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Abstract: The present paper is devoted to a state-of-the-art review on the computational treatment of laminated composite
and sandwich panels. Over two hundred texts have been included in the survey with the focus put on theoretical
models for multilayered plates and shells, and FEM implementation of various computational concepts. As a result
of the review, one could notice a lack of a single numerical model capable for a universal representation of
all layered composite and sandwich panels. Usually, with the increase of the range of rotations considered in
the particular model, one can observe the decrease of the degree of complexity of the through-the-thickness
representation of deformation profiles.
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1. Introduction

Composites are made of two or more materials, combined
together to obtain a new matter with properties that are
superior to those of individual components. It is quite
obvious that mechanical properties of composites depend
mainly on the choice of material components used for the
composite but they are also considerably influenced by the
applied fabrication technique. Probably the most suitable
for structural applications among all composite materials
there are fiber reinforced composites (FRC), with the rein-
forcement taking the form of either continuous (long) fibers
or whiskers (short fibers), [1–5].

∗E-mail: ikreja@pg.gda.pl

Composites reinforced with continuous fibers fre-
quently appear as fiber reinforced composite laminates,
see Fig. 1.

A typical fiber reinforced composite laminate is made
of a number of unidirectional fiber reinforced composite

Figure 1. An example of a FRC three-layer laminate.
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layers, [1–3]. A composite layer with a parallel system
of reinforcement fibers represents an orthotropic medium
with three mutually orthogonal planes of symmetry. Usu-
ally a composite layer consists of high modulus fibers (typ-
ically they are glass, boron or graphite fibers) embedded
in a matrix (epoxy or polyamide). Considering its light
weight, a lamina of fiber reinforced composite is remark-
ably strong along the fiber direction. However, the same
lamina is considerably weaker in all off-fiber directions.
To address this issue and withstand loadings from multiple
angles, one would use a laminate constructed by a num-
ber of laminas oriented at different directions. A laminated
composite panel can be considered as an optimal struc-
ture with effective utilization of composite material direc-
tional properties [3]; however, fiber reinforcement can be
applied also in a three-dimensional layout (compare Tong
et al. [6]).

A sandwich shell and a thin composite laminate take
a form of a layered shell that is built of several laminas
bonded together with some adhesives. A typical sandwich
shell consists of a light core and two thin outer faces,
which can take a form of either isotropic or laminated
composite panels. The light core does not transfer sig-
nificant forces; the most important for the core is its low
weight. When the core is made as a composite then the
requirement for reinforcement is minimal and the contri-
bution of light fillers significantly increases. Very often
the fillers are simple empty voids, and then one can talk
about porous cores or foams. Another option is a core
build as a 3D structure, e.g. corrugated panels and spa-
tial lattices of beams or plates. Probably the most popu-
lar type of a sandwich core is based on two-dimensional
cellular geometries with large-scale cells (see e.g. [7–9]);
here the flagship example is a hexagonal sheet structure
that visually resembles a product of the apiarian indus-
try, therefore is commonly known as a honeycomb (Fig. 2).
Other examples of multilayered anisotropic structures are
laminates made of different isotropic layers e.g. employed
for better thermal insulation or noise suppression. Con-
sidering the application of layered structures, one should
not forget also smart thin-walled sandwich structures with
piezoelectric layers embedded for passive or active vibra-
tion or sound control (see e.g. [10, 11]).

2. Theoretical models for multilay-
ered thin-walled structures

The increasing use of laminated composites and sandwich
panels demands a better understanding of the behavior of
multilayered thin-walled structures (see e.g. [11, 12]).

Figure 2. Sandwich plate with a honeycomb core.

Generally, analysis of such complex structure as
a fiber reinforced composite laminate can be performed ei-
ther from the micro-mechanical or macro-mechanical point
of view, [1, 2, 11, 13]. It is quite obvious that a precise
study of interaction between the fibers and the matrix can
be examined in detail only in the micro-mechanical scale.
However, costs of micro-mechanical scale calculations of
any real structure are still far too high for practical appli-
cations; a much more realistic option but still quite costly
is multi-scale modeling (see e.g. [14–17] and the review
paper by Ladevéze [18]). If one is interested in an overall
performance of a thin-walled structure made of fiber re-
inforced composite laminates, then the macro-mechanical
modeling can be applied, where all micro-scale effects are
smeared in a phenomenological material model.

The macro-mechanical models of laminated plates and
shells are usually constructed according to an appropriate
lamination theory, where it is assumed that the laminated
panel is made up by a certain number of layers, which
are supposed to be perfectly bonded together. In such
a model a single layer is considered as an elementary
and homogenous part of the structure. Therefore, even in
a case of fiber reinforced composite laminates each lamina
can be considered as a complete physical entity instead of
a collection of isolated components. The effective proper-
ties of a layer made of any heterogeneous material can be
obtained by the homogenization that may be understood
as “finding a homogeneous comparison material that is
energetically equivalent to a given microstructured mate-
rial”, Böhm [19] (see also [14, 16, 20]).

Basically, talking about 2D computational models for
multilayered shells one can distinguish between two pri-
mary categories of lamination theories: the Equivalent
Single Layer (ESL) model or Discrete-Layer (DL) the-
ory, [21–25]. Discrete-layer models appear also very often
in the literature as layer-wise theories, see e.g. [23, 26–
29].
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2.1. Equivalent Single Layer models

In the ESL model the entire laminate is represented
by a single-layer panel with macro-mechanical proper-
ties estimated as a weighted average of the mechani-
cal properties of each lamina. A single layer model re-
placement for the heterogeneous panel can also be con-
structed with a help of the homogenization technique, see
e.g. [30–33].The Equivalent Single Layer model used in
conjunction with the classical Kirchhoff-Love theory of thin
shells/plates is commonly known as the Classical Lamina-
tion Theory (CLT) (see e.g. [1, 2, 25, 34]). Sun & Chin [35]
presented the von Kármán-type CLT model for a geomet-
rically non-linear analysis of laminated composite plates;
a similar large displacement formulation for thin composite
shells was given by Saigal et al. [36]. Composite multi-
layered shells are typically characterized by a large ratio
of Young’s modulus to shear modulus, even if they are
relatively thin (see e.g. [1, 2, 5]). Therefore, the CLT for-
mulation, which does not account for the transverse-shear
deformation, is rather inadequate for accurate prediction
of the elastic behavior of composites. In order to over-
come that limitation a refined lamination theory is re-
quired that accounts for transverse shear deformation. An
extension of the First-Order Shear Deformation (FOSD)
model for laminated plates was described by Whitney &
Pagano [37], whereas Dong & Tso [38] presented FOSD
model for composite shells (see also [1, 2, 25, 39, 40]).
Reissner [41] developed a FOSD model designated for
sandwich shells. Various variants of CLT and FOSD shell
theories were examined in a linear static analysis of cylin-
drical laminated shells by Chandrashekhara & Pavan Ku-
mar [42, 43]. An interesting asymptotic formulation of
the FOSD multilayered plate theory based on the mixed
Hellinger-Reissner variational principle was presented by
Tarn & Wang [44]. Large deformation formulations based
on the FOSD model was presented e.g. by Reddy &
Chandrashekhara [45], Schmidt & Reddy [46], Palmerio
et al. [47], Kreja et al. [48].

