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ABSTRACT The paper presents a novel approach to the Pulse Width Modulation (PWM) duty cycle
computing for complex or irregular voltage vector arrangements in the two (2D) and three–dimensional
(3D) Cartesian coordinate systems. The given vectors arrangement can be built using at least three vectors
or collections with variable number of involved vectors (i.e. virtual vectors). Graphically, these vectors form
a convex figure, in particular, a triangle or a tetrahedron. The reference voltage vector position inside that
figure can be expressed by the barycentric coordinates, which are calculated using the second (2D case) or
the third–degree determinant (3D case) – without trigonometry and angles. Thus, the speed of the PWM duty
cycle computation rises significantly. The use of the triangle area or the tetrahedron volume, instead of the
standard vector projection also permits for a well–defined and universal approach to identifying the reference
vector position, especially for converters with complex and/or deformed space–vector diagrams (i.e. floating
DC–link, multisource DC–link). The proposed computation scheme is based on simple instructions with-
out trigonometry thereby, the DSP processor, or digital solution for field–programmable gate array, can
fast–perform this operation using atomic operations. The aim of the presented considerations is not a novel
PWMmodulation, but a computable idea of a general calculation scheme for cases in which the distribution
of vectors is non-trivial. A detailed algebraic and geometric analysis, as well as mathematical proofs on
the total consistency of the results with the standard projection method, are also included. Subsequently,
the Three–Dimensional Space Vector Modulation (3D–SVM), is considered as a special background to
present a novel approach.

INDEX TERMS 3D–SVM, duty cycle calculation, nonlinear loads, space vector, pulse width modulation,
3–level 4–leg inverter.

I. INTRODUCTION
The development of industrial power electronic appli-
cations is currently associated with multilevel inverters
[1]–[5]. It results from the need for quality of formed volt-
ages, currents and EMI, as well as the necessity to work with
multiple sources and higher voltages. To meet these require-
ments Voltage Source Inverters (VSI) topologies, become
more complex with the increasing number of voltage levels
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and inverter legs. Growing complexity of VSI topologies
entails a significant increase in the complexity of PulseWidth
Modulation (PWM)methods suitable for these inverters. This
paper addresses the above problem by proposing an effective
3D–SVM computing algorithm based on barycentric coordi-
nates [6] for 3–level 4–leg diode-clamped VSI. The proposed
algorithm can be applied for 4–wire 3–phase applications
such as DSTATCOM, multi-source Hybrid Energy Storage
Systems, Active Power Filter [4], [7]–[13], local small power
PV generation plant, uninterruptible power supply of various
factories, offices, residential houses, etc.
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According to the simple modulation algorithms, several
references propose transformations of the space–vector dia-
grams from the Cartesian (or αβ) coordinates to other frames.
The gh [14], the 60◦ [15], mn coordinates [16] or α′β ′ coor-
dinate system proposed in [17] are attempts to simplifying
the modulation algorithm. However, all of them relies on
balanced DC–link voltages. Moreover, none of the mentioned
space–vector diagram transformations are applicable to
4–wire, 4–legs inverters. Analysis and comparison of the
mentioned transformation methods with barycentric coordi-
nates for 3–wire system can be found in [6]. One of the few
attempts (applicable for 4–wire systems) to compute the duty
cycles of the actual (i.e. non–ideal) component vectors for the
three-level NPC inverter was presented in [18]. The authors
proposed an extension of the gh frame method of [14] to
include accurate duty cycle calculations under the DC–link
imbalance. The idea, called themethod of projections, is quite
complex and is derived after a complex analysis of geomet-
ric relationships between the basic vectors displaced by the
DC–link voltage imbalance. The approach is hardly extend-
able to other cases, for instance, a different type of component
vectors (e.g. virtual vectors) or different inverter topologies
(e.g. 4–leg inverters or inverters with more than 3 levels).

