
A new open–source software developed for

numerical simulations using discrete modeling

methods

J. Kozicki

Gdańsk University of Technology, Civil Engineering Department,
Gdańsk-Wrzeszcz 80-952, Narutowicza 11/12, Poland

F.V. Donzé

Laboratoire Sols, Solides, Structures et Risques, Grenoble Universités
Domaine Universitaire - B.P. 53 - 38041 Grenoble cedex 9 - France

Abstract

The purpose of this work is to present the development of an open–source soft-
ware based on a discrete description of matter applied to study the behavior of
geomaterials. This software uses Object Oriented Programming techniques, and its
methodology design uses three different methods, which are the Discrete Element
Method (DEM) [10, 11], the Finite Element Method (FEM) [27, 31] and the Lat-
tice Geometrical Method (LGM) [17–20]. These methods are implemented within a
single object–oriented framework in C++ using OOP design patterns. The bulk of
the original work consisted mainly of finding common objects which will work for
these different modeling methods without changing a single line of the C++ code.
With this approach it is possible to add new numerical models by only plugging–
in the corresponding formulas. The advantages of the resulting YADE framework
are the following: (1) generic design provides great flexibility when adding new sci-
entific simulation code, (2) numerous simulation methods can be coupled within
the same framework like for example DEM/FEM and (3) with the open–source
philosophy, the community of users collaborate and improve the software. The
YADE framework is a new emerging software, which can be downloaded at the
http://yade.wikia.com webpage.

Key words:
open–source software, generic programming, discrete element method, finite
element method, lattice model, geomechanics modeling
PACS:

Email addresses: jkozicki@pg.gda.pl (J. Kozicki), donze@geo.hmg.inpg.fr

Preprint submitted to Elsevier 16 May 2008

Postprint of: Kozicki J., Donzé F.V., A new open-source software developed for numerical simulations using discrete modeling methods,
Computer Methods in Applied Mechanics and Engineering, Vol. 197, Iss. 49–50 (2008), pp. 4429-4443, DOI: 10.1016/j.cma.2008.05.023

© 2008. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cma.2008.05.023
https://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

Developing a simulation software often causes scientists to focus on marginal
problems not related to their scientific work, such as: program interface, in-
put/output of data, handling of geometries, mesh generation or visualization of
results. One solution is to use existing scientific frameworks, and plug–in one’s
own calculation algorithms (eg. Abaqus, Dyna, Adina, PFC3D, and others).
However these frameworks rarely give the possibility of combining different
modeling methods such as FEM, DEM, SPH or other customized simulations
like LGM. It is often a commercial software which limits one’s ability to im-
prove/modify the existing code–base. A common solution is to write one’s
own home–brewed software to perform a simulation. Time constraints often
cause this software to be very specific for a particular problem, and even when
released for the public it is difficult to reuse in another application. Currently
existing open–source software (like OOFEM, Salome or SOFA) specializes ei-
ther in FEM or DEM and none of them allows easy addition of new models
or coupling between them. There again, the same drawbacks exist as for com-
mercial software. However the ability to modify or reuse the open–source code
makes this problem less important. The problem which we want to address is
the lack of a truly versatile open–source software which would provide a stable
base for scientists to operate on, regardless of the kind of model they want
to work with: DEM, FEM, SPH or other new models, like LGM. With the
experience gained from writing the SDEC code [10,11], prior implementation
of LGM and by examining other pieces of work in the field (e.g. OOFEM code
or PFC capabilities) we have developed a new YADE framework. We believe
its strongest point is that it uses an open–source approach, since it allows di-
rect feedback from the research community. YADE can then grow with time,
as more people are using it. What distinguishes YADE from other software
is its capability to handle various different numerical models within a single
package, which makes it a common research platform and allows coupling of
models in between. Also, the visualization and input/output methods are al-
ready provided which means the researchers can focus strictly on the formulas.
With proper software design the valuable work of others can be preserved and
reused.

This paper is organized as follows. Section 2 presents the theoretical back-
ground of problems which will be implemented using OOP methods discussed
in Sect. 3. Section 4 introduces YADE and Sect. 5 explains the software design
used. Finally in Sect. 6 examples using YADE for selected theoretical mod-
els are shown as well as a validation case. The validation of these models for
other cases can be found in different papers (DEM is validated in [4, 11, 29],
FEM/DEM coupling in [14, 27] and LGM in [17–20]).

(F.V. Donzé).

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2 Overview of simulation methods

In the overview of the simulation methods, the objective is to find a framework
solution which is capable of handling different simulation models to study ge-
omaterials and materials in general. To perform this task, the common parts
of various models must be found by analyzing them. In this section we will
consider the Discrete Element Method [7, 10, 11, 29], the Lattice Geometri-
cal Model [17–20] and the Finite Element Method [27, 31]. The derivations
presented here serve as a background from which the common objects are
extracted in following sections and applications are presented in Sect. 6.

2.1 Discrete Element Method

DEM [7,10,11,29] was initiated by Cundall in 1979 [7]. It is a numerical model
which represents the discontinous nature of granular materials by a set of dis-
crete elements. Different kind of geometries for the discrete elements can be
used in YADE: polyhedric, ellipsoid, spherical or clusters of such elements.
However, currently only spheres, clusters of spheres and boxes (walls) were
validated while other shapes are under development and will be presented in
our future publications. Therefore, only the interaction laws for the simplest
geometry, i.e. spherical, is presented below. The proper interactions between
elements are defined to account for the mechanical properties of the medium.
Thus, the macro–mechanical response of the physical material (deformabil-
ity, strength, dilatancy, strain localization and other) is reproduced by deter-
mining the micro–properties of the material in the contact interaction forces
(see Fig. 1), i.e. normal, tangential and rolling stiffnesses, local friction and
non–dimensional plastic coefficient (these quantities are defined below). This
method provides new insight into constitutive modeling because the physical
processes which govern the constitutive behavior can be understood at the
local scale. Discrete Elements can have different geometries, but to keep a
low calculation cost, the spherical geometry is often chosen and it will be the
case here. Let two spherical discrete elements A and B, be in contact. The
radii of these elements are rA and rB. In the global set of axes, their positions
are defined by two vectors ~xA and ~xB. The interaction force vector ~F which
represents the action of element A on element B may be decomposed into a
normal and a shear vector ~F n and ~F s respectively, which may be classically
linked to relative displacements, through normal and tangential stiffnesses, kn

and ks.

~F n
i = knun~ni, (1)

∆~F s
i = −ks∆~us, (2)

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 1. Interaction between two spherical discrete elements with its normal ~Fn, shear
~F s and moment ~Melast components [4].

where un is the relative normal displacement between two elements, ~ni is the
normal contact vector, ∆~us is the incremental tangential displacement. The
shear force ~F s is obtained by summing the ∆~F s increments. The normal and
tangential stiffnesses are given by:

kn = r
Kn

AKn
B

Kn
A + Kn

B

, (3)

ks = r
Ks

AKs
B

Ks
A + Ks

B

, (4)

where Kn
A, Ks

A, Kn
B, Ks

B define the input values of normal and tangential
stiffnesses for both elements A and B of a contact, r corresponds to the mean
value of the two radii.

