
J Supercomput (2013) 63:919–945
DOI 10.1007/s11227-012-0837-z

A model, design, and implementation of an efficient
multithreaded workflow execution engine with data
streaming, caching, and storage constraints

Pawel Czarnul

Published online: 21 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The paper proposes a model, design, and implementation of an efficient
multithreaded engine for execution of distributed service-based workflows with data
streaming defined on a per task basis. The implementation takes into account capac-
ity constraints of the servers on which services are installed and the workflow data
footprint if needed. Furthermore, it also considers storage space of the workflow ex-
ecution engine and its cost. Caching service output data is implemented to speed up
the execution of the workflow. Input data is partitioned into data packets, which are
passed and processed by services previously selected for workflow tasks so that the
aforementioned constraints are met. Performance impact of the proposed mechanisms
is investigated for workflow structures common in acyclic directed graph workflow
applications. It is shown for a real workflow with distributed processing of digital
media content that the initial budget needs to be properly distributed between both
the cost of services, but also the cost of intermediate storage to obtain good workflow
execution times.

Keywords Workflow execution · Data streaming · Storage constraints · Service
selection

1 Introduction

Integration of distributed services and applications is one of the main challenges in
today’s distributed systems. This applies to all distributed software architectures [7],
in particular Service Oriented Architectures (SOA), grid [13], cloud [17], and sky
computing [15]. Such integration is often modeled using workflow applications in

P. Czarnul (�)
Department of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
e-mail: pczarnul@eti.pg.gda.pl

mailto:pczarnul@eti.pg.gda.pl

920 P. Czarnul

SOA, grid processing [9, 23, 27, 28], and recently also in cloud computing [17]. In
this case, a workflow is defined as an acyclic directed graph in which each node de-
notes a task to be executed while directed edges denote dependencies between the
tasks. For each task, a set of services capable of executing the given task is found
first. Each workflow task is assigned a list of services each of which can perform the
task on different Quality of Service (QoS) terms such as the execution time, cost,
reliability, etc. The usually considered workflow scheduling problem is to select such
a service for each task so that one of given global QoS goals is optimized [23] while
other QoS conditions are satisfied. One of the most often optimized goals is mini-
mization of the workflow execution time with a bound on the total cost of selected
services [10, 26].

The outline of the paper is as follows. Section 2.1 presents models and algorithms
for workflow scheduling in distributed service based systems. The available solutions
related to storage-aware workflow management are discussed in Sect. 2.2. Section 2.3
lists motivations that are subject of analysis, proposal of a model and subsequent
implementation and tests. Section 3 presents the proposed extensions to existing ap-
proaches with a formal definition of the model. Section 4 discusses design and imple-
mentation details of the multithreaded storage-aware workflow execution engine with
data caching implemented by the author in the BeesyCluster middleware. A proposal
of a genetic-based algorithm for workflow scheduling considering storage constraints
is shown in Sect. 4.3. Section 5 contains a series of experiments that demonstrate the
impact of BeesyCluster storage size used for storing intermediate data on the work-
flow execution time (Sect. 5.2.1), impact of multithreaded copying, caching, and stor-
age constraints on the workflow execution time (Sect. 5.2.2) and various allocations
of the initial budget among the cost of services and storage costs to obtain shortest
possible execution time (Sect. 5.3). Finally, Sect. 6 contains conclusions and areas
for future work.

2 Related work and motivations

2.1 Workflow application scheduling problem

Most of the literature on scheduling workflow applications considers the classic prob-
lem [28] in which for each workflow task ti (represented by a vertex of an acyclic
directed graph where the edges define dependencies between tasks) there is a set of
services Si each of which is capable of executing the task. Each task is supposed to
process data of size di which is defined a priori. The goal of scheduling is to find
mapping ti → (sij , tij) where tij is the time when the selected service sij starts pro-
cessing data of size di (that must have been previously copied to the service). The
criterion is to minimize the workflow execution time (the time when the last service
has finished processing its data) while meeting

∑
i:sij selected for ti

cij dij ≤ B where B

is the available budget and dij is the size of data processed by service sij . Alterna-
tively, one may want to minimize the total cost of selected services and ensure that
the workflow execution time is below a given deadline. Various heuristic methods

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 921

have been proposed to solve these problems:

(1) A genetic algorithm [27] where a chromosome represents which services are se-
lected for a particular task. Evaluation of each chromosome is performed to com-
pute its fitness function (workflow execution time with a check whether it meets
the cost constraint). Crossover exchanges partial service selections while muta-
tion can change a service for a randomly chosen task with a certain probability.

(2) A divide-and-conquer approach [29]. This is performed by grouping workflow
nodes into partitions, distributing the deadline and using local solutions for the
partitions. It was compared [29] to a greedy algorithm such that all tasks have the
same deadline and a deadline algorithm in which deadlines for tasks on the same
level are the same. It was shown that the proposed algorithm offers similar execu-
tion time and returns cheaper solutions for pipeline, parallel, and hybrid applica-
tions compared to the others. Abrishami et al. [2] present a workflow scheduling
algorithm that is executed in two phases: deadline distribution and planning. The
first step distributes the defined deadline among tasks so that each one finishes
before its own. Then cheapest services are selected to meet particular deadlines.

(3) Integer linear programming ILP [3, 4, 31] can be used to solve the problem where
integer variables denote which service has been selected for execution of a par-
ticular task. However, it imposes linearity constraints in the model. Canfora et al.
[8] suggest that genetic algorithms are preferred for a large number of concrete
services per abstract service, otherwise integer programming is better.

(4) Finding a service mapping and improving it iteratively. Sakellariou et al. [20] pro-
pose LOSS and GAIN that first obtain a solution that results from optimization
of only time or only cost to meet the cost constraint and optimize the execution
time. This is then improved iteratively until a valid solution is found. Similarly,
Kyriazis et al. [16] propose a mapping of workflow processes to service instances
so that the user’s requirements are met concerning availability level or cost. Sub-
sequently, improvements of the first solution with a better level of QoS replace
the previous solution.

2.2 Existing work on storage-aware workflow management

Workflow management systems do offer various ways of handling data. For instance,
as indicated in [11] Gridbus accepts input data in the form of values, files, or data
streams [18]. Input data is processed as it arrives [1] implementing data streaming.
Data patterns such as one-to-one or all-to-all were introduced to workflow manage-
ment systems to handle data coming from multiple sources [14]. However, irrespec-
tive of these various types and patterns that define how data can be partitioned among
parallel paths and then integrated, various constraints on data processing should also
be considered.

