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Abstract
In this paper, modelling of the superposition of stress-induced and inherent anisotropy of soil small strain stiffness is

presented in the framework of hyperelasticity. A simple hyperelastic model, capable of reproducing variable stress-induced

anisotropy of stiffness, is extended by replacement of the stress invariant with mixed stress–microstructure invariant to

introduce constant inherent cross-anisotropic component. A convenient feature of the new model is low number of material

constants directly related to the parameters commonly used in the literature. The proposed description can be incorporated

as a small strain elastic core in the development of some more sophisticated hyperelastic-plastic models of overconsoli-

dated soils. It can also be used as an independent model in analyses involving small strain problems, such as dynamic

simulations of the elastic wave propagation. Various options and features of the proposed anisotropic hyperelastic model

are investigated. The directional model response is compared with experimental data available in the literature.

Keywords Cross-anisotropy � Hyperelasticity � Overconsolidated soils � Small strain stiffness � Soil elasticity �
Stiffness anisotropy

1 Introduction

An elastic stress–strain relation is the core of all the elasto-

plastic constitutive models. It describes the initial stiffness

and influences substantially the modelled pre-failure

behaviour of soils. In the case of natural soils, there are two

important features of the initial elastic stiffness, namely

barotropy and anisotropy. Barotropy is typically taken into

account as the dependency of stiffness on the actual stress

level that is represented by the mean stress p or by one of

the principal stress components ri. Models used in the

geotechnical practice, e.g. [49], mostly incorporate the

exponential empirical relation in the form proposed by

Ohde [45] or Janbu [31]. In this relation, stress dependency

of stiffness concerns elastic moduli in the isotropic

Hooke’s law and the Poisson’s ratio m is assumed constant.

This results in an isotropic hypoelastic relation which, of

course, is dependent neither on the stress obliquity (e.g.

g ¼ q=p or K ¼ r3=r1) nor on the direction of loading.

Influence of the stress obliquity is often described as

stress-induced anisotropy. In the case of stress-induced

anisotropy, a directional distribution of stiffness changes

depending on the current stress position in the principal

stress space. Stress-induced anisotropy vanishes under

isotropic stress conditions. However, stiffness of natural

soils remains anisotropic even under isotropic stress con-

ditions. This is due to the anisotropic microstructure of soil

fabric that was developed as a result of deposition and

diagenesis [23, 30, 39]. This component of anisotropy is

described as inherent anisotropy. Its properties can be

investigated only under isotropic stress conditions. In nat-

ural soils, the actual directional dependency of elastic

stiffness is a superposition of both stress-induced and

inherent anisotropy. Such situation is illustrated schemati-

cally in Fig. 1. It is an exemplary problem of the slope

stability, in which the principal axes of stress nri and

microstructure xmi are generally not collinear. They are

also different from the applied geometrical coordinate
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system xi which usually corresponds to the direction of

gravity.

A superposed anisotropy of the actual elastic stiffness is

usually complex. Principal stress directions may rotate

relative to the soil microstructure as a result of geotech-

nical processes (e.g. excavation, tunnel drilling). Hence,

the directional dependency of stiffness changes with the

angle between the principal axes of stress and of

microstructure. In the standard laboratory tests, such as

triaxial or oedometric compression, these systems are

collinear and rotation of the principal stress directions is

not possible. Contrarily to stress-induced anisotropy,

inherent anisotropy of the elastic stiffness remains rather

constant even after significant stress changes [32]. This

seems to be evident in natural heavily overconsolidated

clays. In reconstituted or moderately overconsolidated

clays, inherent anisotropy may evolve due to irreversible

straining as it is shown in experimental investigations by

Mitaritonna et al. [40].

In the recent years, the importance of stiffness nonlin-

earity and anisotropy in the small and intermediate strain

ranges has been shown in many analyses of practical cases

in geotechnics [1, 3, 11, 16, 35, 42, 47]. Anisotropy of the

elastic stiffness is also known to influence the yielding

characteristics of soils in the undrained conditions

[44, 50, 56].

A common type of inherent anisotropy is the cross-

anisotropy, also called the transverse isotropy. In this case,

the elastic material properties are symmetric about axis that

is normal to the plane of isotropy. In soils, the plane of

isotropy is identified with the prevailed particle orientation

or bedding planes. The symmetry axis, here indicated by

the unit vector v, is collinear with the deposition direction.

This direction is usually vertical; however, it may be

inclined due to geological processes, especially in the older

overconsolidated clayey deposits, as depicted in Fig. 1.

In the classical linear elastic description, a cross-aniso-

tropic stiffness requires the definition of five independent

material constants [46]. Different sets of five independent

cross-anisotropic parameters may be selected. Using

notation with indices h and v to denote the horizontal and

the vertical directions, respectively, these parameters are

usually chosen as: Ev, Young’s modulus in vertical direc-

tion; Eh, Young’s modulus in horizontal direction; mvh,

Poisson’s ratio for horizontal strain due to vertical strain;

mhh, Poisson’s ratio for horizontal strain due to comple-

mentary horizontal strain; Gvh, shear modulus in vertical

plane. This naming convention assumes the horizontal

plane of isotropy. However, if vector v deviates from

vertical direction, plane h� h is also rotated relative to the

horizon. Hence, one needs to note that indices h and v are

associated with the cross-anisotropic microstructure.

Based on the experimental observations, Graham and

Houlsby [21] proposed a simplification of the five-param-

eter cross-anisotropic stiffness. They reduced the number

of material constants to three independent parameters

leaving Ev and mhh, denoted by E� and m�; respectively, and

introducing the anisotropy coefficient a that imposes the

following condition:

a ¼
ffiffiffiffiffi

Eh

Ev

r

¼ mhh
mvh

¼ Ghh

Gvh
; ð1Þ

where Ghh is the shear modulus in the plane of isotropy:

Ghh ¼
Eh

2 1 þ mhhð Þ : ð2Þ

Values of the anisotropy coefficient a in the overconsoli-

dated soil deposits are generally higher than 1.0, which

indicates higher stiffness in the plane of isotropy, i.e.

Ghh [Gvh and Eh [Ev. In normally consolidated or

lightly overconsolidated soils, stiffness may be higher in

the direction of symmetry axis [37, 55]; however, the

opposite situation is also reported [9, 36]. Intensity of

inherent cross-anisotropy, expressed as a deviation of a
from 1.0, is also observed to be higher in clayey deposits

[8, 26] than in sands. This is due to the fact that the total

Fig. 1 Geometrical xi, stress nri and microstructural xmi principal axes in a representative soil element and in an exemplary boundary value

problem of the slope stability analysis
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anisotropy in sands is mostly dominated by stress-induced

component [27, 34].