A more universal method was proposed in [19]. The calcu-
lations of duty cycles are performed in a frame called abc
coordinates. This frame is made of three axes – a, b and
c – corresponding to the respective three phases of the
inverter, but forming a three–dimensional orthogonal system
rather than the standard planar system with the abc axes
rotated by multiples of 2π/3. It permits for quite simple rep-
resentation of DC–link voltage imbalance and computation
of duty cycles under imbalance. The method can be used
for multilevel 3–leg and 4–leg inverters however, considering
DC–link voltages imbalance requires an additional transfor-
mation of coordinates and allows to synthesize voltage only
in a three–phase system according to its orthogonal nature.

This paper also proposes a computational approach sup-
porting explicit space–vector PWM computations for multi-
level inverters with possible DC–link voltage imbalance. The
key idea in the proposed arithmetic is the use of barycentric
coordinates for the duty cycle computations and the selec-
tion of the modulation triangle/tetrahedron (2D/3D). Unlike
the method of [19], which uses a special coordinate frame,
the proposed method is applied directly to space–vector dia-
grams in the natural Cartesian coordinates (αβ) and can
be implemented to multiphase systems. The method can be
applied to all types of multilevel inverters.

To achieve a better understanding of the proposed concept,
the discussion was divided into smaller sections. The new
general computation formula for two–dimensional space is
presented in detail in Section I. The next section contains
analogous considerations for the three–dimensional coor-
dinates system. Section III contains a brief introduction
the used 3D–SVM modulation and barycentric coordinates
in the modulation algorithm. Proposed modulation algo-
rithm is based on [20] but developed by balancing DC–link

voltages [21]–[24], accurate generation of output voltages
regardless of unbalanced capacitor voltages [18], [19], fast
duty cycles calculations algorithm based on barycentric coor-
dinates [6] and optimal switching state sequence. Experi-
mental results are introduced in Section IV to validate the
effectiveness of the proposed duty cycle computation. The
article closes with a summary and a brief discussion on the
experimental results.

II. PWM DUTY CYCLES COMPUTATION IN A
TWO–DIMENSIONAL COORDINATE SPACE
Let [Ew1, Ew2, Ew3] denote a three–element vector collection in
the two–dimensional Cartesian xy coordinate system shown
in Fig. 1(a). Coordinates of these independent vectors meet
the following equation

α1 · Ew1 + α2 · Ew2 + α3 · Ew3 = Ee (1)

where α1, α2 and α3 are real numbers for scaling the length
of the corresponding vector. The value of scaling coefficients
from (1) can be obtained by constructing a graphic solution.
However, it is not a suitable form for implementation in the
Digital Control System (DCS). In order to formulate a more
practical solution, the vectors arrangement in Fig. 1(a), can
be transformed into a new equivalent collection represented
by Ev1, Ev2, Eu vectors in a local pq reference frame, as shown
in Fig. 1(b). Thus, updated coordinates can be calculated
using the following formula

Ew2 − Ew3 = Ev2
Ew1 − Ew3 = Ev1
Ee− Ew3 = Eu (2)

Note that, all vectors in (2) are obtained by subtracting Ew3
from the other vectors and the reference vector Eu can be
represented in a similar way to (1) by

Eu = d1 · Ev1 + d2 · Ev2 (3)

where d1 = |Eu1| / |Ev1| and d2 = |Eu2| / |Ev2| are non-negative
scaling coefficients referred as PWM duty cycles (PWMDC).
The d1 and d2 can be obtained using the vector projection

FIGURE 1. Replacement of the Cartesian xy coordinate reference frame
(a) into local pq frame (b).
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FIGURE 2. Reference vector Eu projection: (a) on the base vactor Ev2 (b) on
the base vactor Ev1.

principle, which is ilustrated in Fig. 2. Using expressions on
the sine of angles φ and ϕ and based on the h segment

h
|Eu1|
= sin (φ) ,

h
|Eu|
= sin (φ − ϕ) (4)

formally obtain

|Eu1| = |Eu| ·
sin (φ − ϕ)
sin (φ)

, |Eu2| = |Eu| ·
sin (ϕ)
sin (φ)

(5)