It is well known that FOSD models require an appro-
priate transverse shear correction due to a constant shear
distribution across the shell thickness resulting from the
linear interpolation of the displacement field in that di-
rection. One should realize, however, that the estimation
of a shear correction for laminated composites is much
more complicated than for homogeneous panels. In the
literature one can find innumerable proposals of different
formulas for appropriate shear correction factors, depend-
ing on material properties and also on such geometrical
characteristics of the laminate as stacking sequence of the
layers and their ply angles. Most of those formulas have
been determined by matching the transverse shear strain
energy predicted by the FOSD plate model with that ob-

tained from the three-dimensional elasticity theory (see
e.g. Dong & Tso [38], Whitney [49], Wittrick [50], Vla-
choutsis [51], Jemielita [52]). Noor & Peters [53] as well
as Sze et al. [54] calculated the transverse shear correc-
tion factors for multilayered cylindrical panels by means of
the predictor-corrector approach. A similar methodology
was applied by Auricchio & Sacco [55, 56], who deter-
mined the shear correction in an iterative manner. Both
those tactics based on the comparison between the shear
energy computed for the transverse shear stress obtained
from constitutive relations and the shear energy calcu-
lated for transverse shear stress recovered from the three-
dimensional equilibrium. Another approach was proposed
by Pai in [57] where not only the transverse shear strain
energy but also the shear stress resultants estimated with
the FOSD model were balanced with those calculated
by the layer-wise higher-order shear theory. Rolfes &
Rohwer [58] introduced an ”improved” transverse shear
stiffness in the FOSD model as calculated with the as-
sumption of a cylindrical bending mode and by utilizing
the differential relation between the resulting transverse
shear forces and bending moments. Similar procedure was
incorporated also in the commercial FEA system MSC-
Nastran [59]. Altenbach [60] estimated the shear stiffness
of layered plates by comparing the forces and moments
calculated from two-dimensional and three-dimensional
models. Tanov & Tabiei [61] presented a Corrected FOSD
model where they enforced a parabolic shear strain distri-
bution across the shell thickness, what not only improved
a profile of the transverse shear stress but also eliminated
the need for using a shear correcting factor. Although
the authors of [61] classified themselves their model as
the “displacement-based formulation” it should be rather
classified as the mixed formulation based on the Reissner
partial-mixed variational principle [62]. Similar strategy
was adopted by Fares & Youssif [63], Fares et al. [64],
and Auricchio & Sacco [55, 56, 65] who presented a col-
lection of different Refined FOSD models, all based on
independent approximations of the transverse stress fields
introduced in the (partial-)mixed variational principle, but
varied in the final number of unknowns. A slight different
version of Refined FOSD theory, although corresponding
to some extent with the model of Tanov & Tabiei [61], was
proposed by Qi & Knight [66] and was labeled as a Consis-
tent FOSD in the subsequent paper of those authors [67].
In their approach the effective transverse shear strains of
the FOSD was treated as the stress-weighted average of
the through-the-thickness transverse shear strains based
on the equivalent shear strain energy. Evaluation of the
effective shear stiffness in that formulation is comparable
to the application of the transverse shear correction factor.
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For thick panels a significant improvement of results
can be obtained by applying the HOSD models, where
the conventional displacement equations of FOSD are
supplemented with various higher-order terms. In the
most popular methodology of the “derived approach” a 2-
D plate/shell model is constructed by applying a power
series expansion of the displacements and strains with
respect to the thickness coordinate. Starting with that
formulation one can obtain a shear deformation model
of an arbitrary order depending on the selected level of
truncation. In 1984 Reddy [68] developed a Third Order
Transverse Shear Deformation (TOSD) theory for lami-
nated plates assuming a cubic representation of the dis-
placement field with respect to the height coordinate (see
also Khdeir et al. [69], Phan & Reddy [70], Reddy [24, 71]
and Reddy & Arciniega [39]). An extension of that model
for laminated shells was presented by Reddy & Liu [72]
(see also Reddy’s handbook [11]). By using the condi-
tion of vanishing transverse shear stresses on top and
bottom surfaces they reduced a set of unknowns to ex-
actly the same five displacement components as in the
FOSD model. Three various TOSD models of multilay-
ered plates were examined in the linear analysis by Bose
& Reddy [73]. Reddy extended his TOSD model for the von
Kármán-type non-linear plate theory in [74]. Dennis [75]
and Simitses [76] used a similar approach to obtain ana-
lytical TOSD solutions for circular laminated cylindrical
panels modeled within the range of the von Kármán ge-
ometric non-linearity by means of the modified Galerkin
method. A corresponding formulation for large rotation
shell theory was presented by Bașar [77] and by Bașar et
al. [78], who considered also a 7-dof model where two ex-
tra displacement variables were included due to enriched
approximation of the displacement field across the thick-
ness of the panel. A similar TOSD model with 7 dofs was
proposed for geometrically non-linear shells by Balah &
Al-Ghamedy [79], who additionally applied singularity-
free description of finite rotations based on exponential
mapping after Simo et al. [80]. Another implementation
of the Reddy concept of TOSD [68, 72] can be found in
the Simplified Large Rotation (SLR) formulation proposed
for laminated shells by Palazotto and co-workers, Den-
nis & Palazotto [81, 82], Naboulsi & Palazotto [83], and
Tsai et al. [84]. The Second-Order Shear Theory (SOSD)
for laminated shells in the range of moderate rotations
was examined by Sacco & Reddy [85] who found that in-
clusion of second order terms did not significantly im-
prove the linear solution over the FOSD model. Moita et
al. [86] applied the Higher-Order Shear Theory (HOSD)
model to investigate the buckling behavior of laminated
panels. Piskunov [87] described an iterative analytical
theory of composites, where starting from the CLT for-

Figure 3. Deformation profiles of a layered panel represented by dif-
ferent shear deformation models.

mulation, one can obtain a HOSD-equivalent model by
successive approximations. Quite a general geometrically
non-linear HOSD laminated shell theory was presented
by Librescu [88].

The 3-D elasticity solutions of laminated plates (see
e.g. Pagano & Hatfield [89]) exhibited rapid changes of
the displacement profile at the interfaces between two
contiguous layers. This phenomenon is commonly clas-
sified as the zig-zag effect. To account for that feature
the kinematical model of the layered shell should be en-
hanced by adding some warping functions that are capa-
ble to represent the deformed profile with a different slope
in each layer. A similar zig-zag effect can be recognized
also in displacement fields obtained in some stress based
formulations (see e.g. Ambartsumyan [34]). The ability
of different shear deformation theories to represent the
deformation profiles of a layered panel is illustrated in
Fig. 3.