To reproduce the behavior of non cohesive geomaterials, a Mohr-Coulomb
rupture criterion is used:

∣

∣

∣

~F s
∣

∣

∣ ≤

∣

∣

∣

~F n
∣

∣

∣ tan µ, (5)

where µ is the local friction angle.

Note that, to overcome the simplification of the grain description when using
a spherical geometry, an additional component, which is a rolling resistance,
can be supplied at each point of contact. The major reason for introducing the
rolling resistance is because the representation of the roughness of grains is
missing in spherical DEM models. Thus, the results are in very good agreement
with experimental results, even if the numerical medium is made of a small
amount of particles [4].

YADE is a code based on the Discrete Element Method, using a force–displacement
approach, Newton’s second law of motion describes the motion of each element

4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 2. Lattice of beams for concrete consisting of aggregate, cement matrix and
interface [24]

as the sum of all forces applied on this element. The dynamic behavior of the
system is solved numerically by a time algorithm in which the velocities and
the accelerations are constant at each time step. The system evolves and an
explicit finite difference algorithm is used to reproduce this evolution. It is the
key feature of DEM, which makes it possible to follow a non–linear interaction
of a large number of particles without excessive memory requirements or the
need for an iterative procedure.

2.2 Lattice Geometrical Model

Two different types of lattice models exist. In the first type [21, 24, 28, 30]
(called lattice beam model), the material is discretized as a network of classical
two–noded Bernoulli beams transferring normal forces, shear forces and bend-
ing moments which are calculated using a conventional simple beam theory.
The heterogeneity of the material is taken into account by assigning different
strengths to beams (see Fig. 2 for the case of concrete). Fracture is simulated
by performing a linear elastic analysis up to failure under loading and then
removing a beam element that exceeds the tensile strength. The advantages of
this approach are its simplicity and a direct insight into the fracture process
at the micro–structure level. In the second type of models [8] (called particle
lattice model), the lattice struts connecting adjacent particles transmit axial
and shear forces. The struts are not removed. The shear response of struts
exhibits friction and cohesion, and the tensile and shear behavior are sensitive
to the confining pressure.

In YADE the Lattice Geometrical Model [17–20] is a discrete model which is
close to the first type model, but it consists of rods with flexible nodes and
longitudinal deformability, rotating in the form of a rigid body rotation. Thus,
shearing, bending and torsion are represented by a change of the angle between
rod elements connected by angular springs. This model is of a kinematic type.
The calculations of element displacements are carried out on the basis of the
consideration of successive geometrical changes of rods due to translation, ro-

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

i∆ ~W
i∆~R

i∆ ~W + i∆~R

−i∆ ~D i∆ ~B

i∆ ~Dikl + i∆ ~Bikb + i∆~T ikt

j∆ ~X

+

+

→

→

Fig. 3. General scheme to calculate displacements of elements in the Lattice Geo-
metrical Model (torsional component i∆~T is not shown)

tation and normal and bending deformation. Thus, the global stiffness matrix
does not need to be built and the calculation method has a purely explicit
character. In contrast to the beam model [21], torsion in three–dimensional
simulations is included as well. The material was discretized in the form of
a 3D lattice mesh using a Delaunay’s construction scheme (each Delaunay’s
edge is a lattice rod element). The elements possessed a longitudinal stiffness
described by the parameter kl (controls the changes of the element length), a
bending stiffness described by the parameter kb (controls the changes of the
angle between elements) and a torsional stiffness described by the parameter
kt (controls the changes of the torsional angle between elements).

The displacement of the center of each rod element was calculated as the
average displacement of its two end nodes from the previous iteration step:

i∆ ~X =
A∆ ~X + B∆ ~X

2
, (6)

wherein A∆ ~X and B∆ ~X – displacement of the end nodes A and B in the
rod element i, respectively. The displacement vector of each element node
was obtained by averaging the displacements of the end of elements belonging
to this node caused by translation, rotation, normal, bending and torsional
deformation (Fig. 3):

j∆ ~X =
∑

i

i∆ ~W + i∆~R
jnsum

+

∑

i

1

idinit

(

i∆ ~D ikl + i∆ ~B ikb + i∆~T ikt

)

∑

i

1

idinit

(ikl + ikb + ikt)
, (7)

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

wherein: j∆ ~X – resultant node displacement, i∆ ~W – node displacement due
to the rod translation, i∆~R – node displacement due to the rod rotation,

i∆ ~D – node displacement due to a change of the rod length (induced by kl),

i∆ ~B – node displacement due to a change of the angle between rods (induced

by kb), i∆~T – node displacement due to torsion between two neighboring rods
(induced by kt), kl – longitudinal stiffness, kb – bending stiffness, kt – torsional
stiffness, i – successive rod number connected with node j, j – node number,
jnsum – number of rods belonging to node j and idinit – initial length of rod i.

The node displacements were calculated successively during each calculation
step beginning first with the elements along the boundaries which are sub-
jected to prescribed displacements. By applying Eq. 7, a full strain equilibrium
was obtained in each node (this required about 10 iterations). The resultant
force F in a selected specimen’s cross–section A was determined with the help
of corresponding normal strain ε, shear strain γ, stiffness parameters kl, kb,
modulus of elasticity E, shear modulus G and the specimen’s cross–section A:

F = A
∑

(εklE + γkbG) , (8)

where the sum is made over all elements that intersect a selected specimen’s
cross–section and the strains ε and γ are projected on the section normal
vector. For the bending stiffness parameter kb = 0 in Eq. 7, the elements
behaved as classical bars. Each element was removed from the lattice if the
assumed local critical tensile strain εmin was exceeded. Numerical calculations
were strain controlled. For a complete description of the model see [17–20].

2.3 Coupling the Discrete Element Method with the Finite Element Method

FEM has been implemented in YADE because the analysis of large structures
with the DEM proves difficult, as the computation time increases with the
number of Discrete Elements. A number of authors have pointed out that
such a method is limited to small structures due to the computation cost of
DEM. Use of the FEM outside the area described by the DEM represents one
way of minimizing this constraint since in most cases, severe deformation phe-
nomena, such as fragmentation or particle flow, are localized. In addition, the
FEM is widely used, and an efficient mesh generation software already exists
that can dramatically reduce modeling duration, with the potential for faster
calculations than when applying a full DEM approach because various dis-
cretization sizes can then be handled. These facts naturally lead to proposing
a coupled FEM/DEM approach. Such a coupling is based on partitioning the
structure into two sub–domains: an initial FEM domain where nonlinear phe-
nomena may be neglected, and a second DEM domain where severe nonlinear
degradation phenomena may occur

7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 4. Bridging domain and bridging parameter

A coupling method based on a bridging domain (Fig. 4) with energy weighting
has been developed by Xiao and Belytschko [31]. This method proposes min-
imizing the Hamiltonian (H), which is the sum of the Hamiltonians of both
the FE and DE.