Mašı́n and Rott [38] refined the definition of a into three

coefficients corresponding to the Young’s and shear mod-

uli, and the Poisson’s ratios, respectively:

aE ¼Eh

Ev
; ð3Þ

aG ¼Ghh

Gvh
; ð4Þ

am ¼
mhh
mvh

: ð5Þ

Additionally, to compare the anisotropy coefficients, they

proposed two anisotropy exponents xGE and xGm:

aG ¼axGEE ; ð6Þ

aG ¼axGmm : ð7Þ

It follows that in the cross-anisotropic stiffness proposed in

[21], the imposed values of anisotropy exponents are:

xGE ¼ 0:5 and xGm ¼ 1:0. However, after careful inspection

of the recent experimental data for natural clays, this is

shown in [38] not to be necessarily valid and approximate

average value of xGE ¼ 0:8 is suggested. Due to difficulties

in the measurement of the anisotropic Poisson’s ratios, the

values of am and xGm are characterised by large scatter;

hence, further experimental investigations are needed. It is

suggested in [38] that, for practical purposes, xGm ¼ 1:0

should be adopted.

The classical linear cross-anisotropic stiffness is not

stress-dependent. One should be careful when introducing

an empirical barotropy of cross-anisotropic elastic param-

eters into this model. This is because of the constraints

imposed on these parameters by the elastic energy con-

servation requirement [46].

The objective of this work is to present an elastic model

capable of reproducing the stiffness barotropy, stress-in-

duced anisotropy and inherent cross-anisotropy. For this

purpose, we use the framework of hyperelasticity

[25, 28, 43]. The proposed model is based on an

improvement of the elastic potential function by Vermeer

[51]. The new refined potential function is not dependent

on the stress invariant allowing stress-induced anisotropy

only but instead on the new mixed stress–microstructure

invariant. The mixed invariant introduces inherent aniso-

tropy component in a way proposed by Boehler and

coworkers [5–7]. This method allows to control the values

of anisotropy coefficients and the exponents defined in

[38]. The initial works on the proposed refinement of

Vermeer’s elastic potential are reported in monograph [10]

as a part of a hyperelastic-plastic model of overconsoli-

dated fine-grained soils.

The general framework of incorporating inherent ani-

sotropy based on the microstructure within the hyperelas-

ticity has been recently presented by Houlsby et al. [29]

and validated with the experimental evidence by Amorosi

et al. [2]. Another notable works on anisotropic hypere-

lastic models for soils have been reported in the literature

by Gajo and Bigoni [17, 18] and Xiao et al. [54]. An

interesting method of incorporating inherent cross-aniso-

tropy into hyperelastic model by scaling of stiffness has

been shown by Niemunis et al. [44].

2 Formulation of the model

In the elasto-plastic modelling, the initial stiffness is consid-

ered elastic within a small region in the stress or strain space.

A constitutive model of elastic behaviour should provide a

closed stress or strain loop within the elastic locus when

material undergoes a closed strain or stress loop, respectively.

Additionally, neither the dissipation nor the generation of the

elastic energy is allowed in such process. It means that the

following conditions must be fulfilled:
I

Dt
ijklde

e
kl ¼ 0;

I

Ct
ijkldrkl ¼ 0;

I

rijde
e
ij ¼ 0; ð8Þ

where Ct and Dt are the fourth-order tangent elastic

compliance and stiffness tensors, respectively. If the ther-

modynamic requirements from Eq. 8 are satisfied, the

model is considered hyperelastic. The most convenient way

to formulate a truly conservative hyperelastic model is to

derive it from the elastic potential function W [25, 28, 43].

It is a scalar function of stress–negative Gibbs free energy

WðrÞ or elastic strain–Helmholtz free energy WðeeÞ. An

elastic potential function is not a subject to any direct

measurements; hence, it should be elaborated, for example,

by inspection and analysis of its derivatives constituting the

compliance or stiffness operators. In the case of first stress

derivative of WðrÞ, we obtain a secant compliance tensor

Cs relating the elastic strain and stress:

eeij ¼
oWðrÞ
orij

¼ Cs
ijklrkl: ð9Þ

To obtain a tangent compliance tensor Ct that relates the

elastic strain and stress rates, the second stress derivative of

WðrÞ should be calculated:

_eeij ¼ Ct
ijkl _rkl ¼

o2WðrÞ
orijorkl

_rkl: ð10Þ

If an elastic potential is expressed as a function of elastic

strain WðeeÞ, we obtain secant and tangent stiffness ten-

sors, Ds and Dt, by analogous differentiations with respect

to the elastic strain.
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A comparison of different stiffness formulations and

investigation of the influence of their parameters may be

achieved by confronting the so-called response envelopes

[22]. Response envelope is a polar diagram of the tangent

stiffness or compliance tensor. It is usually shown in the tri-

axial stress or strain plane (
ffiffiffi

2
p

r3 � r1;
ffiffiffi

2
p

ee3 � ee1 ) as a

closed curve representing the stiffness or compliance response

to a circular stress or strain probe, respectively. Schematic

description of obtaining the stiffness response envelope due to

strain probe is shown in Fig. 2. Response envelopes can be

obtained also experimentally. However, it is a complicated

technique that still remains under development. Experimental

response envelopes for sands have been reported by Danne

and Hettler [13] and Knittel et al. [33].

2.1 Basic hyperelastic model with stress-induced
anisotropy

Among different proposals of elastic potential functions

available in the literature, we decided to make use of the

stress-dependent formulation by Vermeer [51]. This func-

tion will be later modified and extended to account for

inherent anisotropy. In our experience, it is an optimal

solution that combines the practical functionality and

simplicity associated with a small number of material

parameters. The elastic potential has the following form:

WðrÞ ¼ 3p1�b
ref

2Gref
0 ð1 þ bÞ

2

3
Q

� �ð1þbÞ=2

; ð11Þ

where Gref
0 is the small strain shear modulus measured at

the isotropic reference stress p ¼ pref , b is a material

parameter controlling the order of stress dependency of

stiffness, and Q is the stress invariant defined as:

Q ¼ 1

2
tr r2 ¼ 1

2
rijrij: ð12Þ

After differentiation (Eq. 10), the tangent compliance

tensor is obtained:

Ct
ijkl ¼

1

4G0

dikdjl þ dildjk � ð1 � bÞ rijrkl
Q

� �

; ð13Þ

where G0 is the stress-dependent shear modulus:

G0 ¼ Gref
0

ffiffiffiffiffiffiffi

2
3
Q

q

pref

0

@

1

A

1�b

: ð14Þ

After analytical inversion of the compliance tensor Ct, we

obtain the tangent stiffness tensor:

Dt
ijkl ¼ ðCt

ijklÞ
�1 ¼ G0 dikdjl þ dildjk �

ðb� 1Þ
b

rijrkl
Q

� �

:

ð15Þ

Tangent stiffness Dt is a homogeneous function of stress

of order m ¼ 1 � b. However, parameter b also influences

the directional distribution of stiffness in the principal

stress space. If the considered stiffness response is com-

pared to that of the linear isotropic Hooke’s law under

isotropic stress conditions, parameter b may be related to

the Poisson’s ratio as follows:

b ¼ �2 þ 3

1 þ m
; m ¼ 1 � b

2 þ b
: ð16Þ

It is important to note some limitations of the model

applicability related to the coupling between m and m which

is controlled by the model parameter b. It is obvious that

condition b 6¼ 0 must be satisfied; otherwise, it implies m ¼
0:5 and the infinite stiffness, see Eq. 15. However, condi-

tion b 6¼ 0 eliminates also the possibility of linear stress

dependency of stiffness (m ¼ 1:0) as observed in normally

consolidated clays. Hence, application of the model and its

refinement presented in this paper is developed to simulate

the elastic behaviour of overconsolidated fine-grained soils

Fig. 2 Response envelope in the triaxial plane. Version with a circular strain probe and the ellipsoidal response in the triaxial stress plane

(r2 ¼ r3). Unlabelled dots correspond to purely deviatoric (Deev ¼ 0) and purely volumetric (Deeq ¼ 0) strain increments
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or granular deposits, for which the values of m are reported

within the range from 0.3 to 0.7, e.g. [4, 8, 14]. The cou-

pling between m and m controlled by the value of b is

shown in Fig. 3. Additionally, response envelopes that

illustrate the characteristic properties of the employed

hyperelastic stiffness are presented. Size of the envelopes

increases with the stress level which indicates the baro-

tropy. Stress-induced anisotropy is evident by rotation of

the envelopes resulting from the stress obliquity, i.e.

K 6¼ 1:0. Elongation of the response envelopes, which

shows a higher stiffness in compression along the stress

paths K ¼ const , is directly controlled by the values of b.

This effect may be compared to influence of the Poisson’s

ratio on stiffness in the isotropic Hooke’s law. In Fig. 3,

response envelopes of the hyperelastic stiffness are

equivalent to those of the isotropic Hooke’s law only for

p ¼ pref and K ¼ 1:0 with the shear modulus and Pois-

son’s ratio calculated with Eqs. 14 and 16, respectively.

2.2 Definition of inherent cross-anisotropy

To define a cross-anisotropic microstructure, we use sec-

ond-order tensor M proposed in [7]. Its components are

calculated from the following dyadic product:

M ¼ v� v; Mij ¼ vivj; ð17Þ

where the unit vector v identifies the symmetry axis normal

to the plane of isotropy. Using spherical coordinates /; h in

the geometrical framework shown in Fig. 4, the Cartesian

coordinates of v are:

v ¼ cos h; sin h cos/; sin h sin/½ �T : ð18Þ

After operation (Eq. 17), the general form of tensor M

representing the cross-anisotropic microstructure is as

follows:

M ¼
cos2 h cos h cos/ sin h cos h sin h sin/

cos h cos/ sin h cos2 / sin2 h cos/ sin2 h sin/

cos h sin h sin/ cos/ sin2 h sin/ sin2 h sin2 /

2

6

4

3

7

5

:

ð19Þ

In this paper, the horizontally oriented plane of isotropy

with the vertical symmetry axis is usually assumed, i.e.

v ¼ ½1; 0; 0�T and h ¼ 0, which leads to:

M ¼
1 0 0

0 0 0

0 0 0

2

6

4

3

7

5

: ð20Þ

2.2.1 Formulation based on the mixed stress–
microstructure invariant

The modelling aim is to incorporate information on the

cross-anisotropic microstructure into the framework of

hyperelasticity using tensor M. We start from the basic

Fig. 3 Parameter b coupling the order of stress dependency of stiffness m and the Poisson’s ratio m as compared to the Hooke’s elasticity at

isotropic reference stress conditions. Left hand side: relation between b; m and m. Right hand side: response envelopes of Vermeer’s basic

hyperelastic model [51] for different stress ratios K, stress levels p and b values. Response envelopes are scaled for visualisation purposes
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function used to derive the stiffness or compliance opera-

tors, i.e. the elastic potential function W. According to

[5, 7], a general scalar function of two symmetric tensorial

arguments, here f ðr;MÞ, can be expressed as a function of

the following three groups of scalar invariants:

tr r ¼ rii; tr r
2 ¼ rijrij; tr r

3 ¼ rijrjkrki; ð21Þ

trM; trM2; trM3; ð22Þ

tr ðr �MÞ; tr ðr2 �MÞ; tr ðr �M2Þ; tr ðr2 �M2Þ: ð23Þ

They represent the stress, microstructure and jointed

stress–microstructure invariants, respectively. In the gen-

eral case of cross-anisotropy (Eq. 19), all three invariants

of microstructure in Eq. 22 are equal to unity and M ¼ M2.

Hence, influence of the microstructure is significant only in

the case of jointed invariants tr ðr �MÞ and tr ðr2 �MÞ. To

denote functions of both stress and jointed invariants, we

apply the overline symbol ðÞ. An elastic potential function

may be expressed in the following form:

Wðr;MÞ ¼ W n1tr rþ n2tr ðr �MÞ½ �;ð
n3tr r

2 þ n4tr ðr2 �MÞ
� �

; tr r3Þ;
ð24Þ

with parameters ni as the additional scalar multipliers.