By assuming a piecewise linear approximation for the
warping function one in fact adopts the FOSD hypothe-
sis for each individual layer of a multilayered shell (see
e.g. Brank [90], Brank & Carrera [91, 92], Carrera [93, 94],
Di Sciuva [95], Toledano & Murakami [96]). However, in
the pioneering zig-zag model for multilayered plates pre-
sented by Ambartsumyan [34] the resulting through-the-
thickness distribution of in-plane displacement field is cu-
bic in each layer; similar piecewise TOSD zig-zag models
were considered by Di Sciuva [97], Di & Rothert [98, 99],
Lee et al. [100], Toledano & Murakami [101]. The warping
function can be given explicitly, for example as a zig-zag
function connected with two additional unknowns for the
whole cross section, [93, 96, 98, 99, 101, 102]. Savithri
& Varadan [103] presented a TOSD formulation for com-
posite plates, where the zig-zag effect was included by
application of Heaviside step function in the description
of the displacements distribution across the plate thick-
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ness. Another way is to construct the warping function by
invoking interlayer shear stress continuity conditions and
zero shear traction boundary conditions on the upper and
lower bounding surfaces. Then the resulting model con-
tains exactly the same number of unknowns as the stan-
dard FOSD formulation, but requires C1 type continuity
in the FEM implementation (see e.g. formulations pro-
posed by Di Sciuva [95, 97], Lee et al. [100], Librescu &
Schmidt [104, 105], He [106], Shu [107]). Lee & Cao [108]
proposed a predictor-corrector method of laminated shells
analysis based on zig-zag models of Di Sciuva [95] and
Lee et al. [100]. An interesting variant of that approach
was presented by Soldatos & Watson [109] who proposed
to enhance a standard 5-dof model for small displacement
analysis of laminated plates by an introduction of special
shape functions, which could be determined a posteriori
from the stress equilibrium equations. Working along sim-
ilar lines, Cho et al. [110] proposed the Efficient Higher-
Order Shell Theory based on an overall cubic distribu-
tion of in-plane displacements combined with a piecewise
linear profile. Similar model but with cubic function re-
placed with the sinus function was proposed by Idlbi et
al. [111] and by Fernandes [112]. Arya et al. [113] pro-
posed a zig-zag model enhanced by the application of
several trigonometric functions in the displacement field.
Hassis [114] in his higher order plate theory introduced
a warping function constructed on the basis of deformation
modes of the normal fiber treated as a geometrical beam.
Such an approach resembles the earlier idea of Sutyrin &
Hodges [115], who applied the variational-asymptotical
method to split the 3-D analysis of plate deformation
into two separate reduced-dimensional problems: a 2-D
Reissner–type plate theory analysis and a 1-D through-
the-thickness analysis (an extension of that idea for non-
linear shell theory was presented by Yu & Hodges [116]
and Yu et al. [117]). Quite recently, Kim & Cho [118] pre-
sented an Enhanced FOSD theory for laminated plates
constructed as weighed least-square approximation of a 3-
D theory. The warping function incorporated in that for-
mulation was obtained with the HOSD plate theory [110]
and the resulting effective transfer shear stiffness could be
considered as being analogous to that used in the Con-
sistent FOSD of Knight & Qi [67].

2.2. Discrete-layer theories

Despite the fact that the performance of ESL models can
be significantly improved by inclusion of various warping
functions, it is almost impossible to construct a universal
ESL model which would be equally efficient for symmetri-
cally and asymmetrically laminated panels. Therefore, the
next step on the way to increase the accuracy of the multi-

layered shell models has to go beyond the limits of a sin-
gle layer model, i.e. it is necessary to consider each layer
separately within discrete-layer (DL) theories named also
the layer-wise formulations.

At this point, it is worth to notice that some authors
used to extend the term “layer-wise formulation” also to
include those equivalent single layer models which were
enhanced by addition of some warping functions (see e.g.
Rohwer et al. [25]). To some extent such an approach can
be justified by the common in the both models abandon-
ment of the Cz=1 requirements, what means that functions
describing the displacement distribution in thickness di-
rection can exhibit rapid changes of slopes at the inter-
faces between two contiguous layers. Nevertheless, the
main difference between the ESL model with the warp-
ing function and the DL formulation is that the number
of unknowns in the ESL model does not depend on the
number of layers (usually after taking advantage of some
compatibility conditions to eliminate local unknowns).

The laminate in the DL theory is treated as a stack
of laminas bounded together by appropriate conditions at
ply interfaces. Since each lamina is treated individually,
the number of unknowns in DL theories depends on the
number of layers, N. Kulikov [22] (see also Piskunov [87])
claimed that the DL theory originated from the layer-wise
description of sandwich panels introduced by Grigoluk in
the 1950s. On the other hand, any DL model was men-
tioned neither in a review article on layered shells theo-
ries by Ambartsumyan [119] from 1962, nor in a survey of
developments in the analysis of sandwich structures pub-
lished three years later by Habip [120]. A layer-wise the-
ory presented for laminated plates by Mau in 1973 [121]
used 4N+1 displacement unknowns accompanied by 2(N-
1) additional unknown variables representing the inter-
lamina shear stresses. In 1978 Pagano [122] presented an
approximate theory for stress analysis in composite lam-
inates, where he assumed in-plane stresses represented
within each layer by linear functions of the thickness co-
ordinate. The stress equilibrium equations were expressed
in force and moment resultants and formulated separately
for each layer, and the set of equations were supplemented
with appropriate interface conditions. A final number of
unknowns in the Pagano model [122] was equal to 13N.
One can notice that the order of computational complexity
of both just mentioned formulations is relatively high, es-
pecially that Mau [121] as well as Pagano [122] suggested
to model each physical layer with two or three computa-
tional sub-layers to provide a satisfactory accuracy of the
results. Much more economical DL theories were based
on an independent shear deformation of the director asso-
ciated with each individual layer and involving just 3+2N
displacement unknowns (three global displacements for
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the whole laminate and two local rotations for each layer).
An example of such an approach was a layer-wise lami-
nate plate theory proposed by Mawenya & Davies [123]
and described also by Reddy [24, 71]. A correspond-
ing laminated shell model was presented by Chaudhuri
& Seide [124] (see also [125]) as the “layerwise constant
shear-angle theory”, and by Noor & Burton [21, 126] as
the “discrete layer shell theory”. A similar formulation
but with 3(N+1) unknowns due to accounting for 3-D ef-
fects was presented for laminated shells by Huttelmaier &
Epstein [127] as well as by Masud & Panahandeh [128].

