Marcin Krzywkowski

A LOWER BOUND ON THE DOUBLE OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE

Abstract

A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set $V(G) \backslash D$ is independent. The double outer-independent domination number of a graph G, denoted by $\gamma_{d}^{o i}(G)$, is the minimum cardinality of a double outer-independent dominating set of G. We prove that for every nontrivial tree T of order n, with l leaves and s support vertices we have $\gamma_{d}^{o i}(T) \geq(2 n+l-s+2) / 3$, and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees T such that $\gamma_{d}^{o i}(T)=(2 n+2) / 3$.

1. Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a subset of $V(G)$ is independent if there is no edge between every two its vertices.

A vertex of a graph is said to dominate itself and all of its neighbors. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of G is dominated by at least one vertex of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The domination (double domination, respectively) number of G, denoted by $\gamma(G)$ $\left(\gamma_{d}(G)\right.$, respectively), is the minimum cardinality of a dominating (double dominating, respectively) set of G. Note that double domination is a type of k-tuple domination in which each vertex of a graph is dominated at least k times for a fixed positive integer k. The study of k-tuple domination was ini-

[^0]tiated by Harary and Haynes [3]. For a comprehensive survey of domination in graphs, see $[4,5]$.

A subset $D \subseteq V(G)$ is a double outer-independent dominating set, abbreviated DOIDS, of G if every vertex of G is dominated by at least two vertices of D, and the set $V(G) \backslash D$ is independent. The double outerindependent domination number of a graph G, denoted by $\gamma_{d}^{o i}(G)$, is the minimum cardinality of a double outer-independent dominating set of G. A double outer-independent dominating set of G of minimum cardinality is called a $\gamma_{d}^{o i}(G)$-set. Double outer-independent domination in graphs was introduced in [6].

Chellali and Haynes [2] proved the following lower bound on the total domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{t}(T) \geq(n-l+2) / 2$. They also characterized the extremal trees. Blidia, Chellali, and Favaron [1] established the following lower bound on the 2 -domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{2}(T) \geq(n+l+2) / 3$. The extremal trees were also characterized.

We prove the following lower bound on the double outer-independent domination number of a tree. For every nontrivial tree T of order n, with l leaves and s support vertices we have $\gamma_{d}^{o i}(T) \geq(2 n+l-s+2) / 3$. We also characterize the trees attaining this lower bound. We also give a constructive characterization of trees T such that $\gamma_{d}^{o i}(T)=(2 n+2) / 3$.

2. Results

Since the one-vertex graph does not have double outer-independent dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.
Observation 1. Every leaf of a graph G is in every $\gamma_{d}^{o i}(G)$-set.
Observation 2. Every support vertex of a graph G is in every $\gamma_{d}^{o i}(G)$-set.
We show that if T is a nontrivial tree of order n, with l leaves and s support vertices, then $\gamma_{d}^{o i}(T)$ is bounded below by $(2 n+l-s+2) / 3$. For the purpose of characterizing the trees attaining this bound we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{2} with vertices labeled x and y, and let $A\left(T_{1}\right)=\{x, y\}$. Let H be a path P_{3} with leaves labeled u and z, and the support vertex labeled w. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{O}_{1} : Attach a vertex v by joining it to any support vertex of T_{k}. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{v\}$.
- Operation \mathcal{O}_{2} : Attach a copy of H by joining u to a vertex of $A\left(T_{k}\right)$ which has degree at least two. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{w, z\}$.
- Operation \mathcal{O}_{3} : Attach a copy of H by joining u to a leaf of T_{k} which is the only one leaf among neighbors of its neighbor. Let $A\left(T_{k+1}\right)=$ $A\left(T_{k}\right) \cup\{w, z\}$.

Now we prove that for every tree T of the family \mathcal{T}, the set $A(T)$ defined above is a DOIDS of minimum cardinality equal to $(2 n+l-s+2) / 3$.

Lemma 3. If $T \in \mathcal{T}$, then the set $A(T)$ defined above is a $\gamma_{d}^{o i}(T)$-set of size $(2 n+l-s+2) / 3$.