Singh et al. [21] present solutions for optimization of data usage when executing
data-intensive workflow applications in distributed systems. It is assumed that partic-
ular files are located on and transferred between resources from which can be used
for workflow jobs/tasks. The authors propose a technique to remove data files during
workflow execution when the files are no longer needed to decrease the data footprint

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

922 P. Czarnul

of the workflow. However, a large number of clean-up jobs, even larger than the num-
ber of workflow tasks may be needed. Additionally, work [19] presents an algorithm
that maps workflow tasks onto resources with enough space to minimize the work-
flow execution time. The algorithm prioritizes resources capable of storing data for a
task in terms of execution times and uses the aforementioned clean-up algorithm.

The work in [19] was analyzed and further extended in [5] where two problems
are considered. The first one is the Minimum Makespan with Storage Constraints
problem, which minimizes the workflow execution time and assures that the total
storage used by the workflow does not exceed the limit. The order of clean-up jobs
is considered with the total size of files used by ancestors of the clean-up job. If it
exceeds the storage limit, the algorithm needs to wait for release of pending clean-
up jobs. Additionally, two versions were considered: one with explicit ordering of
computational jobs—ancestors of clean-up jobs and another one with no ordering
of these. Bharathi et al. [5] also consider minimization of a weighted metric of the
product of workflow execution time with the maximum number of processors used
and the product of workflow execution time with the maximum storage used during
execution. Genetic based algorithms were proposed to solve these problems.

Yuan et al. [30] consider the problem of storing intermediate data used within a
workflow from the cost point of view. Storage of intermediate data involves a cost. On
the other hand, after data has been deleted to save the cost, a cost of regeneration of
this data will be involved if it is needed again. The paper presents a dependency based
intermediate data storage strategy, and shows that it results in a smaller total storage
cost than strategies: store all, store none, store often used, and store high generation
cost data chunks.

2.3 Motivations for a new extended model

This paper extends the aforementioned works by taking into account storage con-
straints of not only the resources from which services access data and the workflow
data footprint, but also storage constraints of the workflow execution engine and data
caching when data is processed as streams.

We assume that services executed in workflow nodes are provided by providers
from their own resources such as servers or clusters on which the services are in-
stalled. The goal is to optimize QoS that involves the execution time and cost. In this
case, the resources may have limits for storage of data chunks processed by the ser-
vices. In some cases, if more processors/cores are available, several service instances
may be executed in parallel, but must still observe the storage limitations. In this
case, the storage limits affect the workflow execution time and higher limits would
require a higher cost per service. This is incorporated into the scheduling algorithm
that follows individual limits of resources. Thus, it is also straightforward to monitor
and maintain the total workflow data footprint below a given threshold, if needed.

The contribution of this work is as follows:

(1) A workflow model that allows definition of data streaming on a per task basis
and a workflow execution engine in the BeesyCluster middleware [11] that sup-
ports it.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 923

(2) Incorporation of several storage limits into the previously developed workflow
execution engine in BeesyCluster [10]:

– configurable storage limit of the workflow execution engine,
– storage constraints for the resources on which services are installed; this also

allows monitoring and limiting the workflow data footprint at runtime.

Previously, the author codeveloped two solutions: a centralized execution engine
in BeesyCluster based on the Java EE technology [10] and a distributed JADE-
based engine managed by a group of distributed software agents in BeesyBees
[12]. In these cases, a Java EE server or JADE containers have storage limits.
Higher limits will involve more cost added to the cost of the workflow.

(3) Implementation of a caching technique that allows execution of next data chunks
by a preceding service if the following service is not yet ready to accept output
data of the preceding service due to storage limitations. This is solved by caching
output results of a preceding service until the next service can accept it. This
speeds up processing if data is processed in streams as successive data chunks.

(4) Allocation of the budget for the workflow not only to the services as in the already
known approaches, but also to the storage of the workflow execution engine that
also acts as cache space. A method is proposed how to distribute the budget so
that the workflow execution time is minimized.

3 Proposed model

Following the aforementioned workflow application model used in the literature [6,
24, 25, 27, 29] and the previous works of the author [10, 11], we now focus on how
the execution engine executes services and transfers data between services when data
is coming in a stream, i.e., as successive data chunks. As shown in Fig. 1, a workflow
execution engine executes workflow tasks in the order determined by the edges of
a directed acyclic graph that models the workflow. For each task ti , one service sij
is selected for execution out of possibly several functionally equivalent services in
set Si . Each service has its own QoS parameters such as cost cij and execution time
tij . It accepts output data from its predecessor(s) and transfers its own output data to
following services. Each service sij processes data of size dij . Globally, for each task
such service is selected so that a certain QoS goal is optimized with possibly addi-
tional QoS constraints. For example, the workflow execution time can be minimized
with a bound on the cost of selected services [10, 11].

In this work, rather than on service selection, we focus on transfer of data between
services such as sij and skl selected to execute tasks ti and tk respectively, especially
on storage limits and storage costs of both the resources the services use and the
workflow execution engine.

The following extensions are proposed for flexible and efficient management of
data transfer considering constraints on the capacity of locations where the services
are installed and constraints of the execution engine:

(1) Data streaming per task: can be enabled or disabled on a per task basis. Data
streaming denotes that processing of particular portions of input data can be per-
formed independently as soon as the given portion of data is available. It is then

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

924 P. Czarnul

Fig. 1 Copying of data to a service with data streaming enabled

forwarded to a following service(s) promptly after processing. This is done inde-
pendently from processing other data chunks by separate threads. As an example:

– if the task is to convert input images from TIF to JPG, then it can be processed
in the streaming mode. As soon as there is an input file or input files, the service
for the task can convert them and send to successive task(s),

– if the task is to produce a web album out of the input images, then it must be
performed in the non-streaming mode. All input images must be ready in order
to produce this album.

Note that one workflow application can contain tasks both with streaming and
without streaming modes.

(2) Storage constraints for both services and workflow execution engine:
(a) Maximum data size dsmax

ij (t) that can be stored and processed at the same
time by service sij . This is related to the service and the capacity of the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 925

server on which the service was installed. The cost of this storage is included
in the cost of the service.

(b) The workflow data footprint at moment t :
∑

i,j dscur
ij (t) can be maintained

below a given threshold where dscur
ij (t) denotes the size of data processed by

service sij at moment t .
(c) Maximum data size WEC(t) that can be stored by the workflow execution

engine in the intermediate storage at time t .
(3) The size of data packet SDPi;k sent at once in a data stream between tasks ti and

tk ; after sending of each data packet, processing of this packet by the following
service is initiated. The size of the data packet is measured in the number of
chunks/files in the packet.

(4) The number of parallel data streams PARDS for data copying from:

– an initial data location dl to the service selected for the given first task ti of the
workflow application – PARDSdl;i ,

– between services selected for execution of subsequent tasks ti and tk—
PARDSi;k .