To eliminate trigonometric expressions sin containing angles
φ and ϕ,the formula of vectors cosine is applied

cos (φ) =
Ev1 ◦ Ev2
|Ev1| · |Ev2|

cos (ϕ) =
Ev1 ◦ Eu
|Ev1| · |Eu|

cos (φ − ϕ) =
Ev2 ◦ Eu
|Ev2| · |Eu|

(6)

and also Pythagorean identity formula, which leads to the
following equations

d1 =
|Eu|
|Ev1|

√
1− cos2 (φ − ϕ)
1− cos2 (φ)

=
|Eu|
|Ev1|

√√√√√√ 1−
(
Ev2◦Eu
|Ev2|·|Eu|

)2
1−

(
Ev1◦Ev2
|Ev1|·|Ev2|

)2 (7)

d2 =
|Eu|
|Ev2|

√
1− cos2 (ϕ)
1− cos2 (φ)

=
|Eu|
|Ev2|

√√√√√√ 1−
(
Ev1◦Eu
|Ev1|·|Eu|

)2
1−

(
Ev1◦Ev2
|Ev1|·|Ev2|

)2 (8)

where the mark (◦) designates the scalar product of two
vectors. Both equations (7) and (8) are not satisfying and
further optimization can be perform. Despite the elimination
of trigonometric functions, they contain the square root oper-
ation. In order to obtain a simpler expression for d1 and d2,
vectors shown in Fig. 2, can be represented as a collection of
points A, B, C , and D as illustrated in Fig. 3. Based on the
Thales’ theorem, d1 as the ratio of the length of the segment
a to the sum of segments a and b in Fig. 3(a),

d1 =
|Eu1|
|Ev1|
=

a
a+ b

=
h

h+ y
(9)

FIGURE 3. Collections of points in xy coordinate reference frame
correspond to: (a) triangle 1(A, D, C), (b) triangle 1(A, D, B).

and analogically for the case ilustrated in Fig. 3(b).

d2 =
|Eu2|
|Ev2|
=

a
a+ b

=
h

h+ y
(10)

As can be seen in Fig. 3(a), triangles 1(A,D,C) and
1(A,B,C) have the same base length. Thus, d1 and d2 can
be expressed as ratio of triangle areas

d1 =
1ADC

1ABC
, d2 =

1ADB

1ABC
(11)

If vertex A is located at the origin (0, 0) of a Cartesian
coordinate system and the remaining vertices are represented
by point B(v1x, v1y), C(v2x, v2y) and D(ux, uy), the area of
each required triangle can be computed as the absolute value
of the determinant. Thus, the PWM duty cycle for vector Ev1
can be written as

d1 =

∣∣∣∣∣∣∣∣
det

[
Dx Dy
Cx Cy

]
det

[
Bx By
Cx Cy

]
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
det

[
ux uy
v2x v2y

]
det

[
v1x v1y
v2x v2y

]
∣∣∣∣∣∣∣∣ (12)

and identically for vector Ev2

d2 =

∣∣∣∣∣∣∣∣
det

[
Dx Dy
Bx By

]
det

[
Bx By
Cx Cy

]
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
det

[
ux uy
v1x v1y

]
det

[
v1x v1y
v2x v2y

]
∣∣∣∣∣∣∣∣ (13)

The PWMDC for zero vector, which corresponds with point
A(0, 0) in Fig. 3, is equal to

d0 =
1BCD

1ABC
(14)

The sum of all PWMDC, computed for each triangle
1(A,B,C) vertex, is equal to unity

d1 + d2 + d0 = 1 (15)

As pointed out, vectors’ geometric arrangement depicted
in Fig.2, has been transformed into the local triangular
area, in which the reference vector Eu resides. Secondly,
the PWMDC have been calculated using a simple rational
function based on the triangle area, which can be fast com-
puted using the absolute value of determinants. As is evident
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FIGURE 4. Rescaling the length of vector Eu.

from the presented elaboration, only vectors coordinates are
only needed. The proposed calculation scheme is widely
used in mechanics problem solving and has been successfully
adopted in the following paper for the unification of the
PWMDC computation [25]. Graphically, all three selected
vectors form a convex figure – the triangle – and the reference
voltage vector position inside that figure can be expressed
by barycentric coordinates, which are just calculated
using (12)–(14).