Proof. We use the terminology of the construction of the trees $T=T_{k}$, the set $A(T)$, and the graph H defined above. To show that $A(T)$ is a $\gamma_{d}^{o i}(T)$-set of cardinality $(2 n+l-s+2) / 3$ we use the induction on the number k of operations performed to construct T. If $T=T_{1}=P_{2}$, then $(2 n+l-s$ $+2) / 3=2=\gamma_{d}^{o i}(T)$. Let $k \geq 2$ be an integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let n^{\prime} mean the order of the tree T^{\prime}, l^{\prime} the number of its leaves, and s^{\prime} the number of support vertices. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T^{\prime} by operation \mathcal{O}_{1}. We have $n=n^{\prime}+1$. It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{v\}$ is DOIDS of the tree T. Of course, $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1$. If $T^{\prime}=P_{2}$, then $l=l^{\prime}$ and $s=s^{\prime}-1$. We get $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+1=(2 n+l-s+2) / 3$. If $T^{\prime} \neq P_{2}$, then $l=l^{\prime}+1$ and $s=s^{\prime}$. Consequently, $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1=$ $\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+1=(2 n+l-s+2) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. We have $n=n^{\prime}+3, l=l^{\prime}+1$, and $s=s^{\prime}+1$. It is easy to see that $A(T)=A\left(T^{\prime}\right)$ $\cup\{w, z\}$ is a DOIDS of the tree T. Let us observe that $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3=(2 n+l-s+2) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{3}. We have $n=n^{\prime}+3, l=l^{\prime}$, and $s=s^{\prime}$. Similarly as when considering operation \mathcal{O}_{2} we conclude that $A(T)$ is a DOIDS of the tree T and $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+2=(2 n+l-$ $s+2) / 3$.

Now we establish the main result, a lower bound on the double outer-independ-ent domination number of a tree together with the characterization of the extremal trees.

Theorem 4. If T is a tree of order n, with l leaves and s support vertices, then $\gamma_{d}^{o i}(T) \geq(2 n+l-s+2) / 3$ with equality if and only if $T \in \mathcal{T}$.

Proof. If $\operatorname{diam}(T)=1$, then $T=P_{2}$. Thus $T \in \mathcal{T}$, and by Lemma 3 we have $\gamma_{d}^{\text {oi }}(T)=(2 n+l-s+2) / 3$. Now assume that $\operatorname{diam}(T)=2$. Thus T is a star $K_{1, m}$. If $T=P_{3}$, then $T \in \mathcal{T}$ as it can be obtained from P_{2} by operation \mathcal{O}_{1}. If T is different than P_{3}, then it is easy to see that T can be obtained from P_{3} by a proper number of operations \mathcal{O}_{1}. Thus every star T belongs to the family \mathcal{T}, and by Lemma 3 we have $\gamma_{d}^{o i}(T)=(2 n+l-s+2) / 3$. Now assume that $\operatorname{diam}(T)=3$. Thus T is a double star. Observations 1 and 2 imply that every DOIDS of the tree T contains all leaves and all support vertices. Therefore the set $V(T)$ is the only one DOIDS of the tree T. This implies that $\gamma_{d}^{o i}(T)=n$. We have $l=n-2$ and $s=2$. Consequently, $(2 n+l-s+2) / 3=(2 n+n-2-2+2) / 3=(3 n-2) / 3=n-2 / 3<n=\gamma_{d}^{o i}(T)$, whence $T \notin \mathcal{T}$.

Now assume that $\operatorname{diam}(T) \geq 4$. Thus the order of the tree T is an integer $n \geq 5$. If $T \in \mathcal{T}$, then by Lemma 3 we have $\gamma_{d}^{o i}(T)=(2 n+l-s+2) / 3$. The result we obtain by the induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$, with l^{\prime} leaves and s^{\prime} support vertices.

First assume that some support vertex of T, say x, is adjacent to at least two leaves. One of them let us denote by y. Let $T^{\prime}=T-y$. We have $n^{\prime}=n-1, l^{\prime}=l-1$, and $s^{\prime}=s$. Of course, $\gamma_{d}^{o i}\left(T^{\prime}\right)=\gamma_{d}^{o i}(T)-1$. Now we get $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+1=(2 n-2+l-1$ $-s+2+3) / 3=(2 n+l-s+2) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l-s+2) / 3$, then obviously $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we assume that every support vertex of T is adjacent to exactly one leaf.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, u be the parent of v, and w be the parent of u in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T. We distinguish between the following two cases: $d_{T}(u) \geq 3$ and $d_{T}(u)=2$.