This parameter is related to the number of data portions being sent in one stream
by a thread assigned to the particular data stream. This number of data portions
is determined by the number of data portions ready to be sent to a particular
location divided by the requested number of parallel data streams.

For each service, there are threads processing data packets as they arrive in the
streaming mode. The total data size of data processed by these threads at the moment
must not exceed dsmax

ij (t) and the total data size used by the workflow
∑

i,j dscur
ij (t)

must not exceed the maximum size for the workflow data footprint if specified. Out-
put data of size d produced by a thread responsible for processing of a data chunk is
handled by another thread which is responsible for copying the data to the following
service skl . The thread can copy the data only if dscur

kl + d ≤ dsmax
kl . Otherwise, two

solutions are possible:

– The data can wait in the location of the previous service until there is sufficient
data space in the storage of a subsequent service.

– The thread can copy the data to the intermediate storage provided that weccur(t)+
d ≤ WEC(t), weccur(t) denotes the current data size in the intermediate storage.
This procedure decreases the size of data handled by the preceding service sij ,
and consequently allows copying new data chunks to it and initiating processing
as soon as possible.

Considering the proposed extensions, the formal scheduling model can now be
presented as follows (with the summary of notation shown in Table 1):
input data:

a directed graph G(T ,E) that models a workflow application where vertexes T
correspond to tasks (denoted by ti) and edges to dependencies between the
tasks. Each task must have one out of one of the following working modes
assigned to it:

regular—means that results from the task will be sent to following task(s)
only after all input packets have been processed,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

926 P. Czarnul

Table 1 Summary of notation

Symbol Explanation

ti task i of the workflow application 1≤i≤|V |
Si =
{si1 · · · si|Si |}

a set of alternative services each of which is capable of execution of task ti , out
of which only one must be selected to execute task ti 1≤i≤|V |

cij ∈ R cost of processing a unit of data by service sij
1≤j≤|Si |
1≤i≤|V |

Pij provider of service sij
1≤j≤|Si |
1≤i≤|V |

Nij node on which service sij runs
1≤j≤|Si |
1≤i≤|V | ; each sij is installed on a computing

node—Nij

dsmax
ij

storage capacity of the host/cluster on which the service has been installed

spn ∈ R speed of node n

dinput size of the input data to the workflow

di size of data required and processed by task ti 1≤i≤|V |
dij the size of data processed by service sij

WEC(t) maximum data size that can be stored at time t in the storage used by the
workflow execution engine

SDPi;k the size of data packet sent at once in a data stream between tasks ti and tk

PARDSdl;i the number of parallel data streams for data copying from an initial data location
dl to the service selected for the given first task ti of the workflow application

PARDSi;k the number of parallel data streams for data copying between services selected
for execution of subsequent tasks ti and tk

tworkflow ∈ R time when the last service finishes processing the last chunk of data

B ∈ R available budget

BWEC ∈ R budget for the storage size of the workflow execution system taken out of the
initial budget B

streaming—means that input data packets are processed within the task
immediately and forwarded to following task(s) as soon as possible,

sets of services Si assigned to workflow tasks. Each set Si contains a set of
services sij out of which one needs to be selected for execution of task ti .
Each service has the following attributes assigned to it:

execution time tij ,
cost cij ,
storage capacity dsmax

ij of the host/cluster on which the service has been
installed,

possibly other QoS metrics that can be incorporated into the QoS
scheduling goal,

input data of size dinput,
maximum data size WEC(t) that can be stored at time t in the storage used by

the workflow execution engine,
budget B that can be spent on services and storage,
budget BWEC taken out of the initial budget B for the storage size of the work-

flow execution system,
output data (such that all required constraints are met):

assignment of a service sij to each task ti ,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 927

processing of each data packet by the selected service at a particular
point in time,

copying of each data packet to a following service at a particular point
in time,

setting optimal parameters SDP∗ (size of data packet sent between
tasks) and PARDS∗ (the number of parallel data streams),

criteria: minimization of the workflow execution time tworkflow while keep-
ing the total cost of services below budget B i.e.

∑
cij dij ≤ B .

The previous works by the author [10, 11] present how services should be chosen
to optimize QoS goals. Note that the input data of a predefined size dinput is con-
sidered. Data files are packed into data packets and forwarded through the workflow
along a path selected by the scheduling algorithm. In this case, we consider mini-
mization of the workflow execution (until the last data packet has been processed by
the last service) time with a bound on the total cost of selected services. We have
budget B which can be spent on running the workflow. Please note that usually the
workflow scheduling problem considers that particular workflow tasks process data
of certain size. The author previously introduced an extension of this model [11] in
which the algorithm can determine how data chunks are distributed among parallel
data paths i.e. the algorithm obtains what final data sizes each task will process to
obtain the shorted possible execution time. This is also applicable in this work. How-
ever, this paper extends the approaches mentioned in Sect. 2 and also the algorithm
developed by the author in [11] by allocation of a part BWEC of the initial budget B

for the storage size of the workflow execution system. Allocation a part of the cost
to larger storage of the execution engine that acts as cache can speed up execution
of the workflow. Then the remaining part B − BWEC can be spent on the services.
Let wetBWEC(B −BWEC) denote the workflow execution time in such a scenario such
that the total cost of selected services for processing data is below the given budget,
i.e.,

∑
i,j cij dij ≤ B − BWEC. The goal is to minimize the workflow execution time

which can be accomplished by checking possible allocations of budget B to BWEC
and services for the smallest value of

min wetBWEC(B − BWEC). (1)

For each BWEC, wetBWEC(B − BWEC) needs to be computed by a QoS service selec-
tion algorithm such as the one proposed by the author in [11]. This algorithm also
partitions data among parallel workflow paths allocating dij ’s to particular services
to minimize the workflow execution time. In this case, though, it needs to compute
the workflow execution time for the services considering the storage constraints and
caching as presented next.

4 Design and implementation of a multithreaded execution engine with data
streaming, caching, and storage constraints

4.1 Existing workflow management and optimization in BeesyCluster

From the implementation point of view, the proposed solution extends the work-
flow management system in BeesyCluster, implemented by the author before [10]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

928 P. Czarnul

Fig. 2 Existing system architecture

and shown in Fig. 2. In general, BeesyCluster acts as a middleware that allows users
to access and use distributed clusters and servers on which they have system ac-
counts. Access is possible via WWW or web services. Each user can manage sys-
tem accounts to which they have access such as edit files, manage directories, com-
pile, and run applications (either with a text or graphical interface). Applications
from clusters and servers can be published as BeesyCluster services and assigned
QoS parameters such as execution time, cost etc. Providers can assign privileges to
other BeesyCluster users on these QoS terms. This is depicted by the left side of
Fig. 2.

