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Abstract 

Time series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its 
applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we 
propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head 
convolutional neural networks and capsule mechanism. In addition to the discovery of the temporal relationship within 
time series data, our approach derives better feature extraction with different scaled capsule routings and enhances 
representation learning. Unlike the original CapsNet, our proposed approach does not need to reconstruct to increase the 
accuracy of the model. We examine our proposed method through a set of experiments running on the domain-agnostic 
TSC benchmark datasets from the UCR Time Series Archive. The results show that, compared to a number of recently 
developed and currently used algorithms, we achieve 36 best accuracies out of 128 datasets. The accuracy analysis of the 
proposed approach demonstrates its significance in TSC by offering very high classification confidence with the potential 
of making inroads into plentiful future applications. 

Keywords: Time series classification, capsule networks, data mining, signal processing  

1. Introduction

Tim series classification (TSC) is the problem of categorizing time series data by using machine learning

methods [1]. Time series data are sequences of time-ordered values measuring certain processes [2]. In recent 

years, there has been an explosion in not only volume but also velocity and variety of time series data related 

to real-world applications ranging from cybersecurity [3], network optimization [4] and health care [5][6], to 

energy efficiency management [7] and human activity recognition [8]. With the significant increase in time 
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series data, TSC has become one of the most important and challenging problems in data science [9][10]. TSC 

differs greatly from traditional classification problems because the data values are ordered [11]. In fact, any 

classification problem, considering some notion of ordering inside its data, can be regarded as a TSC problem  

[12][13]. Researchers have proposed a great number of algorithms and methods to tackle this problem [11],  

* Haoxi Zhang
Email addresses: xiao1994zw@163.com (Zhiwen Xiao), jhsu99@163.com (Xin Xu), haoxi@cuit.edu.cn(Haoxi Zhang),

edward.szczerbicki@zie.pg.gda.pl (Edward Szczerbicki)  

which can be generally divided into two categories: traditional methods and deep learning-based methods. 

One of the most popular traditional TSC approaches is the use of the nearest neighbor (NN) classifier 

coupled with the Dynamic Time Warping (DTW) distance function [12]. In [14], researchers introduced an 

approach, named Elastic Ensemble (EE), which combines ensembles of the individual NN classifiers with 

different distance measures, which outperforms the individual classifiers. Similarly, in [15] an ensemble 

method, the Bag-of-SFA-Symbols (BOSS), was proposed and demonstrated to be very promising for TSC. 

BOSS combines the frequency histograms extracted from the Symbolic Fourier Approximation (SFA) 

discretization with the structure-based representation of the bag-of-words model. Recently, Bagnall et al. [16] 

significantly improved the TSC accuracy by constructing an ensemble of different classifiers over different 

time series representations, called COTE. Then, by leveraging a new hierarchical structure with probabilistic 

voting, including additional representation transformation domains as well as two new classifiers, Lines et al. 

[17] further improved COTE to be known as the Hierarchical Vote Collective of Transformation-Based

Ensembles (HIVE-COTE), which is currently considered the state-of-the-art algorithm for TSC on the

University of California, Riverside (UCR) time series classification and clustering repository [18]. However,

HIVE-COTE has a notable predicament: its huge computation complexity, which makes it less practical to

tackle real-time big data mining problems. A more detailed comprehensive review of topical methods for TSC

can be found in [11].

Apart from using traditional methods, there is increasing interest in extending deep learning approaches for 

TSC [8][12][13]. Particularly, researchers have borrowed ideas from image recognition challenges and their 

solutions [18] to tackle TSC problems. For example, Zheng et al. [20] proposed a deep learning framework 

based on Convolutional Neural Networks (CNNs) for multivariate time series classification. Moreover, the 

Time LeNet [21] and Multi-scale Convolutional Neural Networks (MCNN) [22] are considered among the 

first architectures to be validated on a domain-agnostic TSC benchmark such as the UCR archive [1][18]. In 
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CNNs, there are convolutional layers, each convolutional layer consists of sliding filters for processing the 

temporal data, which allows the network to extract non-linear features that are time-invariant and suitable for 

classification. By cascading multiple layers, CNNs can automatically learn a hierarchical feature 

representation from raw data.  Therefore, several studies suggest CNNs for classifying electrocardiogram 

(ECG) signals [23][24]. More recently, it has been shown that deeper CNN models coupled with residual 

connections such as ResNet can further improve the classification accuracy [12][25]. 