H = αHFE + βHDE with H = Ek + Ep and α + β = 1, (9)

where α and β are the weight parameter of the FEM Hamiltonian (HFE) and
the DEM Hamiltonian (HDE), respectively. Parameters α and β are defined
in Fig. 4, which presents an example of the bridging domain with four FEM
layers, and Ek and Ep are kinetic and potential energy respectively. To guar-
antee kinematic continuity, the degrees of freedom of both domains within the
interface zone must be linked. Several approaches could be considered. Xiao
and Belytschko [31] proposed directly linking the Discrete Element degrees of
freedom with Finite Element degrees of freedom using Lagrange multipliers.
Eq. 10 presents the kinematic conditions on bridging domain r, with d DE
displacements and u FE displacements:

~dr = ¯̄k~ur. (10)

The Arlequin method [12] uses displacement and strain projections over shape
functions, in assuming field continuity. This method enables a spatial relax-
ation of the kinematic conditions. With Discrete Element models, the dis-
placement and strain are not known at all points and such projections are not
simple to use. This method may be adapted to DEM models, by approximating
the displacement and deformation fields, although this would increase com-
putation time. The preferred method therefore calls for using rigid kinematic
conditions, like those in [31]. Complementary kinematic constraints must then
be added to link the DE rotations. The following equation lists the kinematic
conditions linking DE rotations ω and displacements d with FE displacements

8

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

u over bridging domain r:

~dr = ¯̄k~ur and ~ωr = ¯̄h~ur. (11)

The solution has been derived by minimizing Eq. 12, with kinematic conditions
being taken in account using Lagrange multipliers λd for displacements and
λω for rotations.

Hg = H + ~λd
(

~dr −
¯̄k~ur

)

+ ~λω
(

~ωr −
¯̄h~ur

)

. (12)

The time discretization relies upon an explicit scheme:

u(t + ∆t) = 2u(t) − u(t − ∆t) + ∆t2ü(t). (13)

Each degree of freedom value is calculated without taking coupling into ac-
count. Then a correction is applied using the Lagrange Multipliers (Eq. 12).
The difference in discretization size between FE and DE may induce wave re-
flection at the interface. This effect can be mitigated in different ways, e.g. by
damping, yet the choice of a damping coefficient is not straightforward. We
have proposed a method to attenuate the reflection by introducing a reduction
parameter for the Lagrange multiplier influence. This method leads to a tem-
poral relaxation of the kinematic constraints and is equivalent to a penalty
method with an automatic process for optimizing the penalty parameter. All
of these methods are discussed in [14].

3 Introducing the Object Oriented Architecture

The examples in the previous section show that some simulation elements (be
it spheres, FEM elements or rods) interact using physical rules that involve
calculating a force or displacement due to interaction. The interaction may
need to be detected (also over a distance), or can be pre–determined. It can
be of a different kind such as: a collision, a cohesive link or being governed
by a stiffness matrix or a non–local dependency [3, 17]. To allow co–existence
of such various methods in a single simulation framework their similarities
must be discovered and transformed to an abstract generalization. However,
differences between them must be allowed to be implemented as a particular
concrete realization of this abstraction. To solve this problem correctly, the
techniques offered by object oriented programming must be carefully used as
seen in the following section.

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 5. Unified Modelling Language — representation of class relationships.

3.1 The UML notation

The Unified Modelling Language [5] is used to represent classes and associ-
ations between them. It is a language that unifies the industry’s engineering
practices for describing object oriented designs. A small subset of UML used
in this article is shown in Fig 5, it represents classes and their relations. In
this article CapitalizedItalics are used to denote a class.

3.2 Language choice

It is well known that Object Oriented languages are the most useful if devel-
oping highly generic and library reusable code. Two languages that provide
OO programming paradigms were considered: Java and C++. Criterions used
for choosing are the speed of code execution and platform interoperability. A
small application was written which performs a Sweep and Prune [6] collision
test for DEM applications. Only small changes were needed to port collision
algorithm from one language to another. The codes were compiled with max-
imum optimization, then their speed was compared. Java was three times
slower 1 than C++. Another widely used .NET platform was not considered
because of poor platform interoperability (no support for unix, solaris, irix or
linux that usually power the supercomputers), and vendor lock–in.

3.3 Generic programming approach

One of the reasons for a code to be highly specific is the tight coupling between
the underlying data structures and algorithms operating on them. It is possible
however, using the generic programming approach [2, 15], to separate data
structures from algorithms. A good example of this is the C++ Standard
Template Library (STL) [16, 23]. The STL library provides container classes
modeling linear sequences like vector, map, list, set, etc. It also provides generic

1 see http://svn.berlios.de/viewcvs/yade/snippets/trunk/JavaVsC++

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

versions of linear sequence algorithms such as counting, sorting, copying, etc.
The containers are generic in the sense that they are independent on the
type of items they hold, eg. a float or a specific class Box (content agnostic).
Algorithms are generic in the sense that they are independent on the container
type, eg. a map or a list (container agnostic). This approach effectively makes
for example the sorting algorithm to be content agnostic.

Presented here YADE framework splits the data classes and algorithm classes
(called engines) in a similar way. Data storage classes are accompanied by
engine classes that calculate their state, their interactions or draw them on
the screen using OpenGL. Because engines are separated from data, it is easy
to mix them with another subset of engines written by different user with more
specific requirements. Whereas data classes still remain stable with consistent
interface.

Principles of Object Oriented Class Design

In [22] Robert C. Martin has described symptoms of rotten Object Oriented
design, like rigidity (software is difficult to change, because one change requires
many modifications), fragility (software easily breaks on smallest change), im-
mobility (inability to reuse software from other projects), viscosity (easy to
make small modification as hack, difficult to make it in proper way). Then
the cause for those problems was identified as constantly changing require-
ments and poor dependency management. Solutions for these problems were
presented, which are the base for OO design, and are briefly described in the
following paragraphs.

The Open Closed Principle (OCP) is that “A module should be open for ex-
tension but closed for modification”. In other words it should be possible to
change what modules do, without changing the source code of the modules.
This sounds contradictory but is possible with techniques based on abstrac-
tion: dynamic polymorphism (virtual methods, inheritance) and static poly-
morphism (templates). This way, a code that already works is not changed,
so it can’t be broken.

The Liskov Substitution Principle (LSP) “All subclasses should be substitutable
for their base classes”, means that a user of a base class should continue to
work properly if a derivative of that base class is passed to it. This is possible
when derived methods do not expect more conditions or parameters than their
base classes and as a result give no less than its base class.