The basic elastic potential without inherent cross-ani-

sotropy in Eq. 11 is a function of only one stress invariant

Q. An analogous joint stress–microstructure invariant QM

may be defined as:

QM ¼ 1

2
tr ðr2 �MÞ ¼ 1

2
Mabrbcrca: ð25Þ

As in Eq. 24, we can group the invariants Q and QM to

obtain the following mixed invariant:

Q ¼ c1Qþ c2QM ¼ 1

2
ðc1dab þ c2MabÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

mab

rbcrca

¼ 1

2
mabrbcrca;

ð26Þ

where c1 and c2 are the new material constants. Finally, the

incorporation of inherent cross-anisotropy into the elastic

potential is attained by simply replacing the stress invariant

Q in Eq. 11 with its mixed equivalent Q:

Wðr;MÞ ¼
3p1�b

ref

2Gref
0 ð1 þ bÞ

2

3
Q

� �ð1þbÞ=2

: ð27Þ

Constant c1 controls the intensity of pure stress dependency

of stiffness. Constant c2 introduces inherent cross-aniso-

tropic stiffness component with a fixed orientation of the

symmetry axis, collinear with vector v. In the case of c1 ¼
1:0 and c2 ¼ 0:0, inherent cross-anisotropic component is

deactivated and the basic potential function from Eq. 11 is

recovered. As a rule, when c1 is kept constant and c2 [ 0:0,

inherent stiffness in the plane of isotropy is higher than in

the direction of symmetry axis, i.e. aG; aE [ 1:0. Other-

wise, when c1 ¼ const and c2\0:0, inherent cross-ani-

sotropy coefficients are aG; aE\1:0. Practically, the

influence of parameter c1 is a proportional scaling of the

stiffness. The influence of c1 on the directional distribution

of stiffness is minor and its intensity depends on the current

value of c2. In order to simplify the presentation of the new

model, we prefer to keep c1 ¼ 1:0 in the simulations and to

control the directional properties of stiffness only by

parameter c2. We address the problem of parameter iden-

tification later in this paper.

In derivation of the secant hyperelastic strain–stress

relation and the tangent compliance tensor, we need the

partial derivative of the mixed invariant Q:

oQ

orij
¼ 1

2
ðrajmai þ rbimbjÞ: ð28Þ

The secant strain–stress relation is obtained as:

eeij ¼
oWðr;MÞ

orij
¼ 1

4G0

rajmai þ rbimbj


 �

ð29Þ

with

G0 ¼ Gref
0

ffiffiffiffiffiffiffi

2
3
Q

q

pref

0

@

1

A

1�b

: ð30Þ

The influence of c2 value controlling inherent cross-ani-

sotropic stiffness component may be observed by a quali-

tative analysis of plots showing the elastic strain

distribution from Eq. 29. It is presented in Fig. 5. The

influence of c2 value is clear when comparing stress

Fig. 4 Geometrical axes xi, spherical coordinates /; h and unit vector

v defining the symmetry axis normal to the plane of isotropy as used

in this paper

1988 Acta Geotechnica (2021) 16:1983–2001

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


distances between the subsequent isolines of koW=ork
along different vector streams. These distances are pro-

portional to the directional stiffness. In the left plot, the

inherent cross-anisotropic component is absent as c2 ¼ 0:0

and the isolines form circles. The distribution changes in

the middle (c2 ¼ �0:4) and right (c2 ¼ 1:0) plots, leading

to the higher stiffness in the vertical and horizontal direc-

tions, respectively.

Another important feature of the proposed model, which

can be illustrated on the basis of secant strain–stress rela-

tion (Eq. 29), is the shape of the constant volumetric strain

eeV and the shear strain eeq contours. They are usually

presented in the p� q triaxial plane, e.g. [2, 28]. Such

volumetric and shear strain contours for the proposed

model are presented in Fig. 6.

It should be noted that eeV ¼ const contours corre-

spond to the undrained triaxial compression stress paths for

elastic behaviour. Hence, the imposed inherent cross-ani-

sotropy using parameter c2 influences direction of the

undrained stress paths. Consequently, if the proposed

hyperelastic description is a part of an elasto-plastic model,

it will impact the undrained shear strength.

Finally, the tangent compliance of the hyperelastic

model with stress-induced anisotropy and inherent cross-

anisotropy is obtained from the following differentiation:

Ct
ijkl ¼

o2Wðr;MÞ
orijorkl

¼ 1

4G0

Aijkl; ð31Þ

where

Fig. 5 Elastic strain distribution in the triaxial stress plane resulting from the secant relation (Eq. 29). Vector streams depict directions of

oW=orh; oW=orv
� �T

and isolines identify the constant values of koW=ork. In all the plots, values of c1 and the reference shear modulus in

vertical plane Gref
vh are kept constant

Fig. 6 Contours of the constant volumetric eeV ¼ ee1 þ 2ee3 and shear eeq ¼ 2=3ðee1 � ee3 Þ elastic strains in triaxial p� q plane for different values

of c2. The same set of parameters as in Fig. 5
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Aijkl ¼ ðdjlmik þ dilmjkÞsymm

� ð1 � bÞ
ralmak þ rbkmblð Þ rajmai þ rbimbj


 �

4Q
;

ð32Þ

and

ðdjlmik þ dilmjkÞsymm ¼ 1

2
ðdjlmik þ djkmil þ dilmjk þ dikmjlÞ:

ð33Þ

The tangent stiffness matrix can be derived analytically or

numerically by inversion of the tangent compliance tensor

in the Voigt notation. For details of such operations, the

reader is referred to [41]. It should be noted that the

derivation of hyperelastic stiffness via the inversion of

compliance matrix, applied in numerical calculations pre-

sented in this paper, is an alternative way to the classic and

more elegant method presented in, for example, [29] or

[44]. Elastic potential expressed as a function of elastic

strain may be obtained from stress functions (11) or (27) by

Legendre transform. Finally, the hyperelastic stiffness may

be obtained directly from differentiation of the transformed

potential with respect to the elastic strain.

3 Features of the model and material
constants

3.1 Inherent cross-anisotropy at isotropic stress
conditions

For practical purposes, it is important to relate material

constants of the proposed model, i.e. Gref
0 , b, c1, c2; pref to

parameters measured in the geotechnical laboratories or

reported in the literature. The inherent anisotropic elastic

parameters can only be determined in an isotropic stress

state r ¼ �pd. With p ¼ pref , the measured elastic moduli

are indicated as reference and consequently superscript

ðÞref
is used. Applying vertically and horizontally oriented

pairs of bender elements on a triaxial sample allows

determination of shear moduli Gvh, Ghh and calculation of

the corresponding anisotropy coefficient aG, e.g. [15, 20].