Case 1. $d_{T}(u) \geq 3$. First assume that u has a child $b \neq v$ that is a support vertex. Let $T^{\prime}=T-T_{v}$. We have $n^{\prime}=n-2, l^{\prime}=l-1$, and $s^{\prime}=s-1$. Let D be any $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $t, v, b \in D$. If $u \in D$, then it is easy to observe that $D \backslash\{v, t\}$ is a DOIDS of the tree T^{\prime}. Now assume that $u \notin D$. We have $d_{T}(u) \geq 3$, thus $d_{T^{\prime}}(u) \geq 2$. Since $V(T) \backslash D$ is independent, every neighbor of u belongs to the set D.

Let us observe that $D \backslash\{v, t\}$ is a DOIDS of the tree T^{\prime} as u has at least two neighbors in $D \backslash\{v, t\}$. Now we conclude that $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-2$. We get $\gamma_{d}^{o i}(T) \geq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+2=(2 n-4+l-1-s+1+2+6) / 3$ $=(2 n+l-s+4) / 3>(2 n+l-s+2) / 3$.

Now assume that v is the only one support vertex among the descendants of u. Thus u is a parent of a leaf, say x. Let $T^{\prime}=T-T_{x}$. We have $n^{\prime}=n-1$, $l^{\prime}=l-1$, and $s^{\prime}=s-1$. Let D be a $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $x, u, v \in D$. It is easy to observe that $D \backslash\{x\}$ is a DOIDS of the tree T^{\prime}. This implies that $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-1$. Now we get $\gamma_{d}^{o i}(T) \geq$ $\gamma_{d}^{o i}\left(T^{\prime}\right)+1 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+1=(2 n-2+l-1-s+1+2+3) / 3$ $=(2 n+l-s+3) / 3>(2 n+l-s+2) / 3$, whence $T \notin \mathcal{T}$.

Case 2. $d_{T}(u)=2$. The parent of w let us denote by d. Let D be any $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $t, v \in D$. If $u \notin D$, then $w \in D$ as $V(T) \backslash D$ is independent. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$. It is easy to see that $D \backslash\{v, t\}$ is a DOIDS of the tree T^{\prime}. Now assume that $u \in D$. If $w \in D$, then no neighbor of w besides u belongs to the set D, otherwise $D \backslash\{u\}$ is a DOIDS of the tree T, a contradiction to the minimality of D. It is easy to observe that $D \cup\{d\} \backslash\{u, v, t\}$ is a DOIDS of the tree T^{\prime}. If $w \notin D$, then it is easy to see that $D \cup\{w\} \backslash\{u, v, t\}$ is a DOIDS of the tree T^{\prime}. Now we conclude that $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-2$. We consider the following two possibilities: $d_{T}(w)=2$ and $d_{T}(w) \geq 3$.

First assume that $d_{T}(w)=2$. We have $l^{\prime}=l$. If d is adjacent to a leaf in T, then $s^{\prime}=s-1$. Consequently, $\gamma_{d}^{o i}(T) \geq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}\right.$ $+2) / 3+2=(2 n-6+l-s+1+2+6) / 3=(2 n+l-s+3) / 3>(2 n+l-s+2) / 3$. Now assume that d is not adjacent to any leaf in T. Thus $s^{\prime}=s$. Now we get $\gamma_{d}^{o i}(T) \geq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+2=(2 n-6+l-s+2$ $+6) / 3=(2 n+l-s+2) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l-s+2) / 3$, then obviously $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Now assume that $d_{T}(w) \geq 3$. We have $l^{\prime}=l-1$ and $s^{\prime}=s-1$. Now we get $\gamma_{d}^{o i}(T) \geq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \geq\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3+2=(2 n-6+l-1$ $-s+1+2+6) / 3=(2 n+l-s+2) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l-s+2) / 3$, then obviously $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}-s^{\prime}+2\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Since the number of leaves of a tree is greater than or equal to the number of its support vertices, we get the following corollary.

Corollary 5. For every tree T we have $\gamma_{d}^{o i}(T) \geq(2 n+2) / 3$.