It is crucial to distinguish between two quite different
concepts of shell kinematics that are quite often identi-
fied in the literature with the common label of the “multi-
director model”. On the one hand, Pinsky & Kim [129],
Braun et al. [130] and Wagner & Gruttmann [131] used
this term to describe DL models with independent director
vectors in each layer, on the other hand, Krätzig [132] pre-
sented a multi-director single-layer shell model that can
be considered as being analogous to the general HOSD
shell theory of Librescu [88], but in contrast to the lat-
ter, belonging to the category of the “direct approach”
methodologies (see also [133–135]). A prototype of that
formulation was given earlier by Naghdi (see e.g. equa-
tion (2.22) in [136]) but without introducing the name:
“multi-director model”. To avoid any possible confusion, in
the present report the expression “multi-director model”
stands only for the DL formulations being equivalent to
that presented by Pinsky & Kim [129].

A “multi-director formulation” of Pinsky & Kim [129]
accounted for visco-elastic material behavior and large
deformations including the thickness stretching; therefore
the number of unknowns in that model was extended to
3+4N. Cho & Averill [137] combined the zig-zag model
of Di Sciuva [95] with a layer-wise formulation obtain-
ing a “First order zig-zag sublaminate plate theory” with
5(N+1) unknowns. The generalized laminated plate the-
ory of Reddy [71] (see also [138]) offers a quite universal
description of the layer-wise model with an arbitrary order
of displacement interpolation within each layer assuming
kinematical variables located at the interfaces. A simi-
lar concept was considered by Gaudenzi et al. [139] who,
however, imposed the continuity of interlaminar stresses
only at selected interfaces in order to limit the total num-
ber of unknowns. Carrera [140] presented a mixed varia-
tional formulation of a layer-wise multilayered plate the-
ory with variable fields of displacements and transverse
stresses interpolated by Legendre polynomials of a cho-
sen order (see also [27–29]). A displacement formulation
of that model was considered in [140] as a special re-
duced variant of the layer-wise plate theory with limited
number of unknowns but also without continuity of trans-

verse shear and normal stresses. Bașar [77] and Bașar
et al. [78] introduced DL models with inextensible multi-
director (3+2N unknowns) for finite rotation analysis of
composite shells. A corresponding model based on the ge-
ometrically exact shell formulation of Simo et al. [80] was
presented by Vu-Quoc et al. [141] with the main assump-
tion that “the transverse fiber across the whole multilayer
shell deforms as a chain of rigid links that are connected
to each other by universal joints”. Bașar et al. [133] and
Braun et al. [130] applied the 7-parameter FOSD shell
theory for each single layer, what resulted in DL formu-
lations with 3+4N unknowns. Bașar & Ding [26] consid-
ered the transverse normal strains in their DL models with
3+3N, 3+4N, and 3+6N unknowns. Gruttmann & Wag-
ner [142] presented a DL multilayered shell model based
on the HOSD theory with 3+9N unknowns. Williams
& Addessio [143] constructed a DL model for analysis of
plate delamination problem; in their model the layer dis-
placement variables were supplemented with interfacial
traction terms and appropriate evolution laws describing
the damage growth.

It is quite interesting that traces of DL formulations
can also be found in some ESL zig-zag models. As a typ-
ical example one can consider the ESL zig-zag theory
of Di Sciuva [95], who started his derivations assuming
a multi-director description of the displacement field with
independent rotational parameters in each layer. In the
next step of the formulation those parameters were elimi-
nated by invoking the shear stress constraints. As it was
mentioned earlier in this chapter, the final number of un-
knowns in the ESL model of Di Sciuva [95] (and also in
other models of that kind [104–107]) was equal to five.
A quite similar concept can be recognized in the lami-
nate theories proposed by Li & Liu [144], where the dis-
placement field was expressed with global components of
TOSD theory and local components of DL model combined
within so called global-local superposition technique. Af-
ter taking advantage of continuity conditions the model
constructed by Li & Liu [144] used 13 layer independent
variables, what makes six more unknowns than in a stan-
dard TOSD model.

2.3. Three-dimensional and combined models

It should be emphasized that either the ESL or DL for-
mulations described above are in fact 2-D models; one
can quite easily imagine that multilayered shells can be
analyzed also with the use of 3-D models based on elas-
tic three-dimensional continuum. However, practical ap-
plication of such models is very limited due to the dra-
matic increase of the number of unknowns. Analytical
3-D solutions presented by Pagano in 1969 [145] and
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1970 [146] for selected examples of simply supported lami-
nated composite plates under distributed transverse loads
serve as classical benchmark problems. They are still
used by many researchers for the purpose of validat-
ing their diverse theories of laminated plates [89, 122,
147]. Bogdanovich & Yushanov [148] presented a 3-D
displacement-assumed variational analysis of laminated
composite plates. Williams & Addessio [143] extended
Pagano 3-D model to include the problem of delamina-
tion. Desai et al. [149] and Feng & Hoa [150] modeled
layered composites as a stack of 3-D solid sub-elements
along the thickness of composite laminates.

It seems quite obvious that any attempt to use a de-
tailed 3-D model for the whole analyzed panel very soon
would finish in exceeding reasonable limits of practical
application. Therefore a concept of global-local anal-
ysis (Feng & Hoa [150], Cho & Averill [137], Kong &
Cheung [151]) appears to represent a rational compro-
mise between the requirements of precise analysis and
realistic costs of calculations. The primary step is to se-
lect those regions of the analyzed structure, named local
zones, where a more detailed analysis (3-D or at least
DL model) is required due to vicinity of holes, constrained
boundaries or other discontinuities. One can assume that
the remaining parts of the structure, the global zones are
more regular and therefore they can be treated with ac-
cepted accuracy as regions of a single layer panel with
equivalent laminate properties (ESL model). Depending
on specifics of the applied approach a special treatment
of transition zones may be necessary, see e.g. [150–152].
By combining local and global zones in one computational
model one can significantly improve the accuracy of the
analysis staying within a moderate range of computational
costs.