Additionally, the vertical Young’s modulus Ev can be

measured, if the triaxial device is equipped with a high

accuracy axial strain transducer. Determination of the

horizontal Young’s modulus Eh requires incorporation of

some more sophisticated procedures, such as testing hori-

zontally trimmed samples or investigations in the true tri-

axial device. The reference shear modulus Gref
0 , being the

basic stiffness parameter in the model, represents the value

of Gref
vh only if the material is inherently isotropic, i.e.

c2 ¼ 0:0 which implies aG ¼ 1:0. In inherently cross-

anisotropic soils, the value of Gref
0 should be estimated on

the basis of directly measured Gref
vh or Eref

v and anisotropy

coefficient aG or aE. To obtain the relations for shear

moduli, Gvh and Ghh, we need to inspect the response of the

proposed anisotropic model to the following stress

increments:

Dr ¼
0 Drvh 0

Drvh 0 0

0 0 0

2

6

4

3

7

5

;

0 0 0

0 0 Drhh
0 Drhh 0

2

6

4

3

7

5

; ð34Þ

respectively. In the case of Young’s moduli, Ev and Eh, we

examine the response to:

Dr ¼
Drv 0 0

0 0 0

0 0 0

2

6

4

3

7

5

;

0 0 0

0 Drh 0

0 0 0

2

6

4

3

7

5

; ð35Þ

respectively. The initial isotropic stress condition is r0 ¼
�p0 d and the cross-anisotropic microstructure is repre-

sented by tensor M as defined in Eq. 20. Components of

the incremental elastic strain response to the stress incre-

ments Eqs. 34 and 35 are calculated using tangent com-

pliance tensor (Eq. 31):

Dee ¼ Ctðr0;MÞ : Dr: ð36Þ

The following formulas for the inherent cross-anisotropic

stiffness moduli are obtained:

Gvh ¼
Drvh
2Dee12

¼ Gref
0

p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ 1
3
c2

q

� �1�b

c1 þ 1
2
c2

;
ð37Þ

Ghh ¼
Drvh
2Dee23

¼ Gref
0

p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ 1
3
c2

q

� �1�b

c1

;
ð38Þ

Ev ¼
Drv
Dee11

¼ 2Gref
0

ð3c1 þ c2Þ p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ 1
3
c2

q

� �1�b

ðc1 þ c2Þ½c2bþ c1ð2 þ bÞ� ;

ð39Þ

Eh ¼
Drv
Dee22

¼ 2Gref
0

ð3c1 þ c2Þ p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ 1
3
c2

q

� �1�b

c1½c2 þ c1ð2 þ bÞ� :

ð40Þ

Using the elastic strain responses to the stress increments

(Eq. 35), we define the cross-anisotropic Poisson’s ratios:

mvh ¼
�Dee22

Dee11

¼ c1ð1 � bÞ
c2bþ c1ð2 þ bÞ ; ð41Þ
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mhh ¼
�Dee33

Dee22

¼ c1ð1 � bÞ
c2 þ c1ð2 þ bÞ : ð42Þ

Now, the anisotropy coefficients (Eqs. 3–5) can be derived

for the proposed model:

aE ¼Eh

Ev
¼ ðc1 þ c2Þ½c2bþ c1ð2 þ bÞ�

c1½c2 þ c1ð2 þ bÞ� ; ð43Þ

aG ¼Ghh

Gvh
¼ 1 þ c2

2c1

; ð44Þ

am ¼
mhh
mvh

¼ c2bþ c1ð2 þ bÞ
c2 þ c1ð2 þ bÞ : ð45Þ

In practice, it is feasible to determine the following pairs of

the cross-anisotropic parameters in triaxial tests at a ref-

erence isotropic stress state represented by p0 ¼ pref :

• Gref
vh , aG, using vertical and horizontal pairs of bender

elements;

• Eref
v , aG, using bender elements as above in drained

compression with high accuracy axial strain

measurements;

• Eref
uv , aG, using bender elements as above in undrained

compression with high accuracy axial strain

measurements.

In order to simplify estimation of the model parameters, it

is proposed to fix the constant value of c1 ¼ 1:0 and to

adjust c2 with aG using Eq. 44:

c2 ¼ 2ðaG � 1Þ: ð46Þ

Having Gref
vh or Eref

v and aG determined, the reference

shear modulus Gref
0 can be calculated from the following

equations:

Gref
0 ðGref

vh ; aG; bÞ ¼ Gref
vh aG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2aG
3

r

 !b�1

; ð47Þ

Gref
0 ðEref

v ; aG; bÞ

¼ Eref
v

1 � 2aG
1 þ 2aG

1 � 2aG
2

b� 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2aG
3

r

 !b�1

:

ð48Þ

In undrained triaxial compression tests, the small strain

undrained Young’s modulus in direction of the symmetry

axis Eref
uv can be measured [20]. In order to derive Eref

uv , we

have to inspect the model response to the following elastic

strain increment:

Dee ¼
Deev 0 0

0 � Deev =2 0

0 0 � Deev =2

2

6

4

3

7

5

: ð49Þ

Components of the incremental elastic stress response

under isotropic stress condition r0 ¼ �p0 d are calculated

using the tangent stiffness tensor:

Dr ¼ Dtðr0;MÞ : Dee; ð50Þ

and the undrained Young’s modulus can be calculated

from:

Euv ¼ Dr11 � Dr22

Deev
¼ Gref

0

ð3c1 þ c2Þ p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ 1
3
c2

q

� �1�b

c1ðc1 þ c2Þ
:

ð51Þ

After inversion of the above equation, assuming p0 ¼ pref ,

c1 ¼ 1:0 and c2 according to Eq. 46, the reference shear

modulus Gref
0 can be obtained as follows:

Gref
0 ðEref

uv ; aG; bÞ ¼ Eref
uv

�1 þ 2aG
1 þ 2aG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2aG
3

r

 !b�1

:

ð52Þ

3.2 Relations between inherent anisotropy
coefficients

Combining the relations for anisotropy coefficients

(Eqs. 43–45), it is possible to define aE and am as functions

of parameters aG and b:

aEðaG;bÞ ¼
ð2aG � 1Þ½2 þ ð2aG � 1Þb�

2aG þ b
; ð53Þ

amðaG; bÞ ¼
ð2aG � 1Þbþ 2

2aG þ b
: ð54Þ

The obtained relations, unlike in Eqs. 6 and 7, are not

exponential and the corresponding anisotropy exponents

xGE and xGm depend on the values of aG and b. In Fig. 7, a

graphical comparison of relations (Eqs. 53, 54) with

exponential functions is presented for b ¼ 0:5, which

implies order of stress dependency m ¼ 0:5 often assumed

in overconsolidated clays and sands. Another graphical

comparison concerns relations between anisotropy coeffi-

cients for different values of b as presented in Fig. 8. Since

aG is independent of b, we have examined changes of aE
and am with b for two opposite cases of inherent cross-

anisotropy, i.e. higher stiffness along the symmetry axis

(aG ¼ 0:6) and higher stiffness in the plane of isotropy

(aG ¼ 2:0). Keeping the same range of b, we have also

shown changes of exponent xGE for seven selected values

of aG between 0.6 and 3.0 as presented in Fig. 9.
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3.2.1 Mixed anisotropy at axisymmetric and true triaxial
stress conditions

Changes of stiffness resulting from the superposition of

variable stress-induced anisotropy and constant inherent

cross-anisotropy may be illustrated qualitatively by com-

parison of response envelopes elaborated for different ini-

tial stress ratios K and selected values of anisotropy

coefficient aG. Such response envelopes at axisymmetric

stress conditions are presented in Fig. 10. In the compar-

ison, the simplified parameter set, i.e. Gref
vh ; aG; b; pref is

used. All parameters are kept constant and the influence of

two inherent cross-anisotropy cases (aG ¼ 0:7 and

aG ¼ 2:0) is examined. The internal parameters, Gref
0 and

c2, are calculated from Eqs. 47 and 46, respectively.