Furthermore, as depicted by the right flow in Fig. 2, BeesyCluster contains a work-
flow management system that allows: definition of workflows according to the afore-
mentioned model, assignment of services capable of execution of particular workflow
tasks out of own or services made available by others, definition of QoS goals, au-
tomatic selection of services, and workflow execution in a distributed environment
with dynamic reselection if services have become unavailable. Two workflow ex-
ecution engines were developed: one implemented in the Java EE technology [10]
(embedded into the middleware and shown in Fig. 2) and one in which distributed
software agents manage workflow execution [12].

However, the solution lacked support for flexible data streaming in a workflow and
a variety of options and constraints for data storage which is proposed and introduced
in this work according to the model presented in Sect. 3.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 929

4.2 Proposed solution

The implementation of the workflow management module extends the solution pro-
posed by the author in [10].

From a bird’s eye view, the new workflow management subsystem consists of the
following components:

(1) Servlets allowing: management of already defined workflow applications, brows-
ing statuses, and results of already started workflow instances.

(2) A client application implemented as a Java applet that allows to create, edit, and
save workflow applications on the server side. Services available to the user are
downloaded from BeesyCluster and can be assigned to workflow tasks in the
editor.

(3) A new multithreaded workflow execution engine.

The BeesyCluster architecture allows publishing of services from both high per-
formance clusters with larger storage spaces (usually in GB or TB) but also from
typical servers or even PCs used by other users or their owners at the same time. This
is much like donation of a part of own resources to the BOINC platform in volun-
teer computing. In the latter case, the user-provider may want to restrict used storage
space to even MBs. It is worth to note that the proposed solution supports setting
various limits for various services thus considering both types of resources in one
workflow.

Execution of a workflow is handled by threads each of which is responsible for
running one workflow node/task for either all its input data (non-streaming mode)
or a part of it (streaming mode). In the latter case, there can be several threads per
one workflow task handling parts of the data assigned to the task. Each thread is
designed to handle one task of the workflow application. Activation of a task is
preceded by sending some input data files to a designated directory on the clus-
ter/server on which the service is installed. The thread is responsible for process-
ing the packets using the service and forwarding to following workflow tasks. A
task invokes a new task i.e. another thread after it has finished processing its por-
tion of data. Each thread launches remote services over SSH using the jsch li-
brary. When a thread shown in Fig. 3 needs to send its full output data (as in
the nonstreaming mode) or a part of output files that are already available to an-
other task, a DataCopier object is created, to which these output files are passed.
At the same time, a separate thread is launched to finalize the process of sending
this data to following nodes (Fig. 4). The DataCopier thread does the follow-
ing:

(1) Output data from the previous service is transferred to the BeesyCluster cache
which frees the storage of this service and allows processing of new chunks of
data irrespective of the following services.

(2) As soon as the storage capacity used on the node on which the follow-
ing service is running is lower than its limit, data is copied there and a
new thread is invoked for processing this data. Note that a new thread is
spawned for copying data. If the storage limit of the following service has

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

930 P. Czarnul

Fig. 3 Activity diagram for the thread responsible for execution of workflow task

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 931

Fig. 4 Activity diagram for a data copier thread for copying data between services with storage constraints
and data caching

been reached, the DataCopier needs to wait. It is then woken up by the no-
tify() method as soon as some data has been processed and copied to following
nodes.

(3) The maximum size of the data chunk sent to the following service is also ob-
served and followed by the DataCopier. It makes sure that the data size does
not exceed the value of maximumDataSizePerCopy (SDPi;k).

The streaming mode was incorporated into the code responsible for execution of a
single service as shown in Fig. 3. Namely, as soon as new input data chunks are ready

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

932 P. Czarnul

for processing by a particular workflow node, a DataCopier copies this data and
invokes a new task observing the imposed storage limits.

A certain number of parallel data streams for copying data between services is
implemented as launching multiple instances of DataCopiers that need to syn-
chronize on a shared object for the following workflow node to make sure that the
total size of data sent to this node does not exceed its storage limit dsmax

ij .
All the steps of workflow execution are monitored and are recorded in the Beesy-

Cluster database. This allows measurements of all communications of data between
services along with execution times of particular services. A servlet for management
of instances of started workflow applications displays statuses and current accumu-
lated execution times (since started) of particular instances.

4.3 Storage-aware QoS service selection algorithm

The workflow execution engine must select a service to each workflow task such that
the optimization criterion is optimized. In this case, we consider minimization of the
workflow execution time with a bound on the total cost of running the workflow. The
scheduling algorithm should consider storage constraints as these affect the workflow
execution time.

For this purpose, the genetic algorithm approach previously proposed by the au-
thor in [11] was modified for optimization of service selection in this work. The new
contribution compared to the previous version is consideration of the storage con-
straints in the evaluation of a chromosome, i.e., in computing the workflow execution
time. As mentioned above, data streaming, storage constraints and caching affect the
execution time of the workflow and the cost if intermediate storage space is used. The
execution time of the workflow can be calculated as follows. First, let us introduce
the following variables:

– N(ti)—a set of tasks which follow task ti in graph G,
– Vstart—a set of initial workflow tasks,
– T Hi—a set of threads currently copying data to or executing task ti ,
– thij —j th thread responsible for handling a chunk of data for task ti , either copying

the data chunk to the service chosen for task ti or processing the data.

The algorithm for computing the workflow execution time for the given services
for workflow tasks and storage constraints can be formulated as shown in Fig. 5
simulating data flows, similarly to pushing data flows in maximum flow problems
[22].

Note that the genetic based algorithm works as proposed in [11]. A population
of chromosomes is generated each of which represents assignment of a service to
each task. Generations of chromosomes are created one by one with crossover and
mutation. The fitness function aims at minimization of the workflow execution time
with the total cost of selected services below B − BWEC.