Now we characterize the trees attaining this bound. For this purpose we introduce a family \mathcal{F} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{2} with vertices labeled x and y, and let $B\left(T_{1}\right)=\{x, y\}$. Let H be a path P_{3} with leaves labeled u and z, and the support vertex labeled w. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{X}_{1} : Attach a copy of H by joining u to a vertex of $B\left(T_{k}\right)$ which has degree at least two. Let $B\left(T_{k+1}\right)=B\left(T_{k}\right) \cup\{w, z\}$.
- Operation \mathcal{X}_{2} : Attach a copy of H by joining u to a leaf of T_{k} which is the only one leaf among neighbors of its neighbor. Let $B\left(T_{k+1}\right)=$ $B\left(T_{k}\right) \cup\{w, z\}$.
Now we prove that for every tree T of the family \mathcal{F}, the set $B(T)$ defined above is a DOIDS of minimum cardinality equal to $(2 n+2) / 3$.

LEMMA 6. If $T \in \mathcal{F}$, then the set $B(T)$ defined above is a $\gamma_{d}^{o i}(T)$-set of size $(2 n+2) / 3$.

Proof. The definitions of the families \mathcal{T} and \mathcal{F} imply that $\mathcal{F} \subseteq \mathcal{T}$. Thus $T \in \mathcal{T}$. By Lemma 3, the set $A(T)=B(T)$ is a $\gamma_{d}^{o i}(T)$-set of size $(2 n+l-s$ $+2) / 3$. Obviously, for $T_{1}=P_{2}$ we have $l=s$. Let us observe that performing neither the operation \mathcal{X}_{1} nor the operation \mathcal{X}_{2} disturbs the equality $l=s$. Therefore $l=s$, and consequently, $(2 n+l-s+2) / 3=(2 n+2) / 3$.

Now we prove a lower bound on the double outer-independent domination number of a tree in terms of the number of vertices, together with the characterization of the extremal trees.

Theorem 7. If T is a tree of order n, then $\gamma_{d}^{o i}(T) \geq(2 n+2) / 3$ with equality if and only if $T \in \mathcal{F}$.

Proof. The bound is true by Corollary 5. If $T \in \mathcal{F}$, then by Lemma 6 we have $\gamma_{d}^{o i}(T)=(2 n+2) / 3$. Now assume that for a tree T we have $\gamma_{d}^{o i}(T)=$ $(2 n+2) / 3$. The number of leaves of every tree is greater than or equal to the number of its support vertices, thus $l \geq s$. By Theorem 4 we have $\gamma_{d}^{o i}(T) \geq(2 n+l-s+2) / 3$. This implies that $l=s$. We have $\gamma_{d}^{o i}(T)=$ $(2 n+2) / 3=(2 n+l-s+2) / 3$. By Theorem 4 we have $T \in \mathcal{T}$. Suppose that T is obtained from $T_{1}=P_{2}$ in a way such that the operation \mathcal{O}_{1} is used at least once. Let us observe that $l>s$ as $l\left(P_{2}\right)=s\left(P_{2}\right)$, the operation \mathcal{O}_{1} increases l not changing s, and the operations \mathcal{O}_{2} and \mathcal{O}_{3} do not disturb the equality $l=s$. This is a contradiction to that $l=s$. Therefore the operation \mathcal{O}_{1} was not used to obtain the tree T. Since the operations \mathcal{O}_{2} and \mathcal{O}_{3} are identical to operations \mathcal{X}_{1} and \mathcal{X}_{2}, respectively, we conclude that $T \in \mathcal{F}$.

References

[1] M. Blidia, M. Chellali, O. Favaron, Independence and 2-domination in trees, Australas. J. Combin. 33 (2005), 317-327.
[2] M. Chellali, T. Haynes, A note on the total domination number of a tree, J. Combin. Math. Combin. Comput. 58 (2006), 189-193.
[3] F. Harary, T. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201-213.
[4] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] T. Haynes, S. Hedetniemi, P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] M. Krzywkowski, Double outer-independent domination in graphs, submitted.

FACULTY OF ELECTRONICS, TELECOMMUNICATIONS AND INFORMATICS
GDAŃSK UNIVERSITY OF TECHNOLOGY
Narutowicza 11/12
80-233 GDAŃSK, POLAND
E-mail: marcin.krzywkowski@gmail.com

Received April 9, 2010; revised version October 25, 2010.

[^0]: 2000 Mathematics Subject Classification: 05C05, 05C69.
 Key words and phrases: double outer-independent domination, double domination, tree.