Values of parameters Gref
vh and pref scale solely the size of

response envelopes. Hence, these values are chosen

regarding only the visualisation purposes. Response

envelopes presenting mixed stress-induced and inherent

anisotropy are shown together with the reference envelopes

without inherent anisotropy (aG ¼ 1:0). All response

envelopes are presented for mean stress level p ¼ pref ,

three different stress ratios K and b ¼ 0:5. It can be seen in

Fig. 10 that for aG\1:0, the radial stress response to purely

Fig. 7 Relations between anisotropy coefficients aE; am and aG reproduced by the model for b ¼ 0:5. In the case of relation aEðaGÞ, it is close to

findings presented by Mašı́n and Rott [38]. The relation amðaGÞ deviates from am ¼ aG as assumed in the cross-anisotropic model by Graham and

Houlsby [21]. However, experimental evidence in this case is still very scattered [38]

Fig. 8 Relations between anisotropy coefficients aE; am and aG reproduced by the model for two opposite cases of inherent cross-anisotropy

(aG ¼ 0:6 and aG ¼ 2:0) and different values of parameter b
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volumetric strain probes rotates anticlockwise and the

radial stress response to purely deviatoric strain probes

rotates clockwise relative to the response obtained for

aG ¼ 1:0. As a result of such behaviour, the response

envelopes seem to rotate anticlockwise, if aG\1:0. If

aG [ 1:0, the rotations occur in the opposite direction.

Definitions of the anisotropy coefficients may be

extended to account for axisymmetric stress conditions.

This allows to investigate the mixed anisotropy quantita-

tively and to show how the stress obliquity K influences the

resulting stiffness. For this purpose, one needs to inspect

the model response to stress increments (Eqs. 34, 35)

starting from the following initial axisymmetric stress

state:

r0 ¼

� 3p0

1 þ 2K
0 0

0 � 3Kp0

1 þ 2K
0

0 0 � 3Kp0

1 þ 2K

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð55Þ

Using the internal model parameters, i.e.

Gref
0 ; c1; c2; b; pref , in operation (Eq. 36), we obtain the

same relation for anisotropy coefficient aG as in Eq. 44. It

is an important feature of the model that aG is constant and

independent of the stress obliquity at axisymmetric stress

conditions. Analogously, it can be shown that aG is also

constant at a true triaxial stress state, i.e. for three different

normal stress components and zero shear stress compo-

nents. Hence, in the extended definitions of cross-aniso-

tropic moduli. we use aG assuming c1 ¼ 1:0 and (Eq. 46).

The following formulas for the extended cross-anisotropic

stiffness moduli are obtained:

Gvh ¼
Gref

0

aG

p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6K2 þ 6aG � 3
p

1 þ 2K

0

@

1

A

1�b

; ð56Þ

Ghh ¼aGGvh; ð57Þ

Ev ¼2Gref
0

p0

pref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6K2 þ 6aG � 3
p

1 þ 2K

0

@

1

A

1�b

ð2K2 þ 2aG � 1Þ
ð2aG � 1Þ½2K2 þ ð2aG � 1Þb� ;

ð58Þ

Eh ¼aEEv; ð59Þ

where

Fig. 9 Changes of anisotropy exponent xGE resulting from the model

for different values of aG and b

Fig. 10 Response envelopes of the proposed hyperelastic model. Envelopes are compared for the same mean stress level pref and three different

stress ratios K. Two values of the anisotropy coefficient are examined: aG ¼ 0:7 and aG ¼ 2:0. The grey response envelopes represent the basic

hyperelastic model with stress-induced anisotropy only (aG ¼ 1:0). They are drawn to facilitate comparisons
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aEðaG;b;KÞ ¼
ð2aG � 1Þ½2K2 þ ð2aG � 1Þb�

2aG þ K2ð1 þ bÞ � 1
: ð60Þ

Regarding the cross-anisotropic Poisson’s ratios at

axisymmetric stress conditions, the following formulas are

obtained:

mvh ¼
Kð1 � bÞ

2K2 þ ð2aG � 1Þb ; ð61Þ

mhh ¼ammvh; ð62Þ

where

amðaG; b;KÞ ¼
2K3 þ Kð2aG � 1Þb
K2ð1 þ bÞ þ 2aG � 1

: ð63Þ

The above extended definitions of anisotropy coefficients

can be used to show changes of the mixed anisotropy with

the stress ratio K and coefficient aG at axisymmetric stress

states. This is presented for b ¼ 0:5 in Fig. 11. At the

isotropic stress (K ¼ 1:0), anisotropy coefficients represent

the inherent values from Eq. 53 and 54. Deviation from the

isotropic stress (K 6¼ 1:0) results in a proportional increase

or decrease in the value of anisotropy coefficients.

In real soils, the mixed anisotropy of initial stiffness

may be more complex. All principal stress components

may have different values with the principal axes rotated

with respect to the geometrical axes. Moreover, the plane

of isotropy may be non-horizontal. To visualise stiffness

obtained with the model for such conditions, an orientation

distribution function .�1C related to the fourth-order tan-

gent compliance tensor can be used [52]:

.�1CðCt; nÞ ¼ ðninjCt
ijklnknlÞ

�1: ð64Þ

It reflects a scalar value which is equal to the Young’s

modulus in the direction indicated by the unit vector n.

After parametrisation of n in terms of spherical coordi-

nates, as in Eq. 18, spherical plots of .�1C can be produced

to illustrate the mixed anisotropy of the proposed hypere-

lastic stiffness. This is shown in Fig. 12 where cases (a)–

(d) present the growing complexity of stress and

microstructural conditions in sequence. In Fig. 12a, both

stress and microstructure are isotropic and Young’s mod-

ulus distribution forms perfect sphere like in the isotropic

Hooke’s stiffness. In Fig. 12b, example true triaxial stress

state is introduced; however, principal stress axes are col-

linear with the geometrical axes and the microstructure is

still isotropic. The distribution forms ellipsoid reflecting

stress-induced anisotropy from the basic hyperelastic

Vermeer’s stiffness in Eq. 15. The axis of symmetry v is

shown vertical, but its orientation has no influence because

aG ¼ 1:0. Inherent cross-anisotropy is introduced in

Fig. 12c by imposing aG ¼ 2:0. This results in an increase

of Young’s modulus in all horizontal directions and the

distribution diverges from a regular ellipsoid. Note that

geometrical, microstructural and stress axes are still colli-

near and the plane of isotropy is horizontal. Rotation of the

plane of isotropy representing the inherent microstructure

is introduced in Fig. 12d. In all presented spherical plots,

Gref
vh ¼ const and b ¼ 0:5.