Even though CNN-based methods achieve state-of-the-art classification performance, they primarily have 

two drawbacks in common: they disregard the spatial relationship in input data,  and need considerable 

amounts of data samples to achieve good performance. Capsule Networks (CapsNets), as one of the attempts 

to address the limitations of CNNs such as the loss of spatial information in the pooling layers, is 

contradictory to the spatial relationships between the learned entities, were proposed in [26]. CapsNets learn 

and capture the properties of an entity present in the input, in this case, a signal in addition to its existence, in 

the form of capsules. Currently, CapsNets achieve state-of-the-art performance on the Modified National 

Institute of Standards and Technology (MNIST) database and performs considerably better than a 

convolutional net at recognizing highly overlapping digits. 
Following and expanding this promising new research direction, we propose in this paper the TSCaps, a 3-

head neural network that combines the multi-head structure with the capsule mechanism to support the 
challenging task of TSC.  The proposed new approach utilizes primarily the multi-head CNNs that extract the 
sufficient features, and the Capsule-based mechanism that safeguards different scaled capsule routings and 
representation learning in addition to the temporal relationships within time series data. The main 
contributions of this paper can be summarized as follows: 

• In present literature, CapsNets are primarily investigated in the domain of image classification. In this
paper, we introduce a novel 3-head Capsule-based network to tackle the TSC problem.  The proposed
new architecture allows ample feature extraction and representation learning in addition to the temporal
relationships within time series data.

• Unlike the original CapsNets, our proposed approach does not require arduous reconstruction technique
to augment the accuracy of the model (see Section 4.2).

• We not only investigate the influence and the role of each head of our 3-head structure, but also explore
the overall performance of different combinations of heads. Such approach ensures that each head of
our structure is contributing to our model, and, even more importantly, it provides insights into why and
when the multi-head structure can be beneficial.

2. Introduction

2.1. Multi-head Convolutional Neural Network 

Convolutional neural networks (CNNs) are designed to perform feature extraction and mapping of data that 
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are presented in the form of manifold arrays [27]. As presented in the previous section, CNNs hold immense 

promise to recognize patterns in time series comprising four core elements that exploit the 

essential attributes of natural signals, namely, local connections, shared weights, pooling mechanism, and 

multi-layer network structure. All of these elements establish well-defined means of feature extraction and 

mapping required for TSC. Computation units attain the local basic features of time series data in the lower 

network layers, while they learn higher-level representation and patterns of the data in the higher network 

layers. Moreover, in comparison with traditional feed-forward networks, such as fully connected neural 

networks, CNNs perform with much fewer connections, and they are easier to train [18]. 

The standard CNNs can be considered a one-head architecture. The multi-head CNNs [28] simply multiply 

this representation learning ability. With multiple heads, the CNNs can have different filter banks and 

different processing layers in each head. For instance, our proposed method utilizes a 3-head CNNs in the first 

layer, which has a number of 9, 7 and 5 filters at each head respectively. If necessary, we may even choose 

whether to have pooling or dropout layers for a certain head. By using multiple heads, the CNNs is 

empowered with the unique ability to combine various feature learning processes for tackling input series, 

which enriches the features extracted and thus enhances the final representation learning results. 

2.2. Capsules 

The idea of a capsule is first introduced by Hinton and his colleagues [29] as an alternative to CNNs. A 
capsule is composed of a group of neurons, which deals with vectors instead of CNNs’ scalar values. This 
exceptional characteristic enables a capsule to learn the features of an image in addition to its deformations 
and viewing conditions [30]. After being processed based on the type of the capsule employed, the features 
produced by a CNN are accepted as the input to a capsule. The output of the Capsule is made up of a set of 
activity vector values commonly called instantiation parameters. The capsule's activity vector carries various 
properties of a particular entity such as an object or an object part [26]. More specifically, the length of 
the activity vector represents the probability of the entity's existence, while the orientation of the activity 
vector holds the instantiation parameters of the entity. The instantiation parameters are used to represent 
equivariance of the capsule indicating its ability to recognize pose, deformation, velocity, texture, etc. The 
equivariance makes sure that the capsule takes into account spatial relationships of entities.  

By using the algorithm called “routing by agreement” between different layers [29], active capsules at the 

lower level make predictions for the instantiation parameters of their higher-level capsules. When multiple 

predictions agree, a higher level capsule becomes active. This allows neural activities of capsules to vary 

according to varying viewpoints, instead of eliminating, which gives capsules the advantage over 

normalization methods. Because of that, they can handle multiple different affine transformations of different 

objects or object parts simultaneously. Furthermore, this unique property also makes capsules very effective 
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for tackling segmentation, which is another challenging problem in computer vision [26]. 

Motivated by the above promising findings, in this paper we propose to apply the multi-head structure with 

the capsule mechanism to support the task of TSC. Instead of simply assembling capsule modules, the capsule 

block in our proposed architecture is completely re-designed in order to suit time series problems and achieve 

state-of-the-art performance. 