In general, performance of communication depends on the network topology, la-
tencies and bandwidth of links between locations on which run services chosen for
execution of particular tasks. The scheduling algorithm considers (Fig. 5) these pa-
rameters in computing the final workflow execution time for a particular set of se-
lected services and storage constraints. Depending on the environment chosen, e.g.,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 933

1 c u r r e n t t i m e =0;
f o r each t a s k ti i n Vstart {

c r e a t e t h r e a d s thij s f o r copy ing d a t a t o s e r v i c e sih
chosen t o e x e c u t e ti such t h a t t h e t o t a l d a t a s i z e does n o t exceed dsmax

ih
;

add each t h r e a d thij t o T Hi ;
6 }

whi le (a t l e a s t one T Hi n o t empty) {
tmin =Double .MAX_VALUE;
f o r each t a s k ti such t h a t T Hi n o t empty {

f o r each t h r e a d thij i n T Hi {
11 / / check which thij f i n i s h e s f i r s t (t h i s

/ / i n c l u d e s bo th c o p y i n g o u t p u t da ta t o t h e t a s k and e x e c u t i o n)
i f (thij i s e x e c u t i o n o f t a s k ti) {

t imeij = e x e c u t i o n t ime of thij on t h e d a t a a s s i g n e d t o thij ;
} e l s e { / / thij i s c o p y i n g da ta t o t a s k ti)

16 t imeij = d a t a copy ing t ime
t o t h e l o c a t i o n o f s e r v i c e sih chosen t o e x e c u t e ti −−
send maximum SDP and do n o t exceed dsmax

ih
;

}
i f (tmin >t imeij) {

21 tmin =t imeij ; f i r s t t h r e a d =thij ;
}
/ / tm in i s t h e n e x t t i m e s t e p i n t h e e x e c u t i o n

}
}

26 c u r r e n t t i m e += tmin ;
remove f i r s t t h r e a d from i t s T Hi ;
i f (f i r s t t h r e a d was e x e c u t i n g (n o t copy ing) d a t a f o r t a s k ti) {

f o r each tk ∈ N(ti) {
c r e a t e t h r e a d s thkl s f o r copy ing d a t a t o s e r v i c e skm

31 chosen t o e x e c u t e tk
such t h a t t h e t o t a l d a t a s i z e does n o t exceed dsmax

km
;

add each t h r e a d thkl t o T Hk ;
}

} e l s e { / / f i r s t t h r e a d was c o p y i n g da ta t o t a s k ti
36 add a t h r e a d thkl t o T Hk t h a t i s r e s p o n s i b l e

f o r e x e c u t i o n o f s e r v i c e skm chosen t o e x e c u t e tk
f o r t h e d a t a j u s t c o p i e d ;

}
}

41 w o r k f l o w e x e c u t i o n t i m e = c u r r e n t t i m e ;

Fig. 5 Evaluation of the workflow execution time

services installed on cluster nodes or clusters located in one HPC center or services
on commodity servers or PCs distributed geographically across continents, this may
greatly impact performance. It is then up to the scheduling algorithm to select the best
possible configuration through optimization and considering the performance model
of the links between nodes.

5 Experiments

Section 5.1 specifies the environment used for subsequent tests. Section 5.2 de-
scribes testing of the proposed mechanisms regarding constraints on storage size and
caching. Then Sect. 5.3 presents test cases for a real world distributed workflow for
parallel processing of digital images including impact of the data packet size in data

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

934 P. Czarnul

streaming on the execution time and determination of good budget distribution be-
tween intermediate storage and services to minimize the total workflow execution
time.

Firstly, each workflow tested was drawn and assigned particular services in a
workflow editor in BeesyCluster. This is depicted in Figs. 6, 8, 10, and 12. It must
be noted that initial data is indicated by pointing a directory on one or more clusters
available to the user. To make it clearer, it has been marked that data from the origi-
nal location (one in the tests) was partitioned among the parallel paths. Furthermore,
results from the paths are copied to one designated location which has been reflected
in the figures (normally not shown in the editor).

Then workflow scheduling in BeesyCluster was launched which initiated the
scheduling algorithm and subsequent workflow execution. Data from the initial space
is then partitioned and sent to initial nodes drawn in the editor. Similarly, data from
the last nodes indicated in the workflow in the graph drawn in the editor is copied to
one designated output directory from which it can be fetched by the user using the
file manager module available in BeesyCluster (shown in Fig. 2).

5.1 Testbed environment

All the tests were performed on clusters that were formed out of parts of a department
cluster. Each node of this cluster features 2 dual core Intel Xeon CPUs at 2.8 GHz
with Hyper Threading, 4 GBs of RAM running CentOS release 5.4 (Final), 64-bit,
Linux 2.6.18–164.6.1.el5. The services assigned to connected workflow nodes were
located on distinct clusters. The network uses Gigabit Ethernet. Each service is in-
stalled on a dedicated computing node. Depending on the configuration, as mentioned
in the descriptions of the experiments, instances of a service processing data chunks
may use either one or more cores of the node.

5.2 Testing of the proposed units

5.2.1 Impact of BeesyCluster storage size on the workflow execution time

Since BeesyCluster acts as a proxy in data transfers between distributed services, out-
put data from a service needs to be copied to the location where the following service
is installed. If the workflow is complex and potentially data of large sizes needs to
be copied between many pairs of services at the same time, the storage capacity of
the BeesyCluster management layer will have an impact on the total execution time,
especially if there are many parallel paths in the workflow.

Figure 7 presents workflow execution times for various storage limits for inter-
mediate storage and for the workflow application depicted in Fig. 6. It should be
regarded as a communication pattern that appears in many practical workflow appli-
cations. The parameters of the experiment are as follows. 80 input files (data chunks)
of either 12 MB each or 100 MB each were generated (the size is important, not the
content) for which two graphs are shown. Additionally dsmax

ij = 10 files, PARDS = 8,
SDP = 1 file, streaming enabled, instances of each service processing various chunks
of data run on one processor core. Each service had the same processing time per

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 935

Fig. 6 Testbed workflow communication pattern

Fig. 7 Workflow execution time (s) vs. BeesyCluster storage size

data chunk in this example. The goal was to minimize the workflow execution time,
same costs were considered for services with an infinite bound (budget). It can be
seen very easily that offering a larger storage capacity of the BeesyCluster execution
engine allows to decrease the workflow execution time.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

936 P. Czarnul

5.2.2 Impact of multithreaded copying, caching, and storage constraints on the
workflow execution time

If output data from a service is ready but cannot be copied to a subsequent service
yet, e.g., due to the limitation of the data size that can be processed in the latter
at the same time, processing of the first service may be put on hold for the same
reason. To solve this issue, the DataCopier presented in Sect. 4 copies such data
to the BeesyCluster storage and removes from the location of the service assigned
to the previous node. This allows processing of new data packets by this service as
soon as possible since more data space is now available. For each data packet (the
size is configurable), a new thread is launched that copies the data to a following
service when the latter is ready to accept new data, i.e., when its current data size and
the size of the new data does not exceed its storage capacity. As soon as this is the
case, the thread copies the data to the location of the following service and launches
its execution. If there are many threads waiting for availability of the storage in the
following service, they are synchronized.