4 Validation of the proposed model
with experimental data

The model has been validated with selected results of

laboratory tests from the literature. The simplified set of

model parameters, i.e. Gref
vh ; aG; b; pref , is used. The

obtained results are presented for sands and clays sepa-

rately. In all referred element tests, the plane of isotropy in

Fig. 11 Changes of anisotropy coefficients aE and am with the stress ratio K at axisymmetric stress conditions
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the cross-anisotropic description is horizontal excluding

the case of Opalinus Clay. For details on the considered

tests, the reader is referred to the original papers.

As the main calibration tool to obtain the values of

model parameters, FindMinimum function was used that

is available in the algebra program MATHEMATICA [53]. The

minimum of the sum of squared differences between the

experimental and the model results was searched.

4.1 Sands

4.1.1 Toyoura Sand

Data on Toyoura Sand [27] involve values of Ev and Eh.

Small strain static cyclic loading in drained triaxial tests

was conducted on prismatic samples. Values of the shear

moduli are not provided.

Triaxial compression with rh ¼ const was performed

on the considered reconstituted sample of Toyoura Sand,

starting from the isotropic stress state at p ¼ 100 kPa up to

the stress ratio K ¼ 0:29. The sample was unloaded to the

initial isotropic state along the same stress path and triaxial

extension with rv ¼ const up to K ¼ 3:5 followed. Cyclic

loading was performed in the vertical and horizontal

directions at isotropic and various anisotropic stress states

during both triaxial compression and extension.

Experimental results and simulations with the calibrated

model parameters are shown in Fig. 13. Values of Ev and

Eh in the left hand side of Fig. 13 were divided by the void

ratio function f ðeÞ ¼ ð2:17 � eÞ2=ð1 þ eÞ [24]. In the cases

of K� 0:4 and K� 2:5, a decrease in the experimental

values of the Young’s moduli can be seen, which corre-

sponds to the excess of the elastic range. Hence, these data

were not considered during calibration of the model

parameters. Values of the model parameters are shown in

the right hand side plot.

4.1.2 Ham River Sand

Static cyclic loading and bender element triaxial tests were

conducted on reconstituted Ham River Sand samples [34].

The results provide values of Ev, Eh, Gvh and Ghh for

various testing conditions.

Considered are the results of drained tests. Samples were

normally consolidated under K ¼ 0:45. The experimental

data obtained for different values of p and the

Fig. 12 Spherical plots illustrating three-dimensional polar distribution of stiffness reproduced by the model at different conditions: a fully

isotropic case, b anisotropy induced by example true triaxial stress state (rij ¼ 0 for i 6¼ j), c mixed stress induced anisotropy and inherent cross-

anisotropy, d situation with symmetry axis of inherent cross-anisotropy rotated relatively to the vertical direction
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corresponding simulations are presented in Fig. 14. Due to

constant value of the stress ratio K ¼ const , the simulated

anisotropy coefficient aE ¼ const . Values of the model

parameters are shown in the right hand side plot.

4.2 Clays

4.2.1 London Clay

Data on the small strain stiffness parameters were obtained

with the cyclic loading and bender element triaxial tests

performed on the intact samples of London Clay [19].

Samples taken from different depths were consolidated

to the in situ stress states. Both the drained Young’s moduli

and the shear moduli investigated at three different levels

of p, representing the in situ stress, are regarded in this

study. Each of the three different values of p corresponds to

different value of the stress ratio K.

The experimental values of Ev, Eh, Gvh and Ghh and the

simulations are shown in Fig. 15. Stress ratios K corre-

sponding to the three different stress levels and values of

the model parameters are all given in the right hand side

plot. Points corresponding to each pair of p and K are

denoted in the simulated plots with the bigger indicators.

4.2.2 Gault, Kimmeridge, Oxford and London Clays

Experimental results referred in [8] provide data on Ev, Eh,

Gvh and Ghh for four different clays. Elastic stiffness

parameters were investigated on both intact and reconsti-

tuted samples of Gault, Kimmeridge, Oxford and London

Clays with the drained static probes and bender element

triaxial tests.

All samples were tested under nearly in situ stress

conditions. Values of the small strain stiffness parameters

obtained for each clay and the simulated curves are plotted

in Fig. 16. Stress ratios K corresponding to different stress

Fig. 13 Experimental [27] and simulated small strain stiffness parameters for Toyoura Sand. Left hand side: Ev and Eh divided by the void ratio

function from [24], i.e. Ev=f ðeÞ and Eh=f ðeÞ; respectively, plotted for different K. Right hand side: aE plotted for different K. Data corresponding

to K� 0:4 and K � 2:5 were not considered during calibration of parameters

Fig. 14 Experimental [34] and simulated small strain stiffness parameters for Ham River Sand. Left hand side: Ev and Eh plotted for different p.

Right hand side: Gvh and Ghh plotted for different p
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levels and values of the model parameters are all given in

the right hand side plot. Because the values of K do not

differ significantly, the modelled curves almost overlay

each other. Hence, no indicators of different pairs of p and

K are shown in the corresponding simulated plots.

4.2.3 Opalinus Clay

Anisotropic behaviour of Opalinus Clay was investigated

on intact samples tested perpendicular (S-specimens) and

parallel (P-specimens) to bedding plane in the triaxial

apparatus [14, 48]. Additionally, data on samples with

bedding orientation inclined at 45	 with respect to the

loading direction (Z-specimens) are provided in [48]. The

resolution of drained triaxial compression curves (e1 � q)

presented in the referenced reports is not sufficient to focus

on the details of small strain behaviour. However, the

qualitative simulation of initial stiffness for P, Z and S

specimens could be conducted and only the initial linear

segments of compression curves are considered.

In the cross-anisotropic material description of P-spec-

imens and Z-specimens, the symmetry axis and the plane

of isotropy is not collinear with vertical and horizontal

directions, respectively. Hence, one needs to distinguish

between the principal axes of stress and of microstructure.