If the sum (15) is greater then unity, as it is shown in Fig. 4,
it means that point D lies outside the triangle1(A,B,C) and
the length of the reference vector Eumust be rescaled by factor
ζ which can be expressed as follows

ζ =
|AE|
|AD|

=
|AE|

|AE| + |ED|
(16)

Note, that lines m and n in Fig. 4 are parallel, and therefore,
by the theorem of Tales and previous consideration, the ζ
factor can be calculated based on the following equation,

ζ =
|AF |

|AF | + |FG|
=

1ABC

1ABC +1BCD
(17)

which can be easily implemented in PWM overmodulation
algorithms. The proposed approach has a very useful addi-
tional property that their sum equals unity if it is computed
for a point inside a triangle (as in Fig. 3), but it is greater
than unity if the point lies outside the element (as illustrated
in Fig. 4). This is a uniform and effective method to find
the traingle in which the reference vector resides. In practice,
due to floating-point numbers limited accuracy, the smallest
sum (15), ideally equal to unity, is selected as a minimal
element using optimized and fast DSP function.

The proposed approach based on geometrical relations,
represented by (12) and (13), can be proved algebraically
using the formula interpretation of the absolute value of a
vector product as follows

d1 =
|Eu| |Ev2| · sin (φ − ϕ)
|Ev1| |Ev2| · sin (φ)

=
|Eu× Ev2|
|Ev1 × Ev2|

=
1ADC

1ABC
(18)

d2 =
|Eu| |Ev1| · sin (ϕ)
|Ev1| |Ev2| · sin (φ)

=
|Eu× Ev1|
|Ev1 × Ev2|

=
1ADB

1ABC
(19)

The proposed computing time of a routine based on the
barycentric coordinates was compared with the time used by
a routine based on the trigonometric functions and classified

FIGURE 5. Illustration of the case considered in the benchmark code.

TABLE 1. Comparison conditions.

TABLE 2. Comparison results.

as the method of projections described in [18]. The DSP
processor code used in the comparison, which correspondes
to illustration in Fig. 5, is shown in Listing 1. The comparison
conditions are specified in Table 1, while the comparison
results are presented in Table 2.

As might be seen, the proposed arithmetic is more than
tentimes faster than the conventional approach. The ratio-
nality behind applying barycentric coordinates to calculate
PWMDC is that it quickly performs the forward analysis of
the effects associated with the given set of selected base vec-
tors in the reference voltage synthesis with small computing
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Listing 1. DSP processor code used for comparision.

Listing 1. (Continued.) DSP processor code used for comparision.

overhead. The presented approach can be extended to the
three–dimensional space divided into irregular tetrahedrons.
Theword ‘irregular’ has been used to emphasize the impact of
DC voltage asymmetry in multi–level inverters on the actual
output voltage of the NPC converter.

III. PWM DUTY CYCLES COMPUTATION IN A
THREE–DIMENSIONAL COORDINATE SPACE
It is assumed that the vector Ep in Fig. 6, is located inside the
tetrahedron V with vertices A, B, C , and D. The reference
vector Ep can be expressed as the following sum

Ep = Eu+ Ev+ Ew (20)

where the vectors Eu, Ev, and Ew are the effect of a reference
vector Ep projection on the base vectors

−→
AB,
−→
AC , and

−→
AD

respectively

Ep = dB ·
−→
AB+ dC ·

−→
AC + dD ·

−→
AD (21)

The PWMDC from (21) can be written as ratio of appropriate
lengths

dB =
|Eu|∣∣∣−→AB∣∣∣ , dC =

|Ev|∣∣∣−→AC∣∣∣ , dD = |Ew|∣∣∣−→AD∣∣∣ . (22)
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FIGURE 6. The three-dimensional case: (a) reference vector Ep and base
vectors Eu, Ev , Ew , (b), (c), and (d) triangular surfice parallel to the
corresponding sides of the tetrahedron V (A, B, C, D).