2.4. Recovery of transverse stress

Using a FOSD model with a proper estimation of a trans-
verse shear stiffness one can attain a quite satisfying ac-
curacy of a global response of moderately thick laminated
panels. However, whereas the FOSD results for deflec-
tions and rotations or even for in-plane stresses are ac-
ceptable, a direct application of constitutive relations must
result in a wrong profile of the transverse shear stresses
(being constant across the thickness of each layer). A sim-
ple correction of the FOSD model resulting in a much more
realistic distribution of the transverse shear stress can
be obtained when the transverse stresses are calculated
from the stress equilibrium condition of the in-plane stress
components (see e.g. [54, 58, 153–155]). Carrera [156],
Das et al [157] and Rohwer et al. [25] showed that us-
ing the stress equilibrium for the estimation of transverse

stresses can also be very effective for HOSD or DL mod-
els. The same strategy was applied also in the CLT mod-
els; see e.g. Ambartsumyan [34] or Jones [1]. A slightly
different post-processing method was constructed by Cho
& Kim [158], who applied a displacement approximation
of the HOSD theory to reinterpret the results from the
FOSD analysis by matching rotational variables of both
kinematical models (similar approach can be found also
in [159]). The improved displacement field predicted by
that procedure provided a satisfactory accuracy of trans-
verse shear stress calculated directly from the constitu-
tive relations. Wisniewski & Schrefler [160] introduced
a post-processing procedure for a stress recovery in mul-
tilayered beams based on the sub-discretization of ma-
terial layers of the beam into quadrilateral 2D elements,
followed by an application of the smoothing technique.
Later on this approach was extended for 3D problems by
Galvanetto et al. [161]. It is also worthy to notice that in
mixed formulations transverse stresses can be calculated
directly as primary variables (see e.g. [65]) or at least
the shear stress profiles can be substantially improved by
direct calculation of stress resultants being primary vari-
ables, [55, 56]. Post-processing method of stress recovery
can also be applied in geometrically non-linear analysis
of laminated shells, [162, 163]. Lee & Lee [162] devel-
oped an equilibrium-based stress recovery method that
utilizes the in-plane stresses and shear forces obtained
by a shell element analysis and one-dimensional FEM
approximation introduced along the thickness in the post-
processing phase. Park et al. [163] calculated transverse
stress in finite rotation analysis by piecewise integration
of the three-dimensional stress equilibrium equations in
the thickness direction. A review on a priori and a poste-
riori methods of transverse stress evaluation in multilay-
ered plates was presented by Carrera [156] and Kant &
Swaminathan [164].

2.5. Sandwich panels as a special case of
multilayered structures

It is worth to notice that sandwich panels can be in gen-
eral considered as multilayered structures and as such
they can be analyzed with most of the theoretical models
surveyed above. However, there is also quite a broad cat-
egory of computational models that are specially adjusted
to deal with sandwich panels by a compliance with the
specific features of those structures. A typical sandwich
panel is constructed from two thin face-sheets separated
by a thick but usually lightweight core. As a rule, the core
is made of a low strength material: the most popular are
foam or honeycomb cores but one can also find a core con-
structed as a 3-D truss-structure. All those materials are
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characterized by low in-plane and flexural rigidities, for
that reason usually only shear stiffness is considered for
the core, whereas the thin plate/shell model is applied for
the faces. Such assumptions were introduced in one of the
earliest sandwich plate models proposed by Hoff [165] in
1950, similar approach was also adopted in one of the first
non-linear finite element formulations for sandwich plates
presented by Schmit Jr. & Monforton [166] in 1970. On
the other hand, the thickness of outer face-sheets is signif-
icantly smaller than the height of the core; hence already
in 1947 Reissner [41] suggested that the bending stiffness
of facings about their own midsurface can be neglected. In
1991 Lewiński [167] proposed a more general formulation
of a sandwich plate model, which by introducing some sim-
plifying assumptions can be reduced to that of Hoff [165] or
Reissner [41]. Malcolm & Glockner [168] and Glockner &
Malcolm [169] constructed a computational model based
on the Cosserat surface theory, where they treated the
face-sheets as membranes of negligible thickness. Das
et al. [157] proposed a HOSD sandwich shell model with
seven weighted-average displacement variables. Vu-Quoc
et al. [141] presented a DL formulation for sandwich shells
based on geometrically exact shell formulation of Simo
et al. [80]. Borsellino et al. [170] performed experimen-
tal tests and numerical simulations of sandwich structures
with composite facings.

Developments in the analysis and modeling of sand-
wich structures were reviewed in 1965 by Habip [120], and
more recently by Burton & Noor [171] (1995), Librescu &
Hause [7] (2000) and by Hohe & Librescu [9] (2004).

2.6. Material modeling in analysis of multilay-
ered shells

The most popular, linear elastic material models of multi-
layered shells are very well established in the technical
literature. Probably the most frequently cited resources
in that context are handbooks of Jones [1] and of Vinson &
Chou [2], both published in 1975; more recent texts were
prepared by Nettles [172], Stockton [173], and Vasiliev
& Morozov [3]. Phenomenological observations of most
high-strength fiber reinforced composites seem to justify
assumption of their linearly elastic response; however, one
can easily indicate also many cases where material non-
linearity should be taken into consideration. Neverthe-
less, the label of “composite materials” covers so large
range of materials that it is just impossible to get a gen-
eral approach of the mechanical behavior; the following
short survey is limited to some selected examples only.

A constitutive model applied by Hu [174] in buckling
analysis of fiber-composite plates accounted for elastic
material non-linearity restricted only to in-plane shear

terms. This issue corresponds to the important ques-
tion of an effective experimental determination of the in-
plane shear stiffness of a composite plate. It seems
quite obvious that the non-linearity of the relation be-
tween in-plane shear stress and in-plane shear strain
was treated by Hu [174] as a material non-linearity.
However, another option was chosen by Pai & Pala-
zotto [175], who handled this problem exclusively within
geometrical non-linearity. Pai & Palazotto [175] pre-
sented a geometrically non-linear co-rotational formu-
lation for laminated shells accounting for large strains
and a change of fiber directions during deformation of
a laminate. They used the right-stretch (Biot) strain ten-
sor and the work-conjugate Jaumann-Biot stress tensor,
declaring that only those strain and stress measures al-
low for using “experimentally obtained material constants
in the constitutive equations” [175]. The effect of fiber
rotation was also investigated by Wisnom [176], who ex-
amined how much the change of fiber directions during
deformation of a glass-epoxy laminate in ±45◦ tension
tests can influence the measured in-plane shear stiff-
ness. Wisnom [176] concluded that the effect of fiber ro-
tation is small at shear strains below 7%, what means
that this factor can be neglected in small strain analy-
sis. Abu-Farsakh et al. [177] examined inelastic static
response of laminated composite beams using the secant
modulus model. Woo et al. [178] analyzed laminated or-
thotropic plates using anisotropic elastic-plastic material
model, based on Prandtl–Reuss flow rule with strain hard-
ening and Huber–Mises yield criterion modified by in-
troducing the parameters of anisotropy. A rheological
behavior of laminated plates and shells was considered
e.g. by Kennedy [179], Kłosowski & Woźnica [180] and
Wagner & Gruttmann [131]. Kennedy [179] analyzed the
time-dependent response of composites assuming visco-
elastic constitutive relations. Visco-plastic material mod-
els of Perzyna, Chaboche and Bodner-Partom were used
in the creep analysis of composite panels by Kłosowski
& Woźnica [180]. Wagner & Gruttmann [131] employed
visco-plastic material model in an examination of delam-
ination problems in layered panels. Bașar et al. [133]
applied a hyper-elastic Mooney-Rivlin type constitutive
model in a large strain analysis of a sandwich shell with
a rubber core.