The Dependency Inversion Principle (DIP) “Depend on Abstractions. Do not
depend on concretions” depicts the strategy of depending upon interfaces or
abstract functions and classes. This principle is the enabling force behind

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

component design (COM, CORBA). No dependency should target concrete
class.

The Interface Segregation Principle (ISP) “Many client specific interfaces are
better than one general purpose interface” says that instead of adding numer-
ous methods to single class it is better to dedicate one class to each client or
task.

3.4 Object Oriented Design Patterns

When following the principles described above [22] to create OO architecture,
one finds, that one repeats the same structures over and over again. Those
repeating structures of design and architecture are known as design patterns.
A design pattern is a well known good solution to a common problem. Since
many design patterns exist [2,15,22], only those of great importance for YADE
design will be briefly described.

Generalized Functors [2,15] present a powerful abstraction that allows decou-
pled inter–object communication. In brief they are any processing invocation
that C++ allows, encapsulated as a typesafe first–class object. They allow
to store processing requests as values, pass them as parameters, and invoke
them apart from their creation. Generalized functions are a much modernized
version of pointers to functions and are important part of Multimethod and
Command patterns described below.

The Command Pattern [15, 22] encloses a request for a specific action inside
an object and gives it a known public interface. Important purpose of the
command pattern is to keep the program and user interface completely sepa-
rated from the actions they initiate. In YADE abstract interface class named
Engine provides two abstract virtual methods: bool activated() and void ac-
tion(). Each plug–in that provides new algorithm inherits from it, or from its
derived classes.

Typelists [2] are a C++ tool for manipulating collection of types. They offer for
types all the fundamental operations that lists of values support. When using
traditional coding techniques, manipulating types is possible only by sheer
repetition (eg. by switch–ing dynamic cast–s). Most people don’t think it
could get any better than that. Typelists bring power from functional pro-
gramming paradigm to C++, enabling it to support new interesting idioms.
Notable examples are Visitor and Multimethods.

The Visitor Pattern [15] is a powerful – if controversial – design pattern that
changes the dependency trade–offs involved in class design. It gives surprising
flexibility in certain area: adding virtual functions to classes without recom-

12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

piling them or their clients. This flexibility comes at the expense of disabling
features that designers take for granted: adding new leaf to the class hierarchy
is not possible without recompiling the hierarchy and all its clients. Therefore
Visitor’s operational area is limited to very stable hierarchies (new data classes
are seldom added), and heavy processing needs (virtual functions are often
added). YADE is designed to have stable core and data hierarchy, while al-
lowing easy adding of new scientific algorithms. In this implementation Visitor
pattern appears as a one dimensional Multimethod (see Sect. 5.2 and Fig. 15).
In YADE all engine classes are either commands (eg. EgiConstitutiveLaw, Egi-
ConditionApplier) or multimethod dispatchers (EngineDispatcher).

The Multimethod Pattern [2] allows dispatching of a function call depending
on types of multiple objects. The standard C++ virtual function mecha-
nism allows dispatching of a call depending on the dynamic type of single

object. A universally good implementation requires language support (eg. ML
or Haskell). C++ lacks such support, so its emulation is left to library writers.
When operation on several polymorphic objects (class Shape) should exhibit
behavior varying with the dynamic type of more than one of those objects
(class Sphere or Box), the need for multimethods arises. Collision is a typi-
cal category of problems best solved with multimethods. For example differ-
ent code handles Shape collision between Sphere and Sphere, than between a
Sphere and a Box. Alexandrescu [2] has provided several solutions with vari-
ous trade–offs in speed, flexibility, and dependency management. In the YADE
design there is a need for absolute speed and absolute scalability, which comes
at a price. Each base class for multivirtual call must hold an index, which is
done by inheriting from class Indexable. This index serves as a coordinate in
multidimensional callback matrix (held by class EngineDispatcher), in which
generalized functors (class EngineFunctor) are stored. The solution proposed
by Alexandrescu was extended with recursive templates, and up to four dimen-
sions are supported. In YADE multimethods have important role for providing
abstract generalization, which is explained in Sect. 5.2 and in Fig. 16.

4 Constructing the framework

The purpose of the YADE framework is to provide stable and uniform envi-
ronment for scientists to implement computational algorithms. It allows easy
code reuse, exchange and extensibility, while also providing many common
low–level operations, through plug–ins and libraries. Given that, scientists
can now focus on their work instead of reinventing the wheel of input/output
or display. The YADE framework is divided into several layers shown in Fig. 6.
Each layer can depend on layers below it. Libraries in the lowest layer are not
related to the simulation itself, and can be used by other software.

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 6. Layered structure of YADE framework.

Class Factory (lowest layer in Fig. 6) is a C++ wrapper for dynamic linking
loader (dlopen(), etc.). It handles loading and unloading plugins given their
class name as a string, after which plug–in file on the hard drive is named.
Since it works during runtime, it is easy to switch between different concrete
implementations of currently tested class, such as: different plugins to solve or
detect body interactions, different methods of drawing graphics with OpenGL,
or saving results to xml or binary format – which comes handy when bench-
marking and testing during development. Plug–ins are inheriting from the
class Factorable.

The Serialization library supports de/serializaing data with random access to
class components during the process, easily human readable xml format and
support for creation of new formats (like txt, yaml or binary). With this library
it is recommended to inherit from class Serializable to obtain an easy to use
serialization interface. In the future the boost::serialization [1] library
will be used.

The Math library provides quaternion, vector and small matrices calculus
optimized for 3D operations.

OpenGL library provides a C++ wrapper for glut. Other libraries used in the
framework are: STL [16,23], Boost [1] and QGLViewer [9].

The generic layer in Fig. 6 represents the core of YADE and provides abstract
interfaces to all concepts of scientific simulation: engines, bodies and interac-
tions (see Sect. 5). Class World (see Sect. 5.3) stores the simulated world,
increments iterations and synchronizes threads. The abstract interfaces for
GUI and rendering are also here.

The YADE common layer in Fig. 6 contains components commonly used by

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

various simulation types (DEM, FEM, Lattice or SPH), like:

• Newton’s law or Hooke’s law,
• time integration algorithms (Leapfrog [13], Newmark, Runge–Kutta 4, etc.),
• damping methods (eg. Cundall non viscous damping [7]),
• collision detection algorithms (eg. Sweep and Prune [6] or a grid based

collision detection),
• boundary conditions (imposing translation, applying gravity, etc.),
• data classes that store information about bodies or interactions.
• Common OpenGL methods for drawing popular geometries,
• a common Multimethod interface – the sensibly expected EngineDispatchers

that can call EngineFunctors from specialized layers.

The specialized layer is based on the common layer. It contains code that
cannot be shared between different methods (see Sect. 2). Many specialized
packages can exist – implementation of three examples from Sect. 2 are ex-
plained in Sect. 6.

The top layer is a Graphical User Interface and one based on QT is currently
provided, also GTK, ncurses or even winAPI are possible as plugins. More-
over, a command line interface with python scripting language can be used to
perform computations remotely.