FIGURE 7. Geometric layout for the Thales Theorem application for the
case illustrated by Fig. 6(b).

To find a more practical form of (22), the case illus-
trated in Fig. 6(b) and more detailed in Fig. 7 is consid-
ered. The triangle 1(AD,BD,CD), which contains a point P
(the end of reference vector Ep), is parallel to the base of
tetrahedron V (A,B,C,D), which is the triangle 1(A,B,C).
Moreover, the line n is passing through the vertex D and is
normal to the surfaces represented by triangles 1(A,B,C)
and1(AD,BD,CD). Based on the geometric layout in Fig. 7,
the PWMDC for vector Ew can be finally described by the
following formula

dD =
|Ew|∣∣∣−→AD∣∣∣ = |AAD||AD|

=
|HHD|
|HD|

(23)

Considering that both tetrahedrons V (A,B,C,D) and
V (A,B,C,P) have the same base triangle 1(A,B,C),
the duty cycle dD can be expressed in barycentric coordinates
as the ratio of the volume of these figures

dD =
VABCP
VABCD

(24)

Analogous results can be obtained with respect to the other
verticles

dA =
VABCP
VABCD

, dB =
VADCP
VABCD

, dC =
VABDP
VABCD

(25)

FIGURE 8. Point P is located outside the tetrahedron V (A, B, C, D).

Tetrahedron volume can be represented in barycentric coor-
dinates as a ratio of absolute values of determinants. Thus,
finally the PWMDC can be expressed as follows

dA =

∣∣∣∣∣∣det
 Px − Bx Py − By Pz − Bz
Px − Cx Py − Cy Pz − Cz
Px − Dx Py − Dy Pz − Dz

 · g
∣∣∣∣∣∣ (26)

dB =

∣∣∣∣∣∣det
 Px − Cx Py − Cy Pz − Cz
Px − Dx Py − Dy Pz − Dz
Px − Ax Py − Ay Pz − Az

 · g
∣∣∣∣∣∣ (27)

dC =

∣∣∣∣∣∣det
Px − Dx Py − Dy Pz − Dz
Px − Ax Py − Ay Pz − Az
Px − Bx Py − By Pz − Bz

 · g
∣∣∣∣∣∣ (28)

dD =

∣∣∣∣∣∣det
 Px − Ax Py − Ay Pz − Az
Px − Bx Py − By Pz − Bz
Px − Cx Py − Cy Pz − Cz

 · g
∣∣∣∣∣∣ (29)

where

g =

det

Dx − Ax Dy − Ay Dz − Az
Dx − Bx Dy − By Dz − Bz
Dx − Cx Dy − Cy Dz − Cz

−1 (30)

If the given reference vector Ep resides inside the tetrahedron
V (A,B,C,D), the sum of all duty cycles is equal to one,

dA + dB + dC + dD = 1 (31)

but if point P lies outside the tetrahedron, as it is shown
in Fig. 8, the length of Ep has to be rescaled by factor ζ

ζ =
|APA|
|AP|

=
|APA|

|APA| + |PAP|
(32)

The following tetrahedrons V (A,B,C,D) and V (B,C,D,P)
have a common base triangle1(B,C,D). In addition, straight
line n is perpendicular to the triangle 1(B,C,D) surface.
Therefore the scaling factor ζ can be also calculated based
on Thales theorem

ζ =
hABCD

hABCD + hBCDP
·

1BCD
3

1BCD
3

=
VABCD

VABCD + VBCDP
(33)

There are two tetrahedrons shown in Fig. 9. Selection of
the appropriate tetrahedron strongly depends on checking the
result of duty cycle summation. Only if point P is inside the
tetrahedron, the sum (31), by definition, is equal to unity.
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FIGURE 9. Two tetrahedrons in three dimensional system: (a) vector Ep
resides in tetrahedron V (B1, B2, B3, B4), (b) the sum of PWMDC is greater
than one, (c) the sum of PWMDC is equal one.