An interesting example of micro-macro modeling of
composite materials based on the homogenization the-
ory of periodic media was described recently by Takano
et al. [15]. In this formulation the composite is treated
as the assembly of periodic microscopic structures. As-
suming that microscopic periodicity remains in the local
region also under large deformation, the local region is
replaced by the homogenized model. However, in general,
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due to large deformations the change of microstructures
in one local region is different from that in other region;
therefore during deformation the microstructures have to
be updated for local regions. An application of that proce-
dure in an analysis of knitted fabric composite materials
seems to be especially promising. More on a multi-scale
modeling of composite materials can be found in a recent
book by Böhm [19] (see also [14, 18]).

A review of recent developments in theoretical mod-
eling of composite materials including inelastic behavior
and damage was given by Dvorak [181], who among other
things indicated also growing “ability to design physical
properties of composite material systems and structures
for different specific purposes”, [181]. Hohe & Becker [8]
presented a survey on material representation for cellular
sandwich cores, including plastic and non-linearly elastic
models.

2.7. More reading on multilayered plates and
shells modeling

This chapter does not pretend to present a complete sur-
vey of all theoretical models proposed for layered thin-
walled structures, but rather to show the most relevant
ideas in that field. A comprehensive discussion on differ-
ent modeling aspects of multilayered panels can be found
in the fundamental handbook of Reddy [11]. Extensive re-
views on analysis of multilayered plates and shells can
be also found in [21–29, 39, 40, 71, 73, 76, 87, 94, 126,
164, 182–189]. See also collection of papers edited by
Guz [13] and Hult & Rammerstorfer [190].

3. Finite element analysis of layered
thin-walled structures

3.1. Equivalent Single Layer FE models of
laminated composites and sandwich panels

It seems that the most straightforward construction of a 2D
FE model for a laminated composite or a sandwich panel
can be obtained within the ESL approach. One can simply
employ one of existing finite elements prepared for homo-
geneous plates or shells and all necessary modifications in
that case consist in the introduction of an anisotropic ma-
terial model with material parameters estimated accord-
ing to selected lamination theory. Rao [191] performed
a linear FE analysis of shallow laminated shells using 48
dof finite elements based on the CLT (Classical Lamina-
tion Theory); a similar element was used in geometrically
non-linear analysis by Saigal et al. [36].

For the reasons described in the previous chapter, it
seems quite obvious that shear deformation theories are
more suitable as the basis for a construction of finite el-
ements to model laminated composites. There is a big
number of finite elements for laminated shells that are
formulated within the FOSD (First Order Shear Defor-
mation) theory. A basic FE formulation of the classical
linear FOSD theory of layered shells can be found in the
book of Reddy [192]. Large displacement FOSD FE anal-
ysis of layered plates (in the range of von Kármán non-
linearity) was presented in a review paper of Reddy [182];
a corresponding FE model for laminated composite shells
was examined by Reddy & Chandrashekhara [45] (see also
Reddy’s handbook [11]). Palmerio et al. [193] described
a 9-node shell element for moderate rotation FOSD anal-
ysis of laminated shells. Different aspects of the FE im-
plementation of the FOSD moderate rotation shell the-
ory were examined by Kreja et al. [48] (see also [194]).
In 1979 Panda & Natarajan [195] constructed their FE
FOSD laminated plate model as a displacement based de-
generated isoparametric element with quadratic in-plane
interpolation and reduced integration; the correspond-
ing FE formulation for laminated shells was presented
by Chang & Sawamiphakdi [196]. A very similar element
was used by Jun & Hong [197] (see also [198]) in a non-
linear UL analysis of cylindrical composite panels per-
formed with the arc-length control method. Wagner [199]
analyzed large deformations and buckling of cylindrical
composite laminated shells using a 4-node finite ele-
ment with reduced integration and hour-glass stabiliza-
tion. Ferreira & Barbosa [200] presented a 9-node ele-
ment based on the Marguerre shallow shell theory (in the
range of von Kármán non-linearity) and ANS approach.
Laschet & Jeusette [201] performed post-buckling analy-
sis of laminated composites applying an under-integrated
solid-shell element possessing only translational degrees
of freedom. Rikards et al. [202] analyzed buckling and
vibration of composite stiffened shells using triangular
FOSD shell elements with selective integration. The
concept of FOSD finite elements based on mixed inter-
polation of tensor components (MITC elements) was ex-
tended for laminated plates by Alfano et al. [155], and
for laminated shells by Haas & Lee [203] and Hossain
et al. [154]. Somashekar et al. [204] examined a 4-node
field-consistent shell element for a linear analysis of lam-
inated composite panels. Groenwold & Stander [205] de-
veloped a 4-node 24 dof shells element for layered com-
posite panels. Dorninger [206] (see also [207]) extended
the non-linear formulation of the degenerated shell ele-
ment of Ramm [208] to include the anisotropic layered ma-
terial behavior of laminated composites. Brank et al. [209]
presented an ANS formulation of a 4-node FOSD shell
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element for large-rotation analysis of laminated elastic
shells; however, only one out of eight numerical examples
was devoted to multi-layered shell problem, and the mag-
nitude of rotations in that particular example stayed within
the range of moderate rotations (compare [210]). More
examples of the large rotation FEA of laminated shells
within the FOSD theory can be found in the recent papers
by Kreja & Schmidt [211] and Kreja [210]. Kim [212] (see
also Kim & Voyiadjis [213]) developed under-integrated 8-
node non-linear composite FOSD shell element based on
corotational formulation. A modified version of that ele-
ment based on the ANS formulation was examined by Kim
& Park [214] (see also Kim et al. [215]). Kim et al. [216]
presented large rotation analysis of laminated composite
structures using a co-rotational 4-node shell element with
enhanced strains. A co-rotational formulation was applied
also by Barut et al. [217], who analyzed large displace-
ments of shallow laminated shells applying triangular fi-
nite elements. Han et al. [218] performed a large de-
formation analysis of laminated shells using an element-
based 9-node stress-resultant ANS shell element with 54
dofs. A new version of that element modified according to
the Corrected FOSD model of Tanov & Tabiei [61] was
recently presented by Han et al. [219]. Pai [220] de-
veloped a 4-node laminated shell element using the co-
rotational formulation of Pai & Palazotto [175] and the
energy-consistent FOSD theory of Pai [57]; with 14 dofs
per node including the derivatives of deflections that ele-
ment was declared by the author to be locking-free. Arcin-
iega & Reddy [221] analyzed large deformation of compos-
ite panels using high order interpolation shell elements
based of 7-parameter FOSD shell theory. Hashagen et
al. [222] adopted the solid-like shell element introduced
by Parisch [223] for homogeneous structures to perform
materially and geometrically non-linear analysis of fiber
reinforced metal laminates. Kulikov & Plotnikova [224? ]
presented an extended mixed field formulation of a multi-
layered shell element with fundamental unknowns con-
sisted of six displacement parameters, eleven strains and
eleven stress resultants; however, the non-displacement
unknowns were eliminated on the element level result-
ing in the FE model with displacement dofs only. Cen et
al. [153] proposed a 4-node laminated FOSD plate ele-
ment based on utilization of Timoshenko beam theory (a
mixed field formulation corresponding to the ANS) com-
bined with a hybrid stress approach for improving the ac-
curacy of stress recovery; a very similar approach was also
used by Zhang & Kim [226] in a construction of their 20
dof and 24 dof quadrilateral laminated plate elements. An
eighteen-node hybrid-stress solid-shell element for lami-
nated structures was presented by Sze et al. [227] and by
Sze & Zheng [228].