5 Common objects underlying scientific simulation

Consider that the simulation involves bodies between which interactions occur
(Fig 7). These interactions can be detected and processed by certain com-
putational algorithms and physical rules (which are engines in general). The
result of these algorithms can be a moment, a force, a displacement, etc. (class
BodyExternalVariables), which in general produce a response that affects body
state. All bodies, interactions and the simulation loop that processes them
(engines) are stored inside the World class.

In general three kinds of data are distinguished:

• bodies,
• interactions,
• intermediate data.

All algorithms are engines, but they have been divided to:

• Command Pattern: Engine,
• Multimethods Pattern: EngineFunctor stored inside EngineDispatcher.

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 7. Simplified schematics of simulation loop.

Fig. 8. Information about bodies stored in World class, with example derived classes.

5.1 Data classes

The objects of data classes cannot move or interact themselves, as they only
contain data. Their movement and interaction are handled by the engine
classes. The body is represented by six data classes: BodyState, BodyStateCon-
straints, BodyConstitutiveParameters, BodyShape, BodySimplifiedShape and
BodyBoundingVolume (Fig. 8). They are held inside World using boost::mul-

ti index container. The seemingly obvious notion to create a Body class that
would hold all six of them proved to be wrong, since a single body can some-
times be described by multiple instances of BodyShape (eg. a DEM cluster)
or thousands of bodies can share a single instance of BodyConstitutiveParam-
eters (eg. some are the concrete, others are the reinforcement). The purpose
of those six abstract data classes follows (see examples in Fig. 9):

BodyState (Bst) – information about a body that changes during the simu-
lation process and is different for each instance of a body in the simulation,
like position, velocity, acceleration and mass or inertia.

BodyStateConstraints (Bsc) – information about constraints imposed on
a body state. A constrained value can be eg.: kept at limiting value, deter-
mine a body deletion etc. Example constraints include: maximum strain,
crossing spatial boundary or a sliding support. Many bodies can use the

16

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 9. Examples of concrete classes that describe a body

same constraints or not use constraints at all.
BodyConstitutiveParameters (Bcp) – information about a body that

usually does not change during the simulation and is the same for many
instances of bodies. It is intended to be an information used by constitutive
laws, like stiffness or cohesion.

BodyShape (Bsh) – the idealized geometrical shape of a body that is simu-
lated: it is used to create a simplified shape, and for display.

BodySimplifiedShape (Bss) – a shape of the body used for performing the
actual simulation, may be different from idealized shape, because it is merely
its representation used for the purpose of the simulation.

BodyBoundingVolume (Bbv) – a bounding volume is used to detect po-
tential interaction between bodies, usually is built from information stored
inside simplified shape.

The interaction is represented by two data classes: InteractionState and Inter-
actionConstitutiveParameters (Fig. 10). To store them, boost::multi index

17

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 10. Description of interactions stored in World class, with examples of concrete
derived classes.

Fig. 11. Examples of concrete classes that describe an interaction

is used. They serve following purposes (see examples in Fig. 11):

InteractionState (Ist) – information about an interaction happening be-
tween bodies which changes while the interaction evolves during the simu-
lation (eg.: penetration depth, shearing force, contact points or volume of
contact V).

InteractionConstitutiveParameters (Icp) – information about an inter-
action happening between bodies which usually does not change during the
simulation, even when bodies disconnect and reconnect again (eg.: contact
stiffness).

Finally two data classes contain intermediate data, those are: BodyExternal-
Variables and OutputData (Figs. 12 and 13):

BodyExternalVariables (Bex) – this information is an intermediate stage
to calculate future values of BodyState for the next execution of simulation
loop. Usually it contains the sum of effects calculated by some physical
rules. For example a sum of forces and moments acting on a sphere is used
to change body’s position and orientation. It is discussed separately from
other BodyXxxx classes, because it does not describe bodies themselves —
just changes to them.

OutputData (Odt) – this data is used to store results that cannot be di-
rectly obtained from other data classes. Usually some Engine will interpret

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 12. The intermediate data classes stored in World, with examples of concrete
derived classes. The Engine class is shown here only for completeness and is dis-
cussed further.

Fig. 13. Abstract class BodyExternalVariables, with examples of concrete derived
classes.

necessary data and store it here, eg.: an averaged stress, a number of bodies
that fulfill some criterion, etc.

To store all data classes, the boost::multi index container is used. It allows
to cross–reference class instances and to iterate over data elements with respect
to different keys. Eg.: to iterate over all bodies involved in a selected interaction
or alternatively to iterate over all interactions in which a given body takes part
— a different view on the very same data.

5.2 Engine classes

Every operation concerning data is performed by a dedicated Engine. Creat-
ing, modifying, destroying, displaying, loading, saving, calculating, convert-
ing, interpreting — all those functions are performed by some specific Engine
class. Figures 14–16 show some example classes of two kinds: commands and
multimethods.

The Command Pattern classes (deriving from Engine) have some empty sub-
categories serving to help organize the engines derivation tree. Concrete im-
plementations of algorithms are inheriting from them:

EgiConditionApplier (Econ) – performs tasks that depend on conditions
from outside, like: applying force as a boundary condition of the simulation
or imposing a kinematic translation according to data read from file on hard
disk.

EgiBoundingVolumeCollider (Ebvc) – detects collisions using various al-

19

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 14. Class Engine and example algorithms inheriting from it

gorithms, like Sweep and Prune [6],
EgiConstitutiveLaw (Elaw) – the constitutive law for any given calcula-

tion method (compare with Sect. 2), eg. ElawElasticContact used for DEM
(Eq. 1–2) or ElawLattice for LGM (Eq. 7).

EgiTimeStepper (Etim) – methods for choosing the optimal time step if
the simulation is dynamic, it can be based on maximum velocity of bodies,
their mass and stiffnes or other criteria.

EgiDataProcessor (Edat) – methods for calculating any results which are
to be stored in OutputData.

Adding more Engine subcategories is implied by design flexibility and will
happen during the framework evolution.

The Multimethod Pattern dispatchers (class EngineDispatcher) perform tasks
which are specific to some kind (or kinds) of data. Elements of data are
distinguished by their Indexable class index. This provides an emulation of
(multi)virtual functions for any given data class.

Addition of new plug–ins operating on data classes is possible by writing only
two files: .hpp and .cpp with short code inside. A convention for naming those

Table 1
Adaptation of naming syntax of C++ member virtual functions for naming of Mul-
timethod EngineFunctor classes

dimension C++ naming syntax EngineFunctor , (F •)

1 Class::function() Ef1 Class function()

2 Class1::Class2::function()∗ Ef2 Class1 Class2 function()

...

∗this name is not allowed as a C++ language construct

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 15. One dimensional EngineDispatcher — two example calls A and B are
correctly dispatched to perform OpenGL draw of a BodyShape.

plug–ins had to be assumed. Table 1 presents how the C++ member functions
naming syntax was adapted for naming of multimethod constructs which are
not supported by the C++ language itself.