IV. THREE-DIMENSIONAL SPACE VECTOR MODULATION
FOR THREE-LEVEL FOUR-LEG DIODE CLAMPED INVERTER
A three–dimensional fast algorithm in abc coordinates has
been proposed in [4], [19], [26] but that representation limits
the potential of space vector modulation. The DC–link volt-
age balancing [18], [21]–[24], [27], [28] is omitted though
it is a critical task, especially in the Active Power Filter
application [10], [13], [29], [30]. In addition, the overmod-
ulation aspect of converter control is also not considered
[31]. By using the proposed method of PWMDC calcula-
tion, balanced and unbalanced systems can be realized with
balanced or unbalanced DC–link voltages. Moreover, during
the DC–link voltage balancing process, the output average
voltages are precisely synthesized and no output current dis-
tortion is observed [18]. The main advantage of accurate
control of the DC–link voltages, is that it allows to use smaller
capacitors in the DC–link. Note that the main purpose of
this section is to demonstrate the abilities of the proposed
approach of duty cycle computing. In order to achieve a
better understanding, the discussion is divided into smaller
subsections.

NOMENCLATURE
For the clarity in further consideration, the following nomen-
clature is proposed:

uDC DC-link total voltage.
uC1 lower capacitor voltage.
uC2 upper capacitor voltage.
u1 neutral-point voltage.
iNP neutral-point (NP) average current.
l number of converter leg l = 1..4.
sil i-switch, l-leg, sil = {0, 1} switch is {off , on}.
il l-leg output current.
ulk l-leg output voltage, k-switching state.
hlk l-leg switches state, k-switching state.

FIGURE 10. Three-level four-leg neutral-point clamped converter.

FIGURE 11. Example switching states sequence.

blk l-leg neutral-point flag, k-switching state.
hk [h1k , h2k , h3k , h4k ] leg k-switch state vector.
bk [b1k , b2k , b3k , b4k ] leg neutral-point k-flag vector.
dk [d1, d2, d3, d4] PWM duty cycle vector.
B [b1,b2,b3,b4]T neutral-point flags matrix.

PRINCIPLE OF OPERATION
The 3–level 4–leg Diode–Clamped inverter is presented
in Fig. 10. A general k-switching state of each converter leg
can be characterized using three following quantities ulk , hlk ,
blk

{ulk , hlk , blk}

=


{uDC , 2, 0} ⇔ [s1l, s2l, s3l, s4l] = [1, 1, 0, 0]
{uC1, 1, 1} ⇔ [s1l, s2l, s3l, s4l] = [0, 1, 1, 0]
{0, 0, 0} ⇔ [s1l, s2l, s3l, s4l] = [0, 0, 1, 1]

(34)

The first ul is the l-leg output voltage value, the second one hl
describes the combination of gate signals of power switches
sil , and the bl informs whether the load is connected to the
neutral-point (NP), marked as a square ‘‘1’’ in Fig. 10. The
total number of possible switch state vectors is equal 34.
An appropriate description can be found in the Table 5 and
Table 6 located in the Appendix section. The grey color of
the table row indicates that u1 is not affected by a DC–link
voltage asymmetry. Thus, coordinates of this vector in xyz
reference frame are independent of u1. The 3D–SVM imple-
mentation is performed by the generating proper sequence of
four switch state vectors h1, h2, h3, h4 within a period T as it
is shown in Fig. 11. In reference to the publications [20], [32]
the three-dimensional space contains 24 base tetrahedrons.
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FIGURE 12. The n-type base tetrahedron 41, in sector s1 for u1 = 0.1 p.u.

TABLE 3. The switch states matrix H for the base tetrahedrons in sector 1.

