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Abstract. We prove a Wiener-Wintner ergodic type theorem for a Markov

representation S = {Sg : g ∈ G} of a right amenable semitopological semi-

group G. We assume that S is mean ergodic as a semigroup of linear Markov
operators acting on (C(K), ∥ · ∥sup), where K is a fixed Hausdorff, compact

space. The main result of the paper is necessary and sufficient conditions for

mean ergodicity of a distorted semigroup {χ(g)Sg : g ∈ G}, where χ is a semi-
group character. Such conditions were obtained before under the additional

assumption that S is uniquely ergodic.

1. Introduction

The paper contributes towards a recently published paper [10] due to M. Schreiber.
To avoid redundancy and keep the format of this note appropriately compact we
generally follow definitions and notation from [10]. However, for the convenience
of the reader we give a brief summary of the topic we deal with. Given a compact
Hausdorff space K and the complex Banach lattice C(K) of all continuous complex
valued functions on K, a linear contraction operator S : C(K) → C(K) is called
(strongly) mean ergodic if the sequence of its Cesàro means 1

n

∑n
j=1 S

jf converges

uniformly on K (i.e. in the sup norm ∥ · ∥) to Qf . It is well known that the limit
operator Q is a linear projection on the manifold Fix(S) = {f ∈ C(K) : Sf = f} of
S-invariant functions. The characterization of mean ergodicity are today a classical
part of operator ergodic theory and can be found in most monographs (cf. [4], pp.
138-139, [5], [8], pp. 72-81).

Let us recall that a linear operator S : C(K) → C(K) is called Markov if Sf ≥ 0
for all (real valued) nonnegative f ∈ C(K)+ and S1 = 1. Clearly, any Markov
operator has norm 1, in particular it is a contraction. Given a semitopological
semigroup G, a (bounded) representation of G on C(K) is the semigroup of op-
erators S = {Sg : g ∈ G} such that Sg1g2 = Sg2Sg1 and G ∋ g → Sgf ∈ C(K)
is norm continuous for every f ∈ C(K) and supg∈G ∥Sg∥ < ∞. If all Sg are
Markovian, then the representation is called Markovian. A (complex) function
χ : G → {z ∈ C : |z| = 1} = K is called a semigroup character if it is continuous
and χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G. A semitopological semigroup G is
called right amenable if the Banach lattice (Cb(G), ∥ · ∥sup) has a right invariant
mean (i.e. there exists a positive linear functional m on Cb(G) such that ⟨1,m⟩ = 1,
and ⟨f,m⟩ = ⟨f(·g),m⟩ for all g ∈ G and all f ∈ Cb(G); cf. [3], [7]). In this paper
we shall assume that considered semitopological semigroups G are right amenable.
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Extending the notion of Cesaro averages (cf. [2], [5], [6]) we say that a net (AS
α)α

of contraction operators on C(K) is strong right S-ergodic if AS
α ∈ convSs.o.t

(the
closure is taken with repsect to the strong operator topology) and limα ∥AS

αf −
AS

αSgf∥sup = 0 for all g ∈ G and f ∈ C(K). It is known (cf. [11], Proposition
1.3 and Theorem 1.4) that as long as the semigroup S is right amenable then
its bounded representations admit strong right ergodic nets. The semigroup S is

called mean ergodic if convSs.o.t.
contains a (Markovian S-absorbing projection)

zero element Q (cf. [5], [8], pp. 80-81). We denote Fix(S) = {f ∈ C(K) : Sgf = f
for all g ∈ G} and similarly Fix(S ′) = {ν ∈ C(K)′ : S′

gν = ν for all g ∈ G}. If
for every non-zero ν ∈ Fix(S ′) there exists f ∈ Fix(S) such that ⟨f, ν⟩ ≠ 0 then we
say that Fix(S) separates Fix(S ′). Let us recall a characterization of strong mean
ergodicity for contraction (linear) semigroups (cf. [11] Theorem 1.7 and Corollary
1.8).

Proposition 1.1. Let G be represented on C(K) by a right amenable semigroup
of contractions S = {Sg : g ∈ G}. Then the following conditions are equivalent:

(1) S is mean ergodic with mean ergodic projection P ,
(2) Fix(S) separates Fix(S ′),

(3) C(K) = Fix(S)⊕ lin rg(I − S),
(4) AS

αf converges strongly (equivalently: weakly) to Qf for some/every strong
right S-ergodic net AS

α and all f ∈ C(K).

Let us return to the classical situation, when G = {0, 1, . . .} is the semigroup of
nonnegative integers and S : C(K) → C(K) is a Markov operator. If S is mean
ergodic the following natural question arises (see [9]):

Do the modified averages
1

N

N−1∑
n=0

e2πitkSkf(x) converge uniformly on K?