Looking for a possible improvement of the FOSD re-
sults Tanov & Tabiei [61] proposed a simply correction to
a standard FE FOSD shell model by enforcing a parabolic
shear strain distribution across the shell thickness. Fares
& Youssif [63], Fares et al. [64], and Auricchio & Sacco [65?
? ] presented a collection of different finite shell elements
based on the refined FOSD theory and mixed variational
principle. In 1985 Phan & Reddy [70] constructed a 4-
node finite element based on the Reddy TOSD theory
of laminated plates [68] assuming Hermite interpolation
of the transverse deflection and Lagrange interpolation of
the other displacement unknowns. An extension of that
FE model for inclusion of the von Kármán non-linearity
was presented by Reddy [24]. Finite elements constructed
according to various TOSD plate theories were examined
also by Bose & Reddy [229]. High order interpolation
shell elements based on TOSD small displacement the-
ory were described recently by Reddy & Arciniega [39].
Dennis & Palazotto [81, 82] developed finite shell el-
ements based on their own Simplified Large Rotation
(SLR) TOSD theory of cylindrical laminated shells (see
also [83, 84, 230]); a combination of Hermite and Lagrange
interpolation schemes was applied, similarly as used ear-
lier by Phan & Reddy [70], however, a quadratic shape
functions were used for “in-plane” displacement compo-
nents, u and v. Das et al. [157] presented a rather com-
plex formulation of a triangular finite element based on
HOSD model with seven weighted-average displacement
variables; a special procedure based on the hybrid energy
functional was applied to satisfy the C1 inter-element con-
tinuity requirements what resulted in the FE with 13 dofs
per node. Moita et al. [86] used 80 dof finite shell ele-
ments based on the HOSD theory in the buckling analysis
of laminated panels. Bașar et al. [78] developed 4-node
ANS shell elements based on a large-rotation TOSD the-
ory of laminated shells; variants with 7 and 5 dofs per
node were considered. Balah & Al-Ghamedy [79] pre-
sented a similar 4-node ANS shell element for the TOSD
formulation with seven degrees of freedom but they ap-
plied exponential mapping of finite rotations instead of
Euler angles used by Bașar et al. [78].

A separate group among the FE implementations of
the ESL models consists of finite elements constructed
according to the zig-zag deformation theory with inter-
laminar stress continuity (compare a review article of Car-
rera [96]). Various FE realizations of the theoretical zig-
zag model of Toledano & Murakami [95, 101] were pre-
sented by Carrera and co-workers; their FE formulations
with seven displacement unknowns at each node were
characterized by the C0 type continuity. Carrera [231] de-
scribed 4-, 8- and 9-node plate elements following his own
theoretical model [93]; selectively and uniformly reduced
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integration schemes were considered. A corresponding
multilayer 4-node shell element was presented by Car-
rera & Parisch [232], who started from the existing finite-
rotation assumed strain shell element proposed for homo-
geneous shells by Parisch [233]. Another FE implemen-
tation of the zig-zag model of Carrera [93] was prepared
by Brank & Carrera [91, 92]; their formulation based on
the ANS shell element by Brank et al. [209]. As it was
mentioned earlier the zig-zag model proposed by Di Sci-
uva [94] required a C1 type continuity in the FEM imple-
mentation, therefore the triangular fully conforming multi-
layered plate element presented by Di Sciuva [97] had 10
dofs at each node, with first and second derivatives of the
transverse deflection in the list of displacement unknowns.

3.2. Discrete Layer FE models of laminated
composites

Mawenya & Davies [123] presented a linear bending anal-
ysis of laminated plates employing a DL finite element
with quadratic interpolation and 3+2N dofs at each node
(three global translations for the whole laminate with two
local rotations for each layer). A similar FE formulation
of a DL model for laminated plates by accounting for the
von Kármán non-linearity was developed by Reddy [24].
An analogous DL shell element was constructed within
the degenerated formulation by Rammerstorfer et al. [234].
Chaudhuri & Seide [124] described a corresponding trian-
gular multi-layered shell element based on their “layer-
wise constant shear-angle theory” with quadratic in-plane
interpolation; more recently, Chaudhuri [125] applied that
element in the analysis of angle-ply composite plates. The
DL shell elements of Pinsky & Kim [129] accounted for
large deformations including the thickness stretching with
the number of nodal unknowns extended to 3+4N. Simi-
lar discrete layer FE models of composite shells based on
the 7-parameter FOSD large rotation shell theory were
developed by Braun et al. [130].

Bașar & Ding [26] and Bașar et al. [133] examined 4-
node ANS/EAS shell elements for various DL models ac-
counting for the thickness stretching using 3+3N, 3+4N
and 3+6N dofs per node. A DL multi-layered shell model
with 3+9N unknowns based on the HOSD theory was
implemented into FEM by Gruttmann & Wagner [142].
Naboulsi & Palazotto [83] examined a discrete layer for-
mulation FE model of cylindrical composite shells based
on the co-rotational concept of Pai & Palazotto [175]. Vu-
Quoc & Tan [235] presented a DL formulation based on
a solid-shell element without any rotational degrees of
freedom what made it especially well suited for modeling
multilayer shells with geometrical thickness discontinu-
ities like ply drop-offs or (piezoelectric) patches. A com-