There are four base tetrahedrons 41, 42, 43, and 44 per
one sector. An example of a base tetrahedron 41 resides in
sector s1 as is illustrated in Fig. 12. Each base tetrahedron
can be divided into 8 smaller tetrahedrons, which correspond
to an appropriate switch states matrix H in Table 3. Due
to the DC–link voltage unbalance phenomena, the n-type
and p-type switch state matrix can be used for capacitor
voltage balancing. The flowchart of the proposed algorithm
is presented in Fig. 13 and described in next subsection.

THE ALGORITHM FLOWCHART
The position of the reference vector Ep is defined by one sector
{s1, s2, s3, s4, s5, s6} and one base tetrahedron {41, 42,
43, 44}. At step 1 the position of Ep is calculated according
to the solution given in [20] and is based on a few conditional
operations. Next, the six float vertex coordinates for n-type

FIGURE 13. The 3D-SVM modulation flowchart.

and p-type H, from Table 3, are calculated at step 2 using
Clarke transform as follows

 v1x v2x v3x v4x
v1y v2y v3y v4y
v1z v2z v3z v4z

 =


2
3
−
1
3

−
1
3

0
1
√
3
−

1
√
3

1
3

1
3

1
3

 · U
(35)

where

U =


u11 − u41 u21 − u41 u31 − u41
u12 − u42 u22 − u42 u32 − u42
u13 − u43 u23 − u43 u33 − u43
u14 − u44 u24 − u44 u34 − u44


T

(36)

At step 3 all needed duty cycles are computed based on
barycentric coordinates (26)-(30). Calculation of the follow-
ing sum at step 4 for each switch state matrix H

6k = sum(dk ) (37)

can be used for the selection of the one right candidate from
8-element set. If the sum (37) is a minimal element, ideally
equal unity, the right switch state matrix H will be selected.
The fifth step is the selection of the most appropriate switch
state matrixHp orHn respectively. The decision can be based
on the comparison of the predicted influence of the choice on
the NP imbalance voltage

u1 =
uC2 − uC1

2uDC
(38)

A simple analysis of the four possible combinations of the
signs of the imbalance voltage and the average neutral point
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FIGURE 14. An experimental prototype with DCS.

FIGURE 15. Schematic of experiment.

current leads to the conclusion that it is sufficient to compare
the following quantities

εn = iNPn · u1, εp = iNPp · u1 (39)

where iNPn and iNPp are estimates of the expected average
neutral point currents corresponding to their respective types
of bias {

iNPn = [ i1 i2 i3 i4 ] · BT
n · d

T
n

iNPp = [ i1 i2 i3 i4 ] · BT
p · d

T
p

(40)

If εn is greater than εp thenHp should be selected; otherwise,
the better choice is negative bias represented by Hn. Finally,
at step 6, the selected pair {H,d} is sent to the pulse pattern
generator implemented in a programmable logic device.

V. EXPERIMENTAL RESULT
An experimental prototype of an inverter is presented
in Fig. 14, while the parameters are presented in Table 4.
The digital control system (DCS) contains a DSP (Texas

TABLE 4. Experiment circuit diagram and modulation parameters.

FIGURE 16. DC–link capacitors voltage active balancing for referenced
vectors without capacitors voltage asymmetry compensation a)
Ep = [0.57· cos(ωt), 0.57· sin(ωt), 0], b) Ep = [0.46· cos(ωt), 0.46· sin(ωt), 0].

Instruments TMS320C6672) and a field–programmable gate
array FPGA (Cyclone V). The DC–link is supplied by two
adjustable dc-voltage sourcesUDC1 andUDC2 with additional
switch S for voltage balancing experiments. Schematic of the
experimental setup is illustrated in Fig. 15. The experimental
research plan included the following issues:

• DC–link capacitors active voltage balancing ability
using redundant switch states (Fig. 16),

• Preserving the sinusoidal output currents during the
DC–link voltages asymmetry (Fig. 17),

• Proper generation of constant gamma component in out-
put currents by adding the common signal (Fig. 18),
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FIGURE 17. Preserving the sinusoidal output currents during the DC–link
voltages asymmetry and active balancing for referenced vectors a)
Ep = [0.57· cos(ωt), 0.57· sin(ωt), 0], b) Ep = [0.46· cos(ωt), 0.46· sin(ωt), 0].