The parameters of the test are as follows: dsmax
ij = 2 files, PARDS = 2, SDP = 1

file, WEC = ∞, streaming enabled, multiple instances of a service working on
chunks of data can work on multiple cores of processors in the node. The test was per-
formed for the workflow application presented in Fig. 8 and 80 input files of 12 MB
each. As in the previous case, it should be treated as a common pattern in workflow

Fig. 8 Testbed workflow communication pattern for workflow execution time (s) vs. maximum size of
data in node experiment

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 937

Fig. 9 Workflow execution time (s) vs. maximum size of data in node

applications. The goal was to minimize the workflow execution time, same costs
were considered for services with an infinite bound (budget). Results are presented
in Fig. 9. Apparently, the caching technique allows to reduce the workflow execution
time considerably for all storage constraints of particular services dsmax

ij . Addition-
ally, as could be expected, the execution time decreases with the increase of storage
limits for the services dsmax

ij . A higher limit allows to start copying of data to follow-
ing services earlier.

5.3 Experiments for a digital photography workflow with streaming and storage
constraints

Further tests, including testing the impact of the packet data size on the execution
time and a comprehensive test for determination of cost allocation to services and
storages, were performed for a real workflow for parallel processing of digital images.
Digital images in RAW formats produced by digital cameras are usually processed in
a pipeline with at least a few steps, which were implemented as services invoked one
after another in a sequence:

(1) Conversion of a RAW image to a 16-bit TIFF implemented as script dcraw -T
$1 where $1 denotes an input file and dcraw is a program for RAW image conversion,

(2) Normalization of the TIFF image implemented as script convert $1-normalize
$1.TIFF where convert is ImageMagick’s command line tool.

(3) Resizing, sharpening, and conversion to a final JPG file implemented as script convert
$1 -resize 600x400 -sharpen 1x1.2 -quality 97 % $1.jpg.

For further experiments in this section, workflow applications with several parallel
paths including these steps were defined with services installed on various clusters.
Multiple instances of a service working on chunks of data can work on multiple cores
of processors in the node.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

938 P. Czarnul

Fig. 10 Testbed workflow for digital photography tests

5.3.1 Size of data packet

In this experiment, the goal was to measure the impact of the size of a data packet in
the streaming mode. The workflow application from Fig. 10 was used with 2 parallel
paths, dsmax

ij = 100 files, WEC = ∞, streaming enabled, 80 input files of 12–13 MB
each. In this case, the images were real photographs taken by a modern DSLR and
stored in a RAW format. The goal was to minimize the workflow execution time, and
the same costs were considered for services with an infinite bound (budget). The final
node was added to integrate output files into the user specified location. Figure 11
presents obtained results. Smaller data packets allow faster initiation of successive
tasks and services and thus shorter execution times with the exception of very small
data packets with one file only.

5.3.2 Impact of storage sizes on workflow execution time

Further experiments are meant to investigate if and how different distributions of the
available budget B among services and storage affect the total workflow execution
time. Namely, allocation of more budget to services and less to intermediate storage
may result in faster processing and slower communication and vice versa. The goal is
to investigate whether different relative costs of services and storage require different
distribution of budget B .

For the experiments in this section, the workflow application depicted in Fig. 12
was used. There are 9 parallel paths each of which applies the three steps of digital
photo processing. However, the workflow application is not balanced as the paths had

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 939

Fig. 11 Impact of data packet size on the workflow execution time

Fig. 12 Testbed workflow for digital photography tests

services with various execution time/cost ratios assigned to them as follows: 3 paths
with 8/2, 3 paths with 4/4 and 3 paths with 2/8. 135 input files of 12–13 MB each
were used as input for a total of 1.7 GB of data. The goal was to minimize the work-
flow execution time while keeping the total cost of selected services for processing
data below the given budget, i.e.,

∑
i,j cij dij ≤ B − BWEC. dij corresponds to the

number of data files processed by service sij . The scheduling algorithm has to route
the data along the paths in such a way to obtain the shortest workflow execution time
and meet the cost constraint. The larger the budget that can be spent on the services

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

940 P. Czarnul

Fig. 13 Workflow execution time vs. storage costs

the faster services can be selected, i.e., more data packets can be routed to faster ser-
vices. Following the results of the previous experiments, the streaming mode was set
for efficient parallel computing and a small size of a data packet equal to 5 files to
increase the streaming throughput and shorten the workflow execution time.

Firstly, before allocation of the initial budget among services and costs, Fig. 13
presents the workflow execution time for various combinations of three parameters:

– the BeesyCluster storage space (WEC),
– enabled or disabled caching of output images from one service when the next ser-

vice is not yet ready for accepting new images,
– various cost bounds on the total cost of selected services.

Obviously, the following facts can be noted:

(1) Increasing the BeesyCluster storage space for the workflow execution engine
results in shorter workflow execution times.

(2) Caching of output images from one service when the next service is not yet ready
for accepting new images results in noticeably better workflow execution time
than without caching.

(3) Increasing the cost bound on the services results in shorter workflow execution
time as faster services can be selected.

Now, the goal is to determine whether various sets of costs for storage and services
require different distribution of the budget among these components to obtain shorter
workflow execution times.

Let us now assume that cWEC is the cost of storage of a unit of data (represented
by an input file to a service that defines a chunk of data to be processed) in the Beesy-
Cluster workflow execution system. The following configurations can be considered.

B = 2500 and cWEC = 10 As an example, let us assume that the user has a budget
equal to 2500 and cWEC = 10 (for storage of one file, i.e., the cost of storing 10 files

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 941

Fig. 14 Workflow execution time vs. storage costs, cWEC = 10

in the BeesyCluster management system is 100). This allows various distributions of
the cost among BWEC and costs of services. Some of these are shown in Fig. 14:

(1) BWEC = 200 for storage of 20 files in the system,
(2) BWEC = 300 for storage of 30 files in the system,
(3) BWEC = 400 for storage of 40 files in the system.

Figure 14 shows these cases from which one can determine that the lowest execu-
tion time is given by configuration 3.

B = 2400 and cWEC = 10 The second case we consider is with the initial budget of
2400 for which one can see equivalent distributions as 1′, 2′, and 3′ out of which 3′
gives the best result.

B = 2700 and cWEC = 20 The third case we consider is with the budget equal to
2700 and cWEC = 20. The latter means that storage of one file costs 20, and conse-
quently the cost of storing 10 files in the BeesyCluster management system is 200. In
this case, some of possible configurations are (Fig. 15):

(1) BWEC = 400 for storage of 20 files in the system,
(2) BWEC = 600 for storage of 30 files in the system,
(3) BWEC = 800 for storage of 40 files in the system.

This time the best configuration is 1 and apparently it does not pay off to invest
into the storage of the execution engine if it is too expensive.