Two classes play an important role here:

EngineDispatcher (Ed •) – the dispatcher is implemented in YADE com-
mon layer for all 1D and 2D variants currently used in specialized layers.
The • indicates the number of dimensions, if necessary a higher number of
dimensions is possible.

EngineFunctor (Ef •) – this is a parent class for concrete code used in
multimethod pattern, the • indicates the number of dimensions.

With all data classes there are 100 two–dimensional EngineFunctor families
possible to create. Categorizing them into few topics similarly as in command
pattern was not successful yet. New EngineFunctor -s are added to the code
assuming that in the future some categorization will become possible.

Figure 15 shows two example calls in one dimensional multimethod (a visitor)
for drawing a BodyShape. Different code is executed for drawing a BshMesh
and a BshBox. Few more examples are listed below:

Ef1 BbvAxisAlignedBoundingBox glDraw,

Ef1 BbvSphere glDraw – methods that draw OpenGL bounding volumes
depending on the type of BodyBoundingVolume. An attempt to unify Bb-
vSphere with BshSphere (since both are spheres) is a subject for further
research, eg. by multiple inheritance from single class Sphere.

Ef1 BstParticle rungeKutta4Integrator,

Ef1 BstRigidBody rungeKutt4aIntegrator,

Ef1 BstParticle leapFrogIntegrator,

Ef1 BstRigidBody leapFrogIntegrator – example time integration meth-
ods: Leapfrog [13] and Runge Kutta 4 implemented for position/velocity

21

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 16. Two dimensional EngineDispatcher — two example calls A and B are
correctly dispatched to create collision data (in this example stored inside class
IstSpheresContact – see Fig. 11) between two BodySimplifiedShape-s. Symmetry is
automatically detected (gray color).

(class BstParticle) and orientation/angular velocity (class BstRigidBody).

Figure 16 shows two example calls in a two dimensional multimethod for
processing collision between two BodyShape-s. An InteractionState data class
(named IstSpheresContact, Fig. 11) is created. The code to create it differs de-
pending on what bodies collide, a BssSphere with a BssBox or a BssEllipsoid.
Few more examples follow:

Ef2 BcpElasticMicro BcpElasticMicro makeIcpElasticMicro

Ef2 BcpMohrCoulomb BcpMohrColumb makeIcpMohrCoulomb –
create the InteractionConstitutiveParameters contact information class IcpElas-
ticMicro (or IcpMohrCoulomb), from data stored in two colliding bodies
that use BcpElasticMicro (or BcpMohrCoulomb) constitutive parameters
(Eq. 3–4). In the case when colliding bodies use BcpElasticMicro and Bcp-
MohrCoulomb the multimethod dispatcher behaves in the same way as the
C++ virtual function mechanism – it falls back to the common base class,
in this case it is BcpElasticMicro (see inheritance in Fig. 9).

Ef2 BexForce BstParticle cundallNonViscousDamping,

Ef2 BexMoment BstRigidBody cundallNonViscousDamping – im-
plementation of Cundall non viscous damping [7] for a force and a moment
inflicted on a particle or a rigid body.

Ef2 BssBox BbvAxisAlignedBoundingBox makeBbv,

Ef2 BssSphere BbvKdop makeBbv – functions to create a BoundingVol-
ume (Bbv) from a given BodySimplifiedShape (Bss) depending on which
kind of Bbv it is required, eg. a BbvAxisAlignedBoundingBox or BbvKdop
(compare with Fig. 9).

Thanks to multimethods each algorithm resides in a separate plug–in class,
which increases modularity. This solution allows easy modification, debugging
and exchanging algorithms when needed. The drawback are long class names,

22

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

which seems to be unavoidable when a naming clarity is necessary.

5.3 Simulation overview

The class World is a top–level object representing the simulated world. It
contains both data and the engines operating on it. The engines are executed
by calling sequentially the activated() method for each Engine, and if the
answer was positive, then calling action(). It is up to the user to specify
what engines are inside the simulation loop. Usually this involves detecting
interactions, solving them, applying solution results to bodies and saving some
data (eg. position, velocity, forces) to disk.

If a graphical interface is used, then OpenGL display is performed by a sepa-
rate thread, which is synchronized with the simulation loop.

6 Application of the YADE framework

YADE was designed so that new simulation models can be added easily and
already defined algorithms reused. Examples in the subsections below describe
what had to be implemented in specialized layers to perform simulation with
DEM, FEM and LGM.

6.1 Discrete Element Method

To test the flexibility of the YADE framework, the SDEC [10, 11] algorithms
were first implemented. In DEM the contact is described by the radii of two
spheres: r1, r2, the penetration depth d and the normal vector to the con-
tact plane ~n. To allow interaction between the sphere and a non–spherical
object, an imaginary mirror sphere of double radius is created (as proposed
by Donzé [11]). Following this definition a new class IstSpheresContact was
added (see Fig. 11). Then two different EngineFunctor -s with algorithms to
build this contact description were added to EngineDispatcher : one to build
the contact between two spheres and the other to build the contact between
a sphere and a box. This contact description can be used only if at least one
object in the contact is a sphere.

A class describing InteractionConstitutiveParameters was added with the name
IcpElasticMicro which contains information about the contact: normal stiff-
ness, tangential stiffness and rolling stiffness (see Fig. 11). When a contact
occurs, this information is calculated by a dedicated EngineFunctor which

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

calculates macro–micro relationship according to the formula given by Donzé
in [11].

Finally a simulation loop for DEM calculation was built:

• Calculating time step with elastic criterion (the EtimElasticCriterion class),
• building a BoundingVolume (Fig. 8) using an EngineDispatcher with eg.

Ef2 BssSphere BbvAxisAlignedBoundingBox makeBbv,
• performing collision detection with a Sweep and Prune collider [6] using the

previously calculated bounding volumes (the EbvcSweepAndPrune is shown
in Fig. 14),

• building InteractionState and InteractionConstitutiveParameters (in this
case the classes IstSpheresContact and IcpElasticMicro shown in Fig. 11)
using a 2D EngineDispatcher as shown in Fig. 16,

• solving interactions with DEM formulation with the class ElawElasticCon-
tact which contains Eq. 1–2,

• applying the calculated response (classes BexForce and BexMoment) to the
bodies by calculating their new acceleration and angular acceleration,

• and performing the time integration of bodies according to their new accel-
eration (eg. using a leapfrog or Runge–Kutta 4 integration method).

This loop directly implements DEM and is repeated until the calculation is
terminated.

As an example, the behavior of the “Labenne” sand during a triaxial test was
modeled using the DEM formulation implemented in YADE [4]. The triaxial
test was modeled by confining a dense discrete element medium within six
smooth walls. The consolidation took place under gravity–free conditions, so
that the 10 000 discrete elements arrangement was considered to be almost
isotropic Fig. 17. The top and bottom boundaries moved vertically as load-
ing platens, either under force–controlled condition or under strain–controlled
conditions. Lateral boundaries simulate the confining pressure experienced by
the sample sides. In the numerical simulation, the sample is loaded in a strain–
controlled mode by specifying the velocities of the top and the bottom walls.