3. Methodology

In this section, we present the methodology of our proposed Capsule-based neural architecture for TSC,

including the overview of the proposed approach, followed by the mathematical formulation of multi-head 

convolution, capsule activation, and routing. Then, we present our dynamic routing algorithm. At the end of 

this section, the classifier and the training procedure are introduced.  

Fig. 1. Schematic diagram of the proposed TSCaps approach. 

3.1. Overview 

The architecture of the proposed method for TSC is shown in Fig. 1. A three-head structure with two types 

of heads is chosen for the TSCaps in order to make the method more robust and effective (see the comparison 

and ablation study in section 4.2). The most general and sketchy overview of the approach is as follows. 

Given an input series, we first use a 3-head CNN to extract its features. Then, these features are sent to 

capsules for further representation learning in addition to the temporal relationships among small segments 

within the time series. Finally, the Classifier produces the output of the network, which is the category 
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prediction of the input. 
More specifically, the TSCaps is designed to tackle feature extraction and learning from the input data. The 

input data 𝐷𝐷 = {(𝑋𝑋1,𝑦𝑦1), (𝑋𝑋2, 𝑦𝑦2), … , (𝑋𝑋n, 𝑦𝑦n)} is a dataset containing a collection of pairs (𝑋𝑋𝑖𝑖, 𝑦𝑦𝑖𝑖) where 𝑋𝑋𝑖𝑖 
is the time series 𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑚𝑚] consisting of m ordered values with 𝑦𝑦𝑖𝑖  as its class label. By using 
convolution operation, the features of the input data can be extracted; these features are then vectorized 
through squashing and fed into the routing process. At the end, the Classifier utilizes the softmax function to 
carry out the mapping from the space of possible inputs to a probability distribution over the class labels, and 
produces the output of the method, which is the predicted label 𝑦𝑦𝑖𝑖′ by given the input 𝑋𝑋𝑖𝑖. 

3.2. The Three Heads 

The three heads are the core of the proposed method, which learns the representation of data in addition to 

the temporal relationships among small segments within the time series. The three heads can be further 

divided into two types. Type A is under a normal CapsNet structure that consists of convolution module, 

squashing module, and routing module. In Type B there is no squashing module; instead, we use another 

convolution module to learn higher level representation of the input data (Fig. 1.). The key components of the 

three heads are the Convolution module, the Squashing module, and the Routing module. 

3.2.1. The Convolution module 

Aiming to extract various features, the convolution module is designed to deal with the initial input data. In 

the convolution module, the input data is convolved with a set of convolutional filter banks (to be learned in 

the training process). The output of the convolutional operators enhanced by a bias (to be learned) is put 

through the activation function to form the feature map for the next layer/module. Formally, given the input 

data 𝑋𝑋, the 𝑖𝑖th feature map of  ℎth head of the multi-head CNN is also a matrix, denoted as 𝑣𝑣𝑖𝑖ℎ , and it is given 

by: 

 𝑣𝑣𝑖𝑖ℎ =  𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟 �𝑓𝑓𝐵𝐵𝐵𝐵  �𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ (𝑋𝑋)�� ,    ∀ℎ 𝜖𝜖 {1,2,3}  (1) 

where 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟 is the activation function that can retain some useful negative values, defined as: 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟(𝑥𝑥) = � 𝛼𝛼 ∗ 𝑥𝑥,     𝑥𝑥 <  0
  𝑥𝑥,           𝑥𝑥 ≥  0 (2)
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where α is a coefficient for retaining negative values (we set 𝛼𝛼 = 0.1 in our experiments),  𝑓𝑓𝐵𝐵𝐵𝐵 is the batch 

normalization function that accelerates the training and enhances the classification accuracy. Moreover, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ  

is the convolution function of the ℎth head in the multi-head convolution layer, as presented in (3): 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ (𝑋𝑋) =  𝑏𝑏𝑖𝑖ℎ +  ��𝑊𝑊𝑖𝑖  𝑙𝑙
𝑝𝑝,ℎ𝑋𝑋

𝑐𝑐ℎ

𝑝𝑝=0

 ∀ℎ ∈ {1,2,3}  (3)
𝑙𝑙

 

where 𝑏𝑏𝑖𝑖ℎ is the bias for this particular feature map, 𝑘𝑘 is the index of the feature maps at the convolution 

module, 𝑛𝑛ℎ  is the size of the filter bank of the ℎ𝑡𝑡ℎ  head, and 𝑊𝑊𝑖𝑖 𝑙𝑙
𝑝𝑝,ℎ  is the value at the position 𝑝𝑝  of the

convolution filter bank connected to the current feature map. After the 3-head convolution process is 

performed, a number of various features are acquired and sent to the next module. 