The answer was not immediate. The above problem was an inspiration for a new
research topic (cf. [1], [9], [13]), the so-called Wiener-Wintner ergodic theorems. To
be precise, let us emphasize that its roots lay in the much earlier paper [14] due to
Wiener and Wintner. The question was originally raised in the context of measure
preserving ergodic transformations. Recent works in the area deal with general
semigroups and their representations. The weights e2πitk, where t ∈ R, are replaced
by abstract characters. Very recently further generalizations (i.e. polynomial or
multiple extensions) of the Wiener-Wintner theorem are intensively studied with
several problems remaining open.

Given a semigroup character χ : G → K let χS denote the semigroup {χ(g)Sg :
g ∈ G}. We repeat the question whether mean ergodicity of S is preserved when we
pass to the distorted semigroup χS (it is originally addressed in recent papers [10]
and [11]). Let us emphasize that if G is right amenable, then there exist strong right

χS-ergodic nets, as naturally χS is a bounded representation of G. In particular,
the question on mean ergodicity of χS is well posed. Clearly, these semigroups are
not Markovian in general.

A Markovian semigroup S is called uniquely ergodic if dim(Fix(S ′)) = 1 (c.f.
[2]). In this case there exists a unique probability measure µ ∈ C(K)′ such that
S′
gµ = µ for all g ∈ G. Clearly unique ergodicity implies (cf. [10] Proposition

2.2 and [2]) that S is mean ergodic and Fix(S) = C1. Even for a Markovian

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


On Wiener-Wintner ergodic theorem 3

representation S which is uniquely ergodic, it may happen that for some characters
χ the semigroups χS are not mean ergodic (cf. [9], [10], [13]). On the other hand, a
necessary and sufficient condition guaranteeing mean ergodicity of χS is formulated
in [10] in terms of yet another semigroup χS2.

It is well known that the domain of any Markov operator S may be extended by
(Sg(x) =

∫
g(y)S′δx(dy)) to all bounded and Borel measurable functions. If µ is

an S′-invariant probability, then this canonical extension appears to be a positive
linear contraction once acting on L2(µ). Following [10] let S2 denote the positive
semigroup of linear contractions Sg which are extended to L2(µ). Similarly χS2

stands for the semigroup {χ(g)Sg : g ∈ G}. If we deal with several different S-
invariant measures µ, then we distinguish these semigroups by writing S2,µ and

χS2,µ respectively. Clearly they are all contraction semigroups on L2(µ).
By P (K) we denote the convex and weakly∗ compact set of all probability (reg-

ular, Borel) measures on K. We set PS = {µ ∈ P (K) : S′
gµ = µ for all g ∈ G}.

Clearly this set in nonempty whenever there exists at least one right ergodic net
(AS

α)α. In fact, any weak∗ cluster point of a right ergodic net (AS
α)

′µ, where
µ ∈ P (K), is S ′

g-invariant (for all g ∈ G). Applying the classical Hahn-Banach
separation theorem and assuming existence of right invariant nets we can prove
(using a similar trick) that S ′-invariant measures separate S-invariant functions.
Moreover PS is weakly∗ compact. By the Krein-Milman theorem PS is the weak∗

closure of the convex hull of exPS , the set of extreme invariant measures.
In the sequel we will need a few more basic facts on the ergodic structure of

Markov semigroups (cf. [2], or in a case of a single Markov operator the reader is
referred to [12], Theorems 1.3, 1.7, and Corollary 2.3). As mentioned, the convex
set PS of S-invariant probability measures is nonempty and weak∗ compact as
long as we deal with right amenable semigroups. For every µ ∈ PS its topological
support supp(µ) is an invariant set (i.e. it is closed and S′

gδx(supp(µ)) = 1 for
all x ∈ supp(µ) and all g ∈ G). If µ ∈ exPS , then every S-invariant function
f ∈ Fix(S) is constant of supp(µ). In fact, it may be easily proved (assume for a
while that f is real valued) that for every α ∈ R characteristic functions 1{f≤α},
1{f>α} ∈ Fix(S2,µ). It follows that µ(· ∩ {f ≤ α}), µ(· ∩ {f > α}) ∈ Fix(S ′).
Clearly µ = µ(·∩{f ≤ α})+µ(·∩{f > α}) for every α ∈ R. Hence µ({f ≤ α}) = 1
or 0 as µ is extremal. We obtain f = const on supp(µ) as f is continuous. In order
to end consider separately real and imaginary parts of f .

Now let us recall from the recent paper [10] the following characterization of
mean ergodicity of distorted semigroups χS in the case when the leading Markov
semigroup S is uniquely ergodic.