Samples reported in [14] were consolidated isotropically

to three different levels of p, i.e. 2, 5, 10 MPa and 2, 5, 12

MPa, in the case of P- and S-specimens, respectively. This

was followed by the drained triaxial compression. Exper-

imental and simulated relations between deviatoric stress q

and axial strain e1 for both P- and S-specimens are shown

in Fig. 17. Solely the initial small strain elastic range is

considered. Values of the model parameters are shown in

the upper right hand side plot. In Fig. 17, only one P-

specimen is considered, on which a multistage test was

conducted. Due to lack of the experimental data for p ¼ 10

MPa and p ¼ 12 MPa in the case of S- and P-specimen,

respectively, only the simulated relation is plotted.

In Fig. 18, experimental and simulated values of the

corresponding Young’s moduli and aE are presented. Since

Fig. 15 Experimental [19] and simulated small strain stiffness parameters for London Clay. Left hand side: Ev and Eh plotted for different values

of both, p and K. Right hand side: Gvh and Ghh plotted for different values of both p and K

Fig. 16 Experimental [8] and simulated small strain stiffness parameters for Gault, Kimmeridge, Oxford and London Clays. Left hand side: Ev

and Eh plotted for different values of both p and K. Right hand side: Gvh and Ghh plotted for different values of both p and K
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the samples were tested parallel and perpendicular to

bedding, vertical Young’s moduli E1 can be interpreted as

Ev and Eh in the case of S-specimens and P-specimens,

respectively. The modelled data were calculated with the

values of parameters shown in the upper right hand side of

Fig. 17. As already mentioned, the simulations were con-

ducted only for the small strain elastic region. However,

the experimental Young’s moduli in Fig. 18 concern

Fig. 17 Experimental [14] and simulated relation between q and e1 for Opalinus Clay. Data are presented for P-specimen and S-specimens under

different values of r2 ¼ r3. Only the initial linear segments of compression curves are shown due to limited accuracy of the tests within the small

strain region

Fig. 18 Experimental [14] and simulated elastic stiffness parameters for Opalinus Clay. Left hand side: E1 plotted for different values of p equal

to confining stress. E1 obtained for P-specimens and S-specimens corresponds to Eh and Ev, respectively. Right hand side: aE plotted for different

values of p
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different ranges of strain than shown in Fig. 17. These were

derived from the linear part of q� e1 unloading–reloading

loops for S-specimens and from the initial part of q� e1

plot up to 25% of the peak shear strength for P-specimens.

Results analogous to these in Fig. 17 but regarding also

Z-specimens are shown in Fig. 19 for selected data from

[48]. Same set of model parameters as in Fig. 17 was used

in all simulations considering Opalinus Clay.

5 Conclusions

A simple anisotropic hyperelastic model is presented in this

paper. It is a refined version of the basic hyperelastic model

proposed by Vermeer [51]. The refinement concerns

incorporation of inherent cross-anisotropy with the mixed

stress–microstructure invariant. Properties of the obtained

anisotropic hyperelastic stiffness are investigated and

compared with laboratory results from literature. The cur-

rent experimental evidence is still limited in many aspects

of small strain anisotropic behaviour of soils, and further

investigations are needed. However, the proposed model is

capable of a robust description of the pure inherent cross-

anisotropy and the mixed anisotropy observed in various

tests conducted on both sands and clays. Due to the small

number of parameters that can be easily related to labo-

ratory results, the model proves to be a simple tool

allowing reproduction of the small strain mixed anisotropy,

being the superposition of stress-induced and inherent

anisotropy as observed in natural soils.

The main application of the model can be its incorpo-

ration into some more advanced hyperelastic-plastic mod-

els to properly simulate the initial small strain stiffness and

the pre-failure undrained behaviour. The further works

related to the proposed model are considered, and they will

concern its FE implementation within existing elasto-

plastic models by substitution of the popular isotropic

hypoelastic formulation, e.g. [12].
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; b: Parameter coupling the Poisson’s

ratio and the order of elastic stiffness stress dependency in
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of the elastic strain tensor, eeq ¼
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Cauchy stress tensor, compression negative; r1;r2;r3: Major,

intermediate and minor principal stress components,

respectively; ðÞ0; ðÞ
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:
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Fig. 19 Experimental [48] and simulated relation between q and e1

for Opalinus Clay. Data are presented for P-specimens, Z-specimens

and S-specimens. Only the initial linear segments of compression

curves are shown due to limited accuracy of the tests within the small

strain region
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48. Salager S, Francois B, Nuth M, Laloui L (2012) Constitutive

analysis of the mechanical anisotropy of Opalinus Clay. Acta

Geotech 8(1):137–154

49. Schanz T, Vermeer PA, Bonnier PG (1999) The hardening soil

model: formulation and verification. Beyond 2000 in Computa-

tional Geotechnics–10 Years of Plaxis. Balkema, Rotterdam,

pp 1–16

50. Sivakumar V, Doran IG, Graham J, Johnson A (2001) The effect

of anisotropic elasticity on the yielding characteristics of over-

consolidated natural clay. Can Geotech J 38:125–137

51. Vermeer PA (1985) A five constant model unifying well estab-

lished concepts. In: Gudehus D, Vardoulakis (eds) Constitutive

relations of soils, Balkema, Rotterdam, pp 175–197

52. Waffenschmidt T, Menzel A, Kuhl E (2012) Anisotropic density

growth of bone: a computational micro-sphere approach. Int J

Solids Struct 49:1928–1946

53. Wolfram Research Inc (2017) Mathematica 11

54. Xiao Y, Zhang Z, Wang J (2020) Granular hyperelasticity with

inherent and stress-induced anisotropy. Acta Geotech

15(3):671–680

55. Yong RN, Silvestri V (1979) Anisotropic behaviour of a sensitive

clay. Can Geotech J 16(2):335–350

56. Zwanenburg C (2005) The influence of anisotropy on the con-

solidation behaviour of peat. PhD thesis, Delft University of

Technology

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Acta Geotechnica (2021) 16:1983–2001 2001

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	A hyperelastic model for soils with stress-induced and inherent anisotropy
	Abstract
	Introduction
	Formulation of the model
	Basic hyperelastic model with stress-induced anisotropy
	Definition of inherent cross-anisotropy
	Formulation based on the mixed stress--microstructure invariant


	Features of the model and material constants
	Inherent cross-anisotropy at isotropic stress conditions
	Relations between inherent anisotropy coefficients
	Mixed anisotropy at axisymmetric and true triaxial stress conditions


	Validation of the proposed model with experimental data
	Sands
	Toyoura Sand
	Ham River Sand

	Clays
	London Clay
	Gault, Kimmeridge, Oxford and London Clays
	Opalinus Clay


	Conclusions
	Open Access
	References