3.2.2. The Squashing module 

Following the convolution module, the Squashing module is developed to receive the feature maps 

extracted from the convolution module, and to transfer them into vectors that capsules employed. It utilizes a 

non-linear “squashing” function to carry out this transfer. Formally, the output of the ℎ𝑡𝑡ℎ head convolution 

module is denoted as 𝑣𝑣ℎ , and the transfer is made by  

𝑠𝑠ℎ =  𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠ℎℎ � 𝑓𝑓𝑟𝑟𝑙𝑙𝑠𝑠ℎ𝑙𝑙𝑝𝑝𝑙𝑙ℎ ( 𝑣𝑣ℎ )�      ∀ℎ ∈ {1,2,3}  (4) 

where 𝑠𝑠ℎ is the output of this module for the ℎ𝑡𝑡ℎ head, 𝑓𝑓𝑟𝑟𝑙𝑙𝑠𝑠ℎ𝑙𝑙𝑝𝑝𝑙𝑙ℎ  is the reshaping function that ensures the data 

matches the required shape by the Capsule, and  𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠ℎℎ   is defined as: 

𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠ℎ(𝑥𝑥) =  ||𝑥𝑥||2

1+||𝑥𝑥||2
𝑥𝑥

||𝑥𝑥||
 .  (5) 

3.2.3. The Routing module 

It is the module that learns the features of data and takes into account the temporal relationships by using 
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the “routing by agreement” algorithm (Algorithm 1). In this module, the total input to a capsule is a weighted 

sum over all “prediction vectors”. For instance, the total input  sjh to capsule j is computed as: 

𝑆𝑆𝑗𝑗ℎ =  �𝑘𝑘𝑖𝑖𝑗𝑗ℎ 𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ

𝑖𝑖

 ,      𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ =  𝑊𝑊𝑖𝑖𝑗𝑗

ℎ𝑐𝑐𝑖𝑖ℎ      ∀ℎ ∈ {1,2,3}  (6) 

where 𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ  is the “prediction vectors” from the capsules in the previous module and is calculated by 

multiplying  𝑐𝑐𝑖𝑖ℎ , the output of capsule 𝑖𝑖 in the previous module, by the weight matrix 𝑊𝑊𝑖𝑖𝑗𝑗
ℎ, and the 𝑘𝑘𝑖𝑖𝑗𝑗ℎ  are 

coupling coefficients that are learned via the iterative routing process. 
The coupling coefficients between all capsules in this module and capsule 𝑖𝑖 in the previous module are 

given by a “routing softmax” defined as: 

 𝑘𝑘𝑖𝑖𝑗𝑗ℎ =  
𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖

ℎ

∑ 𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖ℎ𝑙𝑙
 ∀ℎ ∈ {1,2,3}  (7) 

where 𝑏𝑏𝑖𝑖𝑗𝑗ℎ  are initial logits representing the log prior probabilities that capsule 𝑖𝑖 should be coupled to capsule 𝑗𝑗, 

and the 𝑙𝑙 represents the other capsules link with capsule 𝑖𝑖 but capsule 𝑗𝑗 in this module.  

The initial logits can be learned through the training, so that the coupling coefficients can be refined 

iteratively by measuring the agreement between the current output cjh  and the prediction 𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ  produced by 

capsule i from the previous module. The output of a capsule is calculated via “squashing” its total input, as 

defined in (5). The agreement is just the product 𝑑𝑑𝑖𝑖𝑗𝑗ℎ =  𝑐𝑐𝑗𝑗ℎ ∙ 𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ , and it is added to the initial logits 𝑏𝑏𝑖𝑖𝑗𝑗ℎ  before 

computing new values for the coupling coefficients. The vector output of the Routing module is carried out 

through the “routing by agreement” algorithm that is presented in Algorithm 1. 

Finally, we get three sets of output as each head produces one output. These outputs are vectors in different 

scales and carry various features. In order to take advantage of the variety of representations, we utilize a 

concatenation process to put them into one piece while keeping critical features learned which are defined as: 

𝑉𝑉𝑗𝑗 =  𝑓𝑓𝑐𝑐𝑐𝑐𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑡𝑡� �𝜁𝜁𝑐𝑐𝑗𝑗1, 𝜂𝜂𝑐𝑐𝑗𝑗2, 𝜇𝜇𝑐𝑐𝑗𝑗3� �  (8) 

where  𝜁𝜁,𝜂𝜂, 𝜇𝜇 are coefficients of the outputs from the three heads respectively. The 𝑉𝑉𝑗𝑗 is then sent to the 
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classifier for final predictions. We set  𝜁𝜁 = 1, 𝜂𝜂 = 1, 𝜇𝜇 = 1 in our experiments. 