Theorem 1.2 (M. Schreiber). Let S = {Sg : g ∈ G} be a representation of a right
amenable semigroup G as Markov operators on C(K) and assume that S is uniquely
ergodic with invariant probability measure µ. Then for a continuous character χ on
G the following conditions are equivalent:

(1) Fix(χS2) ⊆ Fix(χS),
(2) χS is mean ergodic with mean ergodic projection Pχ,
(3) Fix(χS) separates Fix(χS ′),

(3) C(K) = Fix(χS)⊕ lin rg(I − χS),
(4) AχS

α f converges strongly (equivalently weakly) for some/every strong right

χS-ergodic net AχS
α and all f ∈ C(K).
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4 Bartoszek & Śpiewak

2. Result

In this section we generalize the above result and obtain the version of the
Wiener-Wintner ergodic theorem for general Markov semigroups.

Theorem 2.1. Let S = {Sg : g ∈ G} be a representation of a right amenable
semigroup G as Markov operators on C(K) .Then for every continuous character
χ on G the following conditions are equivalent:

(1) Fix(χS)
L2(µ)

= Fix(χS2,µ) for every µ ∈ PS ,
(2) χS is mean ergodic with mean ergodic projection Qχ,
(3) Fix(χS) separates Fix(χS ′),

(4) C(K) = Fix(χS)⊕ lin rg(I − χS),
(5) AχS

α f converges strongly (equivalently weakly) to χQ for some/every strong

right χS-ergodic net AχS
α and all f ∈ C(K).

Proof: It follows from the general abstract operator ergodic theorem (see Propo-
sition 1.1) that it is sufficient to prove equivalence of (1) and (3).

(1) ⇒ (3). Let ν ∈ Fix(χS ′) be nonzero (if Fix(χS ′) = {0}, then obviously
Fix(χS) = {0} and (3) is trivially satisfied). We have χS

′
gν = ν or equivalently

S′
gν = χ(g)ν for all g ∈ G. Since Sg are positive linear contractions on the (complex)

Banach lattice C(K)′ = M(K) of regular finite (complex) measures on K it follows

that S′
g|ν| ≥ |S′

gν| = |χ(g)ν| = |ν|, where | · | denotes the lattice modulus in
M(K). Hence S′

g|ν| = |ν| as ∥S′
g∥ = 1. Without loss of generality we may assume

that |ν| ∈ PS . Clearly ν = h|ν| for some modulus 1 function h. Now following
arguments used in the proof of Lemma 2.5 in [10] we find that h ∈ Fix(χS2,|ν|)
(unique ergodicity is not necessary here). By (1) we find a sequence hn ∈ Fix(χS)
such that ∥hn − h∥L2(|ν|) → 0. Now ⟨hn, ν⟩ =

∫
hnhd|ν| →

∫
hhd|ν| = 1. Hence

⟨hn, ν⟩ ≠ 0 for some n. It follows that Fix(χS) separates Fix(χS ′).
(3) ⇒ (1). Suppose that there exists µ ∈ PS such that (1) fails. Then there

exists nonzero f ∈ Fix(χS2,µ) such that f ⊥ Fix(χS) in L2(µ). Applying once

again Lemma 2.5 from [10] we have fµ ∈ Fix(χS ′). By (3) there exists q ∈ Fix(χS)
such that 0 ̸= ⟨q, fµ⟩ =

∫
K
qfdµ = ⟨q, f⟩L2(µ), a contradiction.

■
If S is uniquely ergodic then by Lemma 2.6 in [10] dim(Fix(χS)) ≤ 1 in L2(µ),

and therefore the closure operation in condition (1) is redundant. Now we extend
Theorem 2.7 from [10] (simultaneously giving a more elementary proof).

Theorem 2.2. Let S = {Sg : g ∈ G} be a representation of a right amenable semi-
group G as Markov operators on C(K). If S is mean ergodic with finite dimensional
ergodic projection Q then for any continuous character χ on G the following con-
ditions are equivalent:

(1) Fix(χS) = Fix(χS2,µ) for every µ ∈ PS ,
(2) χS is mean ergodic with mean ergodic projection Qχ,
(3) Fix(χS) separates Fix(χS ′),

(4) C(K) = Fix(χS)⊕ lin rg(I − χS),
(5) AχS

α f converges strongly (equivalently weakly) to Qχ for some/every strong

right χS-ergodic net AχS
α and all f ∈ C(K).
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Proof: Clearly condition (1) here implies condition (1) in Theorem 2.1. Hence
it is sufficient to prove (3) → (1). For this we will show that Fix(χS) is finite
dimensional, and next we again use Theorem 2.1.