The five main input micro–parameters in the numerical model are: the normal
contact stiffness, tangential contact stiffness, rolling contact stiffness, local fric-
tion and a dimensionless coefficient which controls the plastic limit of rolling.
For a confining pressure of 100 kPa, these local parameters were chosen to
fit the stress–strain and the volumetric curves. Laboratory tests are available
under different confining pressures (100, 200 and 300 kPa). Once calibrated for
100 kPa, the numerical results obtained by the model for confining pressures
of 200 kPa and 300 kPa, are shown on Fig. 18. The results indicate that the
non linear stress–strain behavior of sand including dilatancy is covered by the
numerical model. This shows that the model can be used as a predictive tool.

24

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(a) (b)

Fig. 17. On the left, the numerical sample is presented and on the right, the normal
force distribution between the discrete elements is plotted [4]

Fig. 18. Comparison between the DEM predicted stress q and volumetric strain εv

plotted versus axial strain and the experimental data for confining pressures of 200
kPa and 300 kPa [4]

25

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(a) (b)

10

20

30

40

50

60

70

80

90

2 3 4 8 16

S
ie

ve
 p

as
si

ng
 [m

as
s

-
%

]

Sieve size [mm]

(c)

Fig. 19. A 10 × 10 × 10 cm3 concrete specimen subject to uniaxial extension with
average element length of 3 mm and 8 000 000 elements [20]: (a) aggregate density
- 25%; (b) aggregate density - 50%; (c) aggregate sieve curves with d50 = 12 mm
(maximum and minimum curve for generated samples)

6.2 Lattice Geometrical Model

Another model implemented in YADE is the Lattice Geometrical Model [17–
20]. The rod is a body in YADE which has two nodes (class BstNode), where
each node is shared between multiple rods. The necessary data classes were
added for a node, a rod and an angular spring between two rods to store their
respective information. Then a new engine ElawLattice was written to perform
the computations [17]. Finally a simulation loop was built:

• Building a bounding volume for the whole lattice specimen,
• applying some boundary conditions like displacement of selected nodes (us-

ing an EgiConditionApplier displacement engine),
• calculating interactions between rods, namely the current angle and torsion

of angular springs that connect them,
• solving interactions of lattice rods (the ElawLattice class), by calculating a

BexDisplacement for each node in the model,
• removing the rods according to a fracture criterion (using a common BodyS-

tateConstraints),
• and finally applying the calculated response (stored in BodyExternalVari-

ables) displacement to the nodes (notably skipping Newton’s Law and time
integration),

This loop shows similarities with the previous loop for DEM. The most impor-
tant difference is that it does not use a time integration. This is because the
lattice model is geometrical, has a quasi static nature and does not depend on
time.

Figures 19 and 20 show the calculated size effect in uniaxial extension test of
two 3D cubic specimens: 5× 5× 5 cm3 and 10× 10× 10 cm3 (with an average
element length of 3 mm) [20]. The specimens had 1 000 000 (smaller) and

26

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 0

 0.5

 1

 1.5

 2

 0 0.0005 0.001 0.0015 0.002 0.0025

N
or

m
al

iz
ed

 s
tr

es
s

σ 2
2

[-
]

Strain ε22 [-]

large 50%
small 50%

(b)

 0

 0.5

 1

 1.5

 2

 0 0.0005 0.001 0.0015 0.002 0.0025

N
or

m
al

iz
ed

 s
tr

es
s

σ 2
2

[-
]

Strain ε22 [-]

large 25%
small 25%

(a)

Fig. 20. Size effect obtained for 3D specimens (5×5×5 cm3 and 10×10×10 cm3 with
average element length of 3 mm) [20]: (a) aggregate density - 25%; (b) aggregate -
50% (σ22 – vertical normal stress, ε22 – vertical normal strain)

8 000 000 elements (larger, shown in Fig. 19). The rods were non–uniformly
distributed, and concrete was represented as a three–phase material with ag-
gregate sieve curve presented in Fig 19c. The calculations of bigger specimen
took 1 day using PC 3.6 GHz. Figure 20 compares the obtained stress–strain
curves using 50% (Fig. 20a) and 25% (Fig. 20b) aggregate content. The larger
the specimen, the smaller the strength and the larger the brittleness. The
obtained outcome of the size effect for uniaxial tension is qualitatively in
agreement with experiments performed by van Vliet [25].

6.3 Coupling the Discrete Element Method with the Finite Element Method

In the current FEM implementation each node is a BstNode and each FEM
element is a multi–body interaction. One might argue that a FEM element
is really an interaction, because it contains a Ke stiffness matrix just like a
spring interaction or elastic contact interaction contain a stiffness property
(compare with Fig. 11). An EngineFunctor was added to calculate the Ke

stiffness matrix of element, which is done once at start of the simulation.
An ElawFem engine was written (see Fig. 14) with classical explicit FEM
formulation. Finally a simulation loop for FEM calculation was built:

• Building a bounding volume analogously as in Fig. 16 for the whole FEM
entity,

• calculation of the response on individual nodes using an explicit FEM for-
mulation by the ElawFem class, which produces a BexForce for each body,
but does not apply the force yet,

• add gravity force to each BexForce using a gravity engine,
• applying boundary conditions such as translating selected nodes by a certain

distance according to some velocity, or adding some other external force,
• using calculated forces to calculate acceleration, just like in the DEM sim-

27

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 21. Combined FEM/DEM model, and a side view of the DEM part (from [27])

ulation loop,
• and performing the time integration of bodies according to their new accel-

eration (eg. using a leapfrog or Runge–Kutta 4 integration method).

The loop repeats until terminated. It should be noted that with the modular
architecture of YADE, the same numerical integration scheme can be used in
both DEM and FEM or it can be replaced with another numerical scheme for
example, substituting a Newmark method for the Runge–Kutta 4 integration.

The example application consists of a rock impact on a concrete slab. A cubic
rock block with a 30 cm side length impacts a concrete slab 2.5 m long,
2.0 m wide and 0.28 m thick. The velocity of the impacting object was set
at 40 m/s. The two opposite sides were locked in the direction perpendicular
to the medium slab plane. The impact simulations were carried out using two
different models: one using the DEM/FEM coupling and another using only
the DEM formulation. In the DEM/FEM model, the slab was first divided into
two parts: the center modeled by Discrete Elements, and the sides modeled
by Finite Elements with three bridging domain layers (see Fig. 21).