3.3. Classifier 

The Classifier carries out the mapping from its inputs to a probability distribution over the class labels by 

giving the predicted class labels y′  as the output of our proposed method. Particularly, in a capsule, the 

instantiation vector's length represents the probability of the entity's existence, which is defined as: 

𝑝𝑝�𝑦𝑦𝑗𝑗′ = 𝐿𝐿𝑗𝑗 � 𝑉𝑉𝑗𝑗; 𝜃𝜃� =  
𝑒𝑒𝜃𝜃𝑖𝑖||𝑉𝑉𝑖𝑖||

∑ 𝑒𝑒𝜃𝜃𝑘𝑘||𝑉𝑉𝑖𝑖||𝐵𝐵
𝑙𝑙=1

 (9) 

where 𝜃𝜃 represents the parameters of the activity vector  𝑉𝑉𝑗𝑗, and  𝑁𝑁 is the number of classes that are denoted 

by 𝐿𝐿𝑗𝑗 =  (1,2, … ,𝑁𝑁). Therefore, it is anticipated that the correct capsule in TSCaps   has a long instantiation 

vector. To predict multiple classes, the separate margin loss is used for each capsule linked to a particular 

class 𝑘𝑘: 

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 =  
1
𝑛𝑛�(𝑦𝑦𝑗𝑗 max�0,𝑚𝑚+ − ||𝑉𝑉𝑗𝑗||� +  𝜆𝜆 �1 − 𝑦𝑦𝑗𝑗� max (0, ||𝑉𝑉𝑗𝑗||  −𝑚𝑚−) )

𝑐𝑐

𝑗𝑗=1

  (10) 

where 𝑦𝑦𝑗𝑗 is the truth label of 𝑗𝑗𝑡𝑡ℎ class, and  𝜆𝜆 is a coefficient for the margin loss. We set 𝜆𝜆 = 0.5, 𝑚𝑚+ = 0.9 

and 𝑚𝑚−= 0.1 in our training. The whole training process is summarized in Algorithm 2. 

Alogrithm 1: Routing by agreement algorithm 

1  procedure 𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛𝑅𝑅(𝑠𝑠ℎ , 𝑟𝑟ℎ)   ∀ℎ ∈ {1,2,3} 

2     initial weight matrix 𝑊𝑊𝑖𝑖𝑗𝑗
ℎ

3     get  𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ =  ∑𝑊𝑊𝑖𝑖𝑗𝑗

ℎ𝑠𝑠ℎ 

4     𝑏𝑏𝑖𝑖𝑗𝑗ℎ  = 0 

5     for 𝑟𝑟ℎ iterations do 

6     get  𝑘𝑘𝑖𝑖𝑗𝑗ℎ  by using (7)  

7   get  𝑐𝑐�̂�𝑗|𝑖𝑖
ℎ  by using (6)  

8     get  𝑆𝑆𝑗𝑗ℎ  by using (6) 

9     get  𝑐𝑐𝑗𝑗ℎ = 𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠ℎ�𝑆𝑆𝑗𝑗ℎ�  computes (5) 

10       t  𝑏𝑏ℎ   b  𝑏𝑏ℎ +  ℎ ̂ℎ
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4. Experiments and Results

In this section, we first introduce the experimental setup and dataset description, then explore relations of

each head of multi-head capsules through ablation study, and finally analyze and compare our algorithms with 

others. 

4.1. Dataset Description and Experiment Settings 

The UCR 2018 archive is one of the most popular time series repositories with 128 datasets of different 

lengths in various application domains. In order to ensure verified fairness of the proposed approach for time-

series data with various lengths, the UCR 2018 archive is divided into 4 categories (i.e. ‘short’, ‘medium’, 

‘long’, and ‘vary’) according to the length of each dataset. To be specific, the 128 datasets consist of 41 

Algorithm 2: TSCaps Optimization 
Input: labeled time series dataset: D = {X, Y} 
Output: predicted label yj′ of the input 
1 // Initialization 
2 Initialize the parameters θ 
3 Normalize the dataset 
4 Divide the dataset into certain sets: 

 training dataset:  Dtrain = {Xtrain , Ytrain} 
 validation dataset: Dval = {Xval , Yval} 
 testing dataset: Dtest = {Xtest , Ytest} 