parable multi-layered DL shell element based on the
mixed field formulation was analyzed by Kulikov & Plot-
nikova [236, 237]. Dakshina Moorthy & Reddy [238] con-
sidered a related finite element formulation of DL model of
laminated panels; however, their analysis was performed
for a simplified 2D geometry of a vertical cross-section.
They applied 6-node plane element with quadratic in-
terpolation for the in-plane approximation and a linear
function for the thickness approximation; the EAS formu-
lation was employed to prevent locking. A similar concept
was applied by Krätzig & Jun [134, 135], who considered
a quite general formulation of the discrete-layer models
with two different layer-wise refinement concepts, inter-
nal for improved modeling of complicated stress states and
external for better kinematic approximation properties. In
the two examples presented by Krätzig & Jun [134], an
automatic 3-D refinement procedure based on the error
estimation was applied; the obtained final h-refined FE
meshes directly corresponded to some extend with the
global-local solution concept. Desai et al. [149] applied
3-D finite elements in a layer-wise discretization of lay-
ered composites (i.e. using one element per each layer
across the thickness). The set of nodal parameters in their
mixed formulation based 3-D finite elements contained
displacements and transverse stress components there-
fore the through-the-thickness continuity requirements of
displacements and transverse stress fields were satisfied
automatically. A similar hybrid approach was used by
Feng & Hoa [150] in their multi-layered 3-D model build
as a stack of 8-node solid sub-elements along the thick-
ness of composite laminates. Two dimensional shell ele-
ments were combined with 3-D solid elements in materi-
ally and geometrically non-linear analysis of composites
by Rammerstorfer et al. [239]. A slight different variant
of a global-local FEA can be obtained by a combina-
tion of DL and ESL composite shell elements as it was
done by Kong & Cheung [151] for linear analysis and by
Gruttmann & Wagner [142] in non-linear applications. Yu
et al. [152] presented a detailed FEA of composites plates
using a discrete layer approach where a single layer is
modeled with the mixed-field eight-node plate element
with the total number of 104 (stress-displacement) un-
knowns. Within a global-local concept proposed by Yu et
al. [152] some physical layers can be modeled as a sin-
gle global (ESL) region; nevertheless, the numerical size
of the problem remained enormous. Crisfield et al. [240]
introduced special interface elements to analyze delami-
nation problem in composites.

Aitharaju & Averill [241] (see also Cho & Averill [137])
proposed an interesting tactic to circumvent problems of
the C1 continuity requirements related to the application
of the zig-zag model of Di Sciuva [94] in the FEM. Their
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shell element had a form of an 8-noded cube with 5 dofs
(three translations and two rotations) at each node; there-
fore they could increase the refinement of the model by
using more than one element in the thickness direction.

3.3. Special FE models for sandwich struc-
tures

Generally, the most of FE models of multi-layered plates
and shells reviewed above in the context of composite pan-
els can be directly applied also in the analysis of sand-
wich structures; however, there is also a group of finite
elements exclusively dedicated to sandwich structures. In
1970 Schmit Jr. & Monforton [166] presented one of the
first non-linear finite element models of sandwich plates,
accounting only for membrane and bending deflections of
the outer faces and transverse shear deformations of the
core. Marcinowski [242] constructed his 8-node shell el-
ement for a geometrically non-linear analysis of sand-
wich shells assuming after Reissner [41] that outer facings
worked as thin membranes without bending stiffness. Das
et al. [157] used a hybrid-stress formulation to develop
a new 3-node triangular HOSD sandwich finite element
with 39 degrees of freedom. Vu-Quoc et al. [141] analyzed
sandwich shells applying a geometrically exact 4-node
shell element with selective reduced integration based on
a general DL multi-layered shell formulation. An interest-
ing way of putting the idea of ESL modeling of sandwich
panels into practice was presented by Tanov & Tabiei [33]
who suggested performing a FEA of any sandwich shell
with an existing FE FOSD model of homogeneous shells,
simply entering equivalent material parameters provided
by their sandwich homogenization procedure.

3.4. Analysis of composites and sandwich
panels with commercial FEA codes

The growing contribution of laminated composite appli-
cations in engineering structures initiated an increasing
interest in appropriate analysis tools; as a result some
professionals reached for ready computational models of-
fered by the commercial Finite Element Analysis systems.
Ali [243] applied the MSC Nastran [59] to perform a lin-
ear analysis of a petrol engine oil sump pan made of fiber-
glass composite. Rolfes & Rohwer [58] analyzed laminated
composite plates using the MSC Nastran with their self-
written preprocessor and postprocessor to implement the
”improved” transverse shear stiffness for the FOSD model
together with the special procedure to evaluate the trans-
verse shear stresses. Sze et al. [244] performed geomet-
rically non-linear analysis of selected benchmark prob-
lems of laminated shells using SR4 element of the FEA

system ABAQUS. Hu [174] applied ABAQUS with user
defined composite material model where non-linearity of
strain-stress relation was associated with in-plane shear.
Eason & Ochoa [245] presented the modeling progressive
damage in composites with the ABAQUS. Manet [246] in-
vestigated an application of ANSYS 5.2 in the analysis
of sandwich structures behavior examining various finite
elements available in that FEA system. Quite recently,
Borsellino et al. [170] applied ANSYS 5.6 to perform a 2-
D (plane) computer simulation of static mechanical tests
for sandwich panels.

3.5. More reading on FEA of multi-layered
panels
Noteworthy review articles on FEM modeling of multi-
layered shells were published e.g. by Ferreira & Fer-
nandes [185], Noor & Burton [21], Qatu [189], Toorani &
Lakis [186]; FEA of sandwich structures was surveyed e.g.
by Librescu & Hause [7], Burton & Noor [171].

4. Concluding Remarks
With the increasing application of laminated composites
and sandwich panels in various fields of structural engi-
neering, there is a great concern about their appropriate
computational representation.

The main conclusions one can draw from the presented
survey on computational modeling of laminated composite
and sandwich structures are as follows:

1. A single numerical model capable for a universal
representation of all layered composite and sand-
wich panels does not exist; depending on the partic-
ular problem different formulations can be the most
effective choice. Frequently, the best results can
be obtained with a combined global-local analysis
where various numerical models are used for sepa-
rate parts of the structure.

2. A detailed through-the-thickness representation of
deformation profiles and/or distribution of stresses
usually accompany small or moderate displacement
formulations, on the other hand, most of large rota-
tion analyses are performed for a simplified FOSD
type models.

On the base of the literature survey reported in the
paper, one can perform a general classification of com-
putational models for undamaged multilayered plates and
shells. While, the micro-mechanical scale analysis, and
even, multi-scale modeling calculations are still too costly
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Table 1. General classification of macro-mechanical models for multi-layered panels.

Models References

CLT 1, 2, 11,25, 34, 36, 42-43, 191
FOSD 1, 2, 11, 25, 37-48, 182, 192-218

ESL mFOSD∗ 38, 49 , 50-67, 118, 153-159, 219-221
2-D models HOSD 11, 24, 39, 68-79,81-88, 157, 229, 230

Zig-zag 34, 90-118, 231, 232, 241
DL 11, 21, 24, 71, 77, 78, 121-131, 133-135, 137-144, 234-238

3-D models 89, 143, 145, 146, 148-150
Global-local strategies 115, 127, 134, 137, 150-152, 239, 240

∗ mFOSD stands for “modified”, “consistent”, “improved”, “refined” or “corrected” FOSD formulations

for practical applications, the dominating group con-
sists of computational models associated with the macro-
mechanical scale. A general classification of computa-
tional models of multilayered panels in this group is shown
in Table 1, together with an indication of the appropriate
references.
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