we answer this
question by showing that the problem is NP-hard even for hypergraphs with 2 vertices. We shall discuss a list edge-coloring
problem for which the CLEC problem is a generalization.

Theorem 5.1. The problem of list edge-coloring is NP-complete even for general hypergraphs with 2 vertices.
Proof. We will reduce to our problem the classical 3-SAT problem [8]. Let Φ be a Boolean formula. Let C = {c1, . . . , cm}
be a set of clauses and X = {x1, . . . , xn} the set of variables. By X∗ = {x, x̄ : x ∈ X} denote the set of all literals.
Our aim is to construct a hypergraph F with only 2 vertices that has its list coloring if and only if Φ is satisfied. Let
g : {1, . . . ,m} × X∗ → {1, . . . , 2mn} be an arbitrary one-to-one function, we assume that g(m + 1, x) = g(1, x). For
each x ∈ X we construct auxiliary hypergraph Fx on 2 vertices u, v. Fx has 2m edges: between u and v there are parallel
edges e{u,v}i,x and 1-edges containing ve{v}i,x for i = 1, . . . ,m. We assign the two-element lists to the edges as follows (see
Fig. 4):

L(e{u,v}i,x ) = {g(i, x), g(i, x̄)}

L(e{v}i,x ) = {g(i, x̄), g(i+ 1, x)} (1)

Fx can be colored in only two ways:

1. c(e{v}i,x ) = g(i, x̄) and c(e
{u,v}
i,x ) = g(i, x) for i = 1, . . . ,m—then on the edges incident with u we have missing colors

g(i, x̄),
2. c(e{v}i,x ) = g(i+ 1, x) and c(e

{u,v}
i,x ) = g(i, x̄) for i = 1, . . . ,m—then on the edges incident with u we have missing colors

g(i, x).
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Fig. 4. Auxiliary hyperpath Fx with the number and list of available colors on each edge.

Fig. 5. Construction of hypergraph F .

The first case represents the situation when variable x has value ‘‘false’’, the second when x is ‘‘true’’. The whole of F is
constructed in the following way:

1. We unify all the vertices u, v in all Fx. In this way we obtain one hypergraph on two vertices. Note that as g is one-to-one,
the colors on the edges of Fx and Fy do not interfere.

2. For each clause ci ∈ C we associate with vertex u one additional 1-edge e
{u}
i with list of colors

L(e{u}i ) = {g(i, pi), g(i, qi), g(i, ri)} (2)

where pi, qi, ri are the literals of clause ci.

In Fig. 5 we show a construction of hypergraph F .
Notice that we can assign a color to e{u}i if at least one color among L(e

{u}
i ) is available. Assignment of a color to e

{u}
i means

that we assign the value ‘‘true’’ to one of the literals of ci. HenceΦ is satisfied if and only if the hyperpath F is colorable. �

Corollary 5.1. Cost list edge-coloring of hypergraphs is NP-hard for hypergraphs with 2 vertices.

Proof. Let us consider an instance of list edge-coloring problem. We can easily solve it using CLEC with lists of length
N(H) + 1. For each hyperedge e it is enough to extend its lists to N(e) + 1 elements so that old colors get cost 0 and
the new colors get cost 1. The minimal total cost is 0 if and only if a list edge-coloring exists. �

Notice that every hypergraph with 2 vertices is also a hypertree, so we can conclude that problem of list edge-coloring
of general hypertrees is NP-hard.

6. Final remarks

Notice that the CLEC problem is a very versatile one. First, all the problems without lists can be easily solved by adding
lists consisting of N(H) + 1 cheapest colors to all edges. The costs of colors depend on the criterion. Let us come back to
the language of task scheduling. The size of lists of available time slots for tasks is linear in terms of the number of edges
of the scheduling hypergraph. Therefore, if we know a polynomial algorithm for cost list edge-coloring for a certain class of
scheduling hypergraphs (in our case: linear hypertrees), we can polynomially satisfy many scheduling criteria.

• Lmax criterion—Let dj be a due-date of the task represented by edge ej. For certain C let us establish all the costs fej(x) = 0
for x ≤ dj + C and fej(x) = 1 for x > dj + C . Notice that the procedure to solve the CLEC problem will give a total cost of
0 if and only if Lmax ≤ C . Hence Lmax can be calculated using the binary search algorithm.
• Cmax and Tmax criterion—The algorithm which finds Lmax can be easily applied to find Cmax and Tmax, since Tmax =
max{0, Lmax} and Cmax is a special case of Tmax.
• ΣwjTj criterion—The cost of all the elements of lists with x ≤ dj is 0, other elements have cost fej(x) = (x− dj)wj, where
wj is a priority factor from theΣwjTj criterion for task represented by edge ej.
• ΣwjCj criterion—This is a special case ofΣwjTj.
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• ΣwjUj—Let us set the costs of tasks as follows: fej(x) = 0 for x ≤ dj and fej(x) = wj for the remaining elements, where
wj is again the priority factor.
• bicriterial problem, eg. Cmax,ΣCj—In this case at the beginning we search for the optimal scheduling with respect to Cmax
and then we remove from the lists all the time slots exceeding the optimal length. Next we run the algorithm forΣCj on
the modified instance.

The main result of our paper can be expressed in the form of two corollaries.

Corollary 6.1. The P
∣∣win, pj = 1, fixj∣∣ crit problemwith a scheduling hypergraphwhich is a k-hypertree for k ∈ O(1) is solvable

in polynominal time.

Corollary 6.2. The P2
∣∣win, pj = 1, fixj∣∣ crit problem is NP-hard.
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