5 // Training on training and validation datasets 
6 for  epoch = 1,  M  do 
7     for  n = 1,  N  do  
8     get the input data Xj ∈ Dtrain 
9    feedforward the Xj and get the activity vector Vj 
10    // prediction  
11    get the predicted label yj′ by computing (9)  
12    get the loss by computing (10) 
13     perform a gradient decent step on (loss | θ) 
14    end for 
15    if (epoch % 2 == 0) then 
16    validate the model using  Dval 
17    save θ 
18    end if 
19 end for   
20 // Testing 
21 Use the trained network to predict the labels of  Dtest 
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'short' , 32 'medium', 44 'long', and 11 'vary' datasets (more details are shown in Table 1 and Table 2), and 

'Total'  represents the whole UCR 2018 datasets archive. In our partition ‘short’ refers the length of the dataset 

that is below 200, ‘medium’ ranges from 200 to 500, ‘long’ is over 500, and ‘vary’ is for dataset with 

indefinite length. All experiments are run on a desktop with a Nvidia GTX 1080Ti GPU with 11 GB plus 

another Nvidia GTX 1070Ti GPU with 8GB, and an AMD R5 1400 CPU with 16G RAM under the Ubuntu 

18.04 OS. 

Table 1: The details of ‘short’ and ‘medium’ datasets. 
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Table 2: The details of ‘long’ and ‘vary’ datasets. 
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Table 3: Results on various structure in ablation study. 

* MeanACC – mean accuracy

4.2. Ablation Study 

To investigate effects and performance of different structures and types for the heads of our proposed 

approach, we employ an ablation study in our experiments on 12 datasets, including 3 ‘short’ datasets, 3 

‘medium’ datasets, 3 ’long’ datasets, and 3 ‘vary’ datasets (see Table 3). 

First, we compare our proposed network structure (Ours) with pure multi-head CNNs (Ours without Caps), 

which verifies contributions of capsules. Then we add to the comparison analysis the original CapsNets 

structure (Ours with Recon) that utilizes a reconstruction module to enhance its performance. Table 3 shows 

that compared with Ours without Caps, Ours achieves noticeable better performance on every dataset 

demonstrating the effects of the capsule mechanism. For instance, the test accuracies on ECG200 dataset of 

these two structures are 0.63 and 0.93, respectively. Moreover, when employing the reconstruction module 

(Ours with Recon), the network doesn’t perform better: it even underperforms Ours by 0.06 on the 

DodgerLoopW dataset. 

Next, if focusing on a single head network structure, it can be seen (Table 3) that the Head 1 outperforms 

other two single heads on each dataset. For example, the accuracies of the three single heads on ECG500 
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dataset are 0.944222, 0.9384444, and 0.590222 respectively. The Head 3 performs worst among these three 

single heads because the performance of a single head heavily depends on the scale of its size. The larger of 

the head’s scale the more shapelets and features can be extracted from the given input data.  

Additionally, we find that the performance of multiple-head structure is always better than the single head 

structure. Specifically, the three-head structure beats the two-head ones, while the two-head network beats the 

single-head approaches. We also find that combining Head 1 and Head 2 achieves the best performance, 

which indicates that Head 2 (with two Convolution Modules, i.e. no Squashing Module) is effective and 

beneficial for the proposed approach. 

Through comparisons between various network structures, we find that the multi-head configurations can 

take advantages of the variety of their head to extract diverse features from input data, resulting in a more 

robust and accurate model.   

Finally, the computational complexity is compared between Ours and Ours with Recon, where Ours with 

Recon is composed of three layers, i.e. a fully-connected layer with 128 channels, a fully-connected layer with 

256 channels, and a fully-connected layer with the number of channels equal to the  length of a given dataset 

when the two approaches achieve similar performance. The latter approach is certain to cost the larger amount 

of computing resources due to its extra reconstruction module. For instance, the parameters of Ours and Ours 

with Recon are 11.8684M and 12.2932M on SemgH.G dataset, respectively (see Table 3). Consequently, the 

computational time costs of Ours are around 2 times less than Ours with Recon on different datasets, e.g. the 

test time cost on SemgH.G dataset are 14.3279s and 28.538s on CPU, respectively. At the same time, their 

accuracies on each dataset are almost the same. Therefore we conclude that our proposed approach makes full 

use of the variety of its heads to extract diverse features, and achieves the best accuracy without the 

reconstruction module, which largely reduces the complexity of our approach while still ensure its high 

performance. 

Table 4: Statistical results obtained by various algorithms. 
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4.3. Experimental Analysis 

To evaluate the performance of our proposed approach, we select for the comparison process seven best 

existing approaches that claim the state-of-the-art results as presented in the highly cited paper [11] and the 

most recent  arXiv preprint 2020  [25]  (see Table 4).  Following the standard approach most researchers take, 

we use ‘win’, ‘tie’, ‘lose’ and the average ranking (AVG_rank) to rank  algorithms taking part in the 

experimental evaluation process (please refer to the APPENDIX for  detailed scores of each algorithm on 

each dataset). The ‘win’, ‘tie’ and ‘lose’ index represents the number of datasets that an approach performs 

better than, equivalent to, or worse than others, respectively. The ‘best’ cases are the sum of ‘win’ and ‘tie’ 

scores. The average ranking scores are defined according to the average Geo-ranking approach, measuring the 

average difference between the accuracies of a model and the best accuracies among all models. We calculate 

the mean accuracy by averaging the measures over 30 runs on each test set.  