To conclude, if a workflow application is to be run many times, which is very often
the case with scientific workflows, it should be preceded with analysis as presented
above to make sure that the budget is properly distributed among intermediate storage
space and the services depending on relative costs.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

942 P. Czarnul

Fig. 15 Workflow execution time vs. storage costs, cWEC = 20

Fig. 16 Irregular testbed workflow

5.3.3 Irregular workflow application

Additionally, the implemented workflow execution engine with storage constraints
and data caching was tested on a more irregular (in terms of the length of parallel
paths and synchronization) acyclic workflow application shown in Fig. 16. Streaming
was enabled, dsmax

ij = 10 files, PARDS = 1, SDP = 1 file, various numbers of input

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 943

Table 2 Configurations and results for an irregular workflow application

Configuration Workflow
execution time (s)

16 input files, data caching, WEC = ∞ 666

16 input files, no data caching, WEC = ∞ 682

16 input files, data caching, WEC = 2 705

16 input files, no data caching, WEC = 2 725

80 input files, data caching, WEC = ∞ 2667

80 input files, no data caching, WEC = ∞ 2860

80 input files, data caching, WEC = 5 2701

80 input files, no data caching, WEC = 5 3004

files of 12–13 MB each and various setting were used as indicated in Table 2 along
with corresponding execution times. Each task was assigned 5 services with cost/time
ratios as follows: 12/8, 10/9, 8/10, 7/11, and 6/12. The results have confirmed that
differences can be observed for various settings proving that the engine works as
intended.

6 Summary and future work

The paper presented an extended model of scheduling workflow applications with
optimization that incorporates not only the standard QoS parameters such as service
cost and execution time but also storage constraints and storage costs. Storage sizes of
data on resources from which services fetch and to which write input/output are con-
sidered. Compared to other works, the paper incorporated into the model and inves-
tigated also storage limitations for the workflow execution engine. Data caching for
workflows with data streaming was proposed and implemented. Standard scheduling
and workflow execution engines may not be able to run workflows with such stor-
age constraints if, e.g., services are offered from commodity servers with small disk
storage. The proposed solution provides an engine that copes with such environments
perfectly.

Since storage space entails costs and impacts performance, the paper presented a
method to distribute the budget for running a workflow not only among services, but
also the storage for the execution engine.

The paper presents performance tests for various sizes of data packet when pro-
cessing data in streams and for various storage capacities of the execution engine.
The author has implemented a workflow execution engine that incorporates all the
presented solutions and performed tests for a digital image processing workflow. The
engine, deployed in the BeesyCluster middleware, is used for running large scale
workflow applications as well as for teaching HPC and distributed systems at Faculty
of Electronics, Telecommunications and Informatics, Gdansk University of Technol-
ogy, Poland.

It was shown in Sect. 5 that considering storage is important for the basic struc-
tures such as fork, parallel paths, and consequently join at the end of each workflow

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

944 P. Czarnul

application. Such constructs (fork, parallel paths, join) do appear in larger workflows
modeled as acyclic directed graphs. The latter (as considered in this work) will nat-
urally consist of parallel tasks being synchronized at various points of the workflow.
This means that seeing differences between consideration of storage or not on the
tested structures (and this has been shown) will also be visible for larger workflow
applications that will inevitably contain such structures. Additionally, a workflow ap-
plication with a more irregular structure was tested. For two different input data sets,
it was confirmed that the proposed features, i.e., data caching and considering storage
constraints do affect the workflow execution time.

For future work, Oceanstore or similar distributed storage systems can be consid-
ered as a means of potential handling of data when running thee workflow. Currently,
this step is handled by BeesyCluster in case of the centralized execution engine or
distributed agents in case of the distributed engine [12]. So, in this respect, such a
system could act as a much larger capacity storage for data copied between locations
on which services are installed. This can lead to potential higher limits on what the
WEC parameter represents in the current model and will be used in future versions
of the system.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Kepler user manual (2008) Version 1.0.0. https://code.kepler-project.org/code/ke-pler-docs/trunk/
outreach/documentation/shipping/UserManual.pdf

2. Abrishami S, Naghibzadeh M, Epema DH (2012) Cost-driven scheduling of grid workflows using
partial critical paths. IEEE Trans Parallel Distrib Syst 23:1400–1414. http://doi.ieeecomputersociety.
org/10.1109/TPDS.2011.303

3. Aggarwal R, Verma K, Miller J, Milnor W (2004) Constraint driven web service composition in
meteors. In: Proceedings of IEEE international conference on services computing (SCC’04), pp 23–
30

4. Aggarwal R, Verma K, Miller J, Milnor W (2004) Dynamic web service composition in meteors.
Technical report, LSDIS Lab, Computer Science Dept, UGA

5. Bharathi S, Chervenak A (2009) Scheduling data-intensive workflows on storage constrained re-
sources. In: Proceedings of the 4th workshop on workflows in support of large-scale science,
WORKS’09. ACM, New York, pp 3:1–3:10. http://doi.acm.org/10.1145/1645164.1645167

6. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K (2005) Task scheduling strategies
for workflow-based applications in grids. In: CCGrid 2005. IEEE international symposium on cluster
computing and the grid, vol 2, pp 759–767

7. Buyya R (ed) (1999) High performance cluster computing. Architectures and systems. Prentice Hall,
New York

8. Canfora G, Penta MD, Esposito R, Villani ML (2005) An approach for qos-aware service composi-
tion based on genetic algorithms. In: Proceedings of the 2005 conference on genetic and evolution-
ary computation, GECCO’05. ACM, New York, pp 1069–1075. http://doi.acm.org/10.1145/1068009.
1068189

9. Chin SH, Suh T, Yu HC (2010) Adaptive service scheduling for workflow applications in service-
oriented grid. J Supercomput 52(3):253–283. doi:10.1007/s11227-009-0290-9

10. Czarnul P (2010) Modeling, run-time optimization and execution of distributed workflow applications
in the jee-based beesycluster environment. J Supercomp, 1–26. doi:10.1007/s11227-010-0499-7

11. Czarnul P (2010) Modelling, optimization and execution of workflow applications with data distri-
bution, service selection and budget constraints in BeesyCluster. In: Proceedings of 6th workshop on

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://code.kepler-project.org/code/ke-pler-docs/trunk/outreach/documentation/shipping/UserManual.pdf
https://code.kepler-project.org/code/ke-pler-docs/trunk/outreach/documentation/shipping/UserManual.pdf
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.303
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.303
http://doi.acm.org/10.1145/1645164.1645167
http://doi.acm.org/10.1145/1068009.1068189
http://doi.acm.org/10.1145/1068009.1068189
http://dx.doi.org/10.1007/s11227-009-0290-9
http://dx.doi.org/10.1007/s11227-010-0499-7
http://mostwiedzy.pl

A model, design, and implementation of an efficient multithreaded 945

large scale computations on grids and 1st workshop on scalable computing in distributed systems,
international multiconference on computer science and information technology, pp 629–636. IEEE
Catalog number CFP0964E