FIGURE 18. Generation of constant gamma component in output currents
for referenced vectors a) Ep = [0.57· cos(ωt), 0.57· sin(ωt), 0.5], b)
Ep = [0.57· cos(ωt), 0.57· sin(ωt),−0.5].

• Selected higher-order current harmonic injection
(Fig. 19),

• The phase current asymmetry generation (Fig. 20).

FIGURE 19. Selected harmonic injection in output currents for referenced
vectors a) 5–th harmonic Ep = [0.57· cos(ωt), 0.57· sin(ωt), 0.3· cos(5ωt)],
b) 11–th harmonic Ep = [0.57· cos(ωt), 0.57· sin(ωt), 0.3· cos(11ωt)].

FIGURE 20. The output current asymmetry generation for referenced
vectors a) Ep = [0.57· cos(ωt), 0.285· sin(ωt), 0], b)
Ep = [0.285· cos(ωt), 0.57· sin(ωt), 0].

VI. CONCLUSION
The proposed algorithms using barycentric coordinates
based on area – 2D case, solved by (12), (13) – or
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TABLE 5. The leg voltages, states and neutral–point flags for Three–Level
Four–Leg Neutral–Point Clamped Converter (part I).

volume – 3D case, solved by (26)–(30) – are proposed as a
tool for PWMDC computations, especially for complex and
unbalanced lattices of inverter vectors. Results of benchmark
presented in Table 2 show the main advantage of the pro-
posed computation idea – a short time of code execution,
what leads to the conclusion, that this method is particularly
useful for complex systems (multilevel, multiphase inverters,
high–frequency systems, virtual vector methods). The con-
cept permits building the modulation algorithms by referring
straight to the converter switch state vectors. Thus, the pre-
sented computation idea is suitable for multilevel inverters
of different types (diode clamped, flying capacitors or matrix
converters). The proposed algorithm enables precise voltages
and currents forming during unbalanced capacitor voltages
(Fig. 17), as well as it allows to balance DC–link volt-
ages (Fig. 16) using redundant vectors. Comparing currents
in Fig. 16 and Fig. 17 it is notable, that considering DC–link
unbalanced voltages leads to a better quality of output cur-
rents. Possibility of injecting chosen harmonics (Fig. 19) and
generation of asymmetry (Fig. 20) or constant gamma com-
ponent (Fig. 18) in currents show that the proposed algorithm
can be a suitable tool for Active Power Filters. The use of
barycentric coordinates helps in the development of compu-
tation schemes. Note that the method does not influence the
results of the PWM duty cycle computations at all, so further
analysis of formed voltages and currents in this paper seems
pointless, because this kind of research is widely reported in
the literature.

The presented article shows that trigonometric functions
can be eliminated from the modulation algorithm. The

TABLE 6. The leg voltages, states and neutral–point flags for Three–Level
Four–Leg Neutral–Point Clamped Converter (part II).

presented elaborations lead to the conclusion, that the PWM
duty cycle computation can be realized using the simple
rational functions and voltages coordinates (inmost cases cal-
culated using the Clarke transform). In general, this approach
does not give the new spectacular PWM features observed
in the frequency spectrum of voltages and currents. The
obtained simplification permits for using the low costs FPGA
devices because the core of calculation can be based on
the parallel add/subtract and multiply operation. If we take
into account a very high operating frequency of the GaN or
SiC power switches and the limitations of the one-core pro-
cessors, the undertaken research is purposeful and justified
[33]–[36]. The proposed solution is particularly useful when
considering the irregular space of voltage vectors. Presented
solutions also add uniformity and transparency to the descrip-
tion of PWM–related problems.

The paper authors demonstrated that the proposed PWM
duty cycle computation can be successfully applied to the
three-dimensional space vector modulation for a three–level
four–leg NPC inverter where the volume–based rational func-
tions have been used.

APPENDIX
See Tables 5 and 6.
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