Table 4 shows the statistical results achieved by nominated algorithms on selected 44 datasets in the UCR 

2018 archive. For each dataset, the existing SOTA represents the best algorithm on that dataset [25], including 

DTW [12], BOSS [15], COTE [16], and EE [14]. It should be noted, that both SOTA and TS-CHIEF 

algorithms [32] don’t consider the last 43 of 128 datasets (detailes can be found in [25] [32]). 

As it can be observed in Table 4, Vanilla:ResNet-Transformer attains the first position in the 'best' and 

AVG_rank evaluations. Our is a close second, only one score less in the 'best' cases, i.e. 36 'best' scores. To be 

specific, our algorithm wins in 11 cases and performs no worse than any other algorithm in 25 cases. 
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Similarly, our proposed approach also follows the latter in the AVG_rank metric.  Also, ResNet-Tran1 and 

ResNet-Trans3 take the third place in the AVG_rank and 'best' metrics, respectively. Table 4 additionally 

demonstrates that it is hard for TS-CHIEF [32] to extract efficient features from a variety of datasets despite 

its combination of heterogeneous and integrated embedding forest, and it fails in the competition with scoring 

only 2 'win' values. 

To further investigate the performance of our proposed approach, we compare it with other algorithms 

using  the scores of ‘best’ and AVG\_rank on ‘short’, ‘medium’, ‘long’, and ‘vary’ datasets. Table 4 illustrates 

that Vanilla:ResNet- Transformer is still the best among algorithms on 'short' datasets in terms of 'best' and 

AVG_rank values. Our proposed approach gains the second and third position in the 'best' and AVG_rank 

evaluations, respectively. ResNet-Trans1 takes the second and third position in the 'best' and AVG_rank 

evaluations, respectively. TS-CHIEF is undoubtedly the worst performer. 

When focusing on 'medium' datasets, one can find that ResNet-Trans3 achieves the best performance in 

terms of the highest 'best' scores of 11. Our procedure follows closely the latter and obtains 10 'best' scores. 

On the other hand, in terms of AVG_rank metric, ResNet-Trans1 achieves the lowest AVG_rank scores of 

4.828125. ROCKET [31] makes use of a linear classifiers using random convolutional kernels to attain the 

second position. However, compared with the performance on 'short' datasets, Vanilla:ResNet-Transformer 

and Ours both perform poorly and they slipped in relative rankings. For example, Vanilla:ResNet- 

Transformer moves from the first to the third position. The reason may be behind their structure that is less 

sensitive to 'medium' length signal information. In addition, ResNet 152 SC [32] that relies on complex 

residual structure fails in the competition. 

Considering 'long' datasets, Vanilla:ResNet-Transformer and our proposed approach have significantly 

improved in the AVG_rank performance metric compared with the performance on 'medium' datasets. Their 

positions are found as the first and second, namely 3.909091 and 4.602273 AVG_rank scores, respectively. 

This is because the former takes advantage of its transformer structure to relate different position of 'long' 

sequences, while the latter (Ours) fusions different scaled features through the multi-head capsule structure. 

ResNet-Tran2 and ROCKET are behind in terms of the AVG_rank performance evaluation. 

Furthermore, when paying more attention to ‘vary’ datasets compared with the performance on 'long' 

datasets, Vanilla:ResNet-Transformer and Ours are both down in terms of the AVG_rank values. On the 

contrary, InceptionTime makes use of the inception structure to mine sufficient features from 'vary' datasets, 

ensuring the best performance in the 'best' and AVG_rank cases. 

Lastly, we also visualize the methods’ comparison employing  the critical difference diagram proposed by 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


19 

Demšar [33]. The diagram shows a thick horizontal line when a group of classifiers are not-significantly 

different in terms of accuracy, and a given classifier is better the closer to the right hand site of the thick line it 

is located (has smaller scaler). Fig. 3 illustrates the comparison results. 

Fig. 3. Critical difference diagram showing pairwise statistical difference comparison of state-of-the-art classifiers on 128 UCR datasets. 

Fig. 3. Accuracy plot showing the performance  difference between Vanilla:ResNet-Transformer and Ours. 