12. Czarnul P, Matuszek MR, Wójcik M, Zalewski K (2011) Beesybees: a mobile agent-based middleware
for a reliable and secure execution of service-based workflow applications in beesycluster. Multiagent
Grid Syst 7(6):219–241

13. Foster I, Kesselman C, Nick J, Tuecke S (2002) The physiology of the grid: an open grid services
architecture for distributed systems integration. In: Open grid service infrastructure WG. Global grid
forum. http://www.globus.org/research/papers/ogsa.pdf

14. Glatard T, Montagnat J, Lingrand D, Pennec X (2008) Flexible and efficient workflow deployment
of data-intensive applications on grids with moteur. Int J High Perform Comput Appl 22:347–360.
doi:10.1177/1094342008098067

15. Keahey K, Tsugawa M, Matsunaga A, Fortes J (2009) Sky computing. IEEE Internet Comput 13:43–
51. http://doi.ieeecomputersociety.org/10.1109/MIC.2009.94

16. Kyriazis D, Tserpes K, Menychtas A, Litke A, Varvarigou T (2008) An innovative work-
flow mapping mechanism for grids in the frame of quality of service. Future Gener Comput
Syst 24(6):498–511. doi:10.1016ij.future.2007.07.009. http://www.sciencedirect.com/science/article/
B6V06-4P940GS-1/2/e94f93365addf9e83adaa967051d60e7

17. Pandey S, Karunamoorthy D, Buyya R (2011) Workflow engine for clouds. In: Cloud computing:
principles and paradigms. Wiley, New York, pp 321–344. ISBN 978-0470887998

18. Project TG: Workflow language (xwfl2.0). http://gridbus.cs.mu.oz.au/workflow/2.0beta/docs/xwfl2.
pdf

19. Ramakrishnan A, Singh G, Zhao H, Deelman E, Sakellariou R, Vahi K, Blackburn K, Meyers D,
Samidi M (2007) Scheduling data-intensive workflows onto storage-constrained distributed resources.
In: Proceedings of the seventh IEEE international symposium on cluster computing and the grid,
CCGRID’07. IEEE Comput Soc, Washington, pp 401–409. doi:10.1109/CCGRID.2007.101

20. Sakellariou R, Zhao H, Tsiakkouri E, Dikaiakos MD (2007) Scheduling workflows with budget con-
straints. In: Gorlatch S, Danelutto M (eds) Integrated research in grid computing. CoreGrid series.
Springer, Berlin

21. Singh G, Vahi K, Ramakrishnan A, Mehta G, Deelman E, Zhao H, Sakellariou R, Blackburn K, Brown
D, Fairhurst S, Meyers D, Berriman GB, Good J, Katz DS (2007) Optimizing workflow data footprint.
Sci Program 15:249–268. http://dl.acm.org/citation.cfm?id=1377549.1377553

22. Syslo MM, Deo N, Kowalik JS (1983) Discrete optimization algorithms. Prentice-Hall, New York
23. Wieczorek M, Hoheisel A, Prodan R (2009) Towards a general model of the multi-criteria workflow

scheduling on the grid. Future Gener Comput Syst 25(3):237–256
24. Yuan Y, Li X, Sun C (2007) Cost-effective heuristics for workflow scheduling in grid computing

economy. In: Proceedings of the sixth international conference on grid and cooperative computing,
GCC’07. IEEE Comput Soc, Washington, pp 322–329

25. Yu J, Buyya R (2005) A taxonomy of workflow management systems for grid computing. J Grid
Comput 3(3–4):171–200. doi:10.1007/s10723-005-9010-8

26. Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids using
genetic algorithms. In: Workshop on workflows in support of large-scale science, proceedings of the
15th IEEE international symposium on high performance distributed computing (HPDC 2006). Paris,
France

27. Yu J, Buyya R (2006) Scheduling scientific workflow applications with deadline and budget con-
straints using genetic algorithms. Scientific programming journal. IOS Press, Amsterdam. ISSN:
1058-9244

28. Yu J, Buyya R, Ramamohanarao K (2008) Metaheuristics for scheduling in distributed com-
puting environments. In: Workflow scheduling algorithms for grid computing. Metaheuristics for
scheduling in distributed computing environments. Springer, Berlin. ISBN 978-3-540-69260-7. http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7107

29. Yu J, Buyya R, Tham CK (2005) Cost-based scheduling of workflow applications on utility grids.
In: Proceedings of the 1st IEEE international conference on e-science and grid computing (e-science
2005). IEEE Comput Soc Press, Melbourne

30. Yuan D, Yang Y, Liu X, Chen J (2010) A cost-effective strategy for intermediate data storage in
scientific cloud workflow systems. In: IPDPS. IEEE Press, New York, pp 1–12

31. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng Q (2003) Quality driven web services com-
position. In: Proceedings of WWW 2003, Budapest, Hungary

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.globus.org/research/papers/ogsa.pdf
http://dx.doi.org/10.1177/1094342008098067
http://doi.ieeecomputersociety.org/10.1109/MIC.2009.94
http://dx.doi.org/10.1016ij.future.2007.07.009
http://www.sciencedirect.com/science/article/B6V06-4P940GS-1/2/e94f93365addf9e83adaa967051d60e7
http://www.sciencedirect.com/science/article/B6V06-4P940GS-1/2/e94f93365addf9e83adaa967051d60e7
http://gridbus.cs.mu.oz.au/workflow/2.0beta/docs/xwfl2.pdf
http://gridbus.cs.mu.oz.au/workflow/2.0beta/docs/xwfl2.pdf
http://dx.doi.org/10.1109/CCGRID.2007.101
http://dl.acm.org/citation.cfm?id=1377549.1377553
http://dx.doi.org/10.1007/s10723-005-9010-8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7107
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7107
http://mostwiedzy.pl

	A model, design, and implementation of an efficient multithreaded workflow execution engine with data streaming, caching, and storage constraints
	Abstract
	Introduction
	Related work and motivations
	Workflow application scheduling problem
	Existing work on storage-aware workflow management
	Motivations for a new extended model

	Proposed model
	Design and implementation of a multithreaded execution engine with data streaming, caching, and storage constraints
	Existing workflow management and optimization in BeesyCluster
	Proposed solution
	Storage-aware QoS service selection algorithm

	Experiments
	Testbed environment
	Testing of the proposed units
	Impact of BeesyCluster storage size on the workflow execution time
	Impact of multithreaded copying, caching, and storage constraints on the workflow execution time

	Experiments for a digital photography workflow with streaming and storage constraints
	Size of data packet
	Impact of storage sizes on workflow execution time
	B=2500 and cWEC=10
	B=2400 and cWEC=10
	B=2700 and cWEC=20

	Irregular workflow application

	Summary and future work
	References