Figure 22 presents the comparison of displacement between the model us-
ing only a DEM formulation (solid line) and the coupled DEM/FEM model
(dashed line) at two different points. The maximum displacement predictions
of both models are similar and, on the whole, the time response for the two
models is the same. This combined FEM/DEM model is still under develop-
ment [27] and it needs more work to be validated in a general framework.
However, one major advantage of this coupled model is its efficiency; for this
example, the coupled FEM/DEM model ran ten times faster than the full
DEM model.

28

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(a) (b)

Fig. 22. Displacement vs. time, (a) close to impacted area; (b) at greater distance
from impacted area (from [27])

7 Conclusions

The task to find the underlying abstractions of various types of numerical sim-
ulations (DEM, FEM and LGM) has been completed and explained with ex-
amples. This allows us to implement a flexible software using Object Oriented
techniques such as template metaprogramming, inheritance, encapsulation
and OO design patterns. Implementation of such software performed by au-
thors is open–source and can be downloaded from the http://yade.wikia.com
webpage.

The implementation of DEM, FEM, LGM and possibly other models in a sin-
gle framework makes the task of coupling them with each other relatively sim-
ple. Such a single framework with different models simplifies code exchanges.
Since it is an open–source code, the improvements are as simple as sending
a patch to the authors, then all the users can benefit from it, whereas com-
mercial frameworks (like Abaqus, Dyna, Adina, Pfc3d) are closed source. The
YADE framework is flexible, which gives more power to the user and minimizes
obstacles when implementing a new kind of model.

The major idea behind DEM and LGM is to circumvent the complexity of a
large assembly by considering instead many simple elements, the behavior of
which can be simulated accurately. Because of this approach, DEM and LGM
require careful calibration and validation with real experiments in order to
produce trustworthy results. This research advances over the work done by
Peters [26] by adding FEM and LGM to the same Object Oriented simulation
framework.

29

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

References

[1] D. Abrahams, J. Garland, B. Dawes, C. Daniel, D. Gregor, J. Maurer,
J. Maddock and others, The Boost Library, Boost Consulting, 2007,
http://www.boost.org

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and Design
Patterns Applied, 2000, Addison-Wesley

[3] Z. P. Bazant & M. Jirasek, Nonlocal integral formulations of plasticity and
damage: survey of progress, 2002, Journal for Engineering Mechanics, 1119–
1149, 128, 11

[4] N. Belheine, J.-P. Plassiard, F.-V. Donzé, F. Darve and A. Seridi Numerical
Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling, 2007,
Computers and Geotechnics, DOI 10.1016/j.compgeo.2008.02.003, 2008.

[5] R. Burkhardt, UML — Unified Modelling Language, 1997, Addison–Wesley

[6] J. D. Cohen, M. C. Lin, D. Manocha and M. K. Ponamgi, I-COLLIDE: An
Interactive and Exact Collision Detection System for Large-Scale Environments,
1995, Symposium on Interactive 3D Graphics, 189–196, 218

[7] P.A. Cundall & O.D. Strack, A discrete numerical model for granular assemblies,
1979, Geotechnique, 47–65, 29

[8] G. Cusatis, Z.P. Bazant and L. Cedolin, Confinement–shear lattice CSL model
for fracture propagation in concrete 2005, Comput. Methods Appl. Mech.
Engrg, 192(52), 7172–7171

[9] G. Debunne, The QGLViewer Library, http://artis.imag.fr/Members/Gill
es.Debunne/QGLViewer/

[10] F. Donzé & S.A. Magnier, Formulation of a three–dimensional numerical model
of brittle behavior, 1995, Geophys. J. Int., 790–802, 122

[11] F. Donzé, S.A. Magnier, L. Daudeville and C. Mariotti, Numerical study
of compressive behaviour of concrete at high strain rates, 1999, Journal for
Engineering Mechanics , 1154–1163

[12] H. Ben Dhia, G. Rateau, 2005, The Arlequin method as a flexible engineering
design tool, Int. J. Numer. Meth. Engng, 62, 1442–1462

[13] D. Fincham, Leapfrog rotational algorithm, 1992, Molecular Simulations, 1165–
1170, 9

[14] E. Frangin, P. Marin, L. Daudeville, 2006, On the use of combined finite/discrete
element method for impacted concrete structures, J. Phys. IV France 134, 461–
466.

[15] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object–Oriented Software, 1995, Addison-Wesley, ISBN: 0201633612

30

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[16] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2000,
Addison-Wesley

[17] J. Kozicki, Application of discrete models to describe the fracture process in
brittle materials. 2007, PhD thesis, Gdańsk University of Technology

[18] J. Kozicki & J. Tejchman, 2D Lattice Model for Fracture in Brittle Materials,
2006, Archives of Hydro–Engineering and Environmental Mechanics, 71–88, 53,
2

[19] J. Kozicki & J. Tejchman, Effect of aggregate structure on fracture process in
concrete using 2D lattice model, 2007, Archives of Mechanics, 365–384, 59, 4–5

[20] J. Kozicki & J. Tejchman, Modelling of fracture process in concrete using a novel
lattice model, 2008, Granular Matter, DOI 10.1007/s10035-008-0104-4, (in
print)

[21] G. Lilliu & J.G.M. van Mier, 3D lattice type fracture model for concrete, 2003,
Engineering Fracture Mechanics, 70, 927–941

[22] R. C. Martin, Design Principles and Design Patterns, 2000, http://www.object
mentor.com/resources/articles/Principles and Patterns.pdf

[23] S. Meyers, Effective STL, 2005, Addison-Wesley

[24] J.G.M. van Mier, E. Schlangen and A. Vervuurt, Lattice type fracture models
for concrete, 1995, Continuum Models for Materials with Microstructure, H.B.
Mühlhaus, ed., John Wiley & Sons, 341–377

[25] M.R.A. van Vliet, Size effect in tensile fracture of concrete and rock, 2000, PhD.
Thesis

[26] B. Peters & A. Džiugys, Numerical simulation of the motion of granular
material using object–oriented techniques, 2002, Computer methods in applied
mechanics and engineering, 191, 1983–2007

[27] J. Rousseau, E. Frangin, P. Marin and L. Daudeville 2008, Discrete Element
modelling of concrete structures and coupling with a Finite Element model,
Computer and Concrete, (in print)

[28] E. Schlangen & E.J. Garboczi, Fracture simulations of concrete using lattice
models: computational aspects, 1997, Engineering Fracture Mechanics, 57, 319–
332

[29] C. Thornton & L. Zhang, A DEM comparison of different shear testing devices
(invited lecture). 2001, Powders and Grains conference, Kishino (ed.)

[30] A. Vervuurt, J.G.M. van Mier and E. Schlangen, Lattice model for
analyzing steel–concrete interactions 1994, Computer Methods and Advances
in Geomechanics, Siriwardane and Zaman, eds., Balkema, Rotterdam, 713–718

[31] S.P. Xiao, T. Belytschko, 2004, A bridging domain method for coupling continua
with molecular dynamics, Computer Methods Appl. Mech. Engrg. 193 1645–
1669.

31

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