Finally, to further visualize the difference between Vanilla:ResNet-Transformer and Ours, Fig. 3 depicts 

the accuracy plot of Ours against  Vanilla:ResNet- Transformer for each of the whole 128 UCR datasets. The 

results show that Ours gains 'win'/'tie'/ 'loss' in 33/55/42 cases respectively,  with p-value well over 0.5 (about 

0.9451). Meanwhile, the mean accuracy (MeanACC) of Ours is 0.0013 higher than that of Vanilla:ResNet-

Transformer. This indicates that there is no significant performance difference between them. It can be stated, 

that the performance of Our proposed approach is the same as Vanilla:ResNet- Transformer, both of which 

have huge potential to deal with a variety of datasets. Additionaly, Ours compared with InceptionTime (see 
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Fig. 4) obtains 'win'/'tie'/'loss' in 62/11/55 cases on whole UCR datasets,  Fig. 5 depicts that Ours also 

achieves 'win'/'tie'/'loss' of 68/10/50 cases compared with ROCKET. 

Fig. 4. Accuracy plot showing the performance difference between InceptionTime and Ours. 

Fig. 5. Accuracy plot showing the performance difference between ROCKET and Ours. 
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5. Conclusions

In this paper, we propose the Capsule-based neural structure for TSC. The proposed method takes

advantages of multi-head convolutional neural networks and capsule mechanism integration, to achieve better 

feature extraction and different scaled capsule routings and representation learning in addition to the temporal 

relationships discovery within time-series data. As our proposed architecture is able to explore sufficient 

shapelets hidden in the data, we do not need to employ the reconstruction technique to enhance the accuracies 

of the model. Therefore, unlike the original CapNets, our approach is more computing friendly. We compare 

our proposed method with the current state-of-the-art approaches by using the whole URC dataset. The 

comparison results show that our proposed procedure achieves very reasonable performance by wining 11 

classification tasks and drawing in 25, and that it provides the highest average accuracy over all 128 tested 

datasets. The accuracy analysis of the proposed approach demonstrates its significance in TSC by offering 

very high classification confidence with the potential of making inroads into plentiful future applications. 

Our future work will involve exploring ways to reduce the complexity of our proposed approach and make 

it more practical. We believe that detailed study of elaborately hand-crafted features and automatically 

learned features needs to be performed first. Then, we plan to distill the prior knowledge encoded in these 

features and introduce such knowledge into neural networks to enhance the model with long-term 

dependencies that are hard to learn with a limited dataset.  
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Reviewers’ Comments 

Reviewer #1: This paper introduces a novel 3-head Capsule-based network to tackle the TSC problem. The 

proposed new architecture allows feature extraction and representation learning in addition to the temporal 

relationships within time series data. By removing the reconstruction module, the approach is much less 

complex than traditional capsule networks. An ablation study is included. The results are presented on a 

small subset of the UCR archive which makes the analysis not very accurate. 

Another problem is not including one of the most recent state-of-the-art neural networks called 

InceptionTime (that the authors do cite but not include in the comparison: 

https://link.springer.com/article/10.1007/s10618-020-00710-y). 

Reference 31 should be removed from the paper and from the list of compared methods. The approach uses 

the test loss when training. See: https://github.com/titu1994/LSTM-FCN/issues/7 

You should also not compare approaches based on mean accuracy as this is not informative at all. You 

should try and stick with a unified method for comparing multiple classifiers over multiple datasets. When 

comparing only two classifiers, you should use a pairwise accuracy plot. Finally, the paper could benefit from 

re-writing with better english phrases and include the most recent TSC approaches such as: TS-CHIEF, 

ROCKET and InceptionTime. 

To summarize, I suggest that the authors take their time into re-writing the paper, including all state-of-

the-art approaches and finish experiments on the whole archive instead of choosing subsets. 

Reviewer #2: The authors propose an interesting neural topology for time series classification. This 

network is composed of three CNNs (3-heads) with a capsule mechanism. The proposed method is evaluated 

on 44 standard datasets. The approach is interesting and clear enough for me and the results are convicting. 

However, I have some specific comments: 

- Table 2 is too small for reading. Please increase the font size. Moreover, the average value on the bottom

of the table is missing. Add this value. Moreover, I don't see the significance to report the results with the six 

decimals. I think that three values are OK. 

- I don't think that the computational complexity experiment gives some useful information. Moreover, the

units are not clear for me. It is in second? I suggest to remove this experiment or describe it better. 

- Table 4 is also too small for reading. Please increase the font size. Moreover, the evaluation metrics are

not obvious for me. Please justify better them including the references. I prefer, to have the table A1 from 

Appendix instead. 
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Appendix 

Table A1: The experiment results on 128 UCR datasets. 
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