Given a character χ on G we shall prove that dimFix(χS) < ∞ in L2(µ) for
every µ ∈ PS . By the mean ergodicity assumption Fix(S) separates Fix(S ′). It
follows that dimFix(S ′) < ∞. Mean ergodicity of S also implies that distinct
extremal invariant probabilities µ1, µ2 ∈ exPS have disjoint (topological) supports.
Indeed, let us take f ∈ Fix(S) such that ⟨f, µ1⟩ ̸= ⟨f, µ2⟩. This function f is
constant both on supp(µ1) and supp(µ2). Hence supp(µ1)∩supp(µ2) = ∅. It follows
that (topological) supports of extremal invariant probabilities are closed, pairwise
disjoint invariant sets (even minimal). Thus exPS is a linearly independent family,
and by our assumption there are finitely many of them, i.e. exPS = {µ1, µ2, . . . , µk}
for some natural k. Let CS be the union

⋃k
j=1 supp(µj) and ν = 1

k (µ1+ ...+µk) ∈
PS (clearly CS is a closed invariant set).

If f ∈ Fix(χS) ⊆ L2(ν) then χ(g)Sgf = f and therefore Sgf = χ(g)f . Consid-
ering Sg as a linear contraction on L2(ν) we get Sg|f | = |f | ν a.e.. By continuity,
Sg|f | = |f | on CS . Hence on each support supp(µj), where j = 1, . . . , k, the
function |f | is constant. Let us take arbitrary x ∈ supp(µj) and g ∈ G. We have

f(x) = χ(g)

∫
K

f(y)S′
gδx(dy) = χ(g)

∫
supp(µj)

f(y)S′
gδx(dy) .

Hence f(y) = χ(g)f(x) for y ∈ supp(S′
gδx). It follows that for any f1, f2 ∈ Fix(χS)

and f2 ̸= 0 on supp(µj), then for all x ∈ supp(µj) and all g ∈ G we have

Sg

(
f1
f2

)
(x) =

∫
supp(µj)

f1(y)

f2(y)
S′
gδx(dy) =

χ(g)f1(x)

χ(g)f2(x)
=

f1
f2

(x).

Since S-invariant functions are constant on supports of extremal invariant probabil-
ities, f1

f2
= c on supp(µj). In other words if f1, f2 ∈ Fix(χS) then f1 = αj(f1, f2)f2

on supp(µj) or simply dimFix(χS)1suppµj
= 1 for any j = 1, ..., k.

Let wj ∈ Fix(χS)1suppµj
be nonzero (as long as such a function exists). Then

every f ∈ Fix(χS) may be represented in L2(ν) as

f =

k∑
j=1

f1suppµj
=

k∑
j=1

αjwj1suppµj
.

In particular, regardless of the choice of invariant µ ∈ PS , µ is a convex combination
of µ1, µ2, ..., µk, so the estimation dimFix(χS) ≤ k = dimFix(S) in L2(µ) holds
true. Hence using Theorem 2.1 the condition (3) implies that

Fix(χS2,µ) = Fix(χS)
L2(µ)

= Fix(χS) (µ a.e.)

for all µ ∈ PS .
■

We can also characterize convergence of the ergodic net AχS
α on a single function

f ∈ C(K). Our proof is based on the proof of Theorem 2.8 in [10]. However,
we do not assume here mean ergodicity. In particular, Schreiber’s assumption on
unique ergodicity is removed. For the sake of completeness of the paper and for the
convenience of the reader, a full proof is included.
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6 Bartoszek & Śpiewak

Theorem 2.3. Let S = {Sg : g ∈ G} be a representation of a right amenable
semigroup G as Markov operators on C(K). For any f ∈ C(K) and continuous
character χ on G the following conditions are equivalent:

(1) PFix(χS2,µ)f ∈ Fix(χS) for every µ ∈ PS , where PFix(χS2,µ) denotes the

orthogonal projection on the subspace Fix(χS2,µ) in L2(µ),

(2) AχS
α f converges to a fixed point of χS for some/every strong right S-ergodic

net (AχS
α )α∈Λ,

(3) f ∈ Fix(χS)⊕ lin rg(I − χS).

Proof: It is known that conditions (2) and (3) are equivalent (cf. Proposition
1.11 in [11]).

(2) ⇒ (1). χS2,µ is mean ergodic as a contraction semigroup on Hilbert space
(cf. Corollary 1.9 in [11]). Its mean ergodic projection is the orthogonal projection

PFix(χS2,µ). If A
χS
α is a strong right χS-ergodic net, then AχS

α is also a strong right

χS2,µ-ergodic net, so AχS
α f converges in L2(µ) to PFix(χS2,µ)f . By (2) we have that

AχS
α f converges also in C(X) to h ∈ Fix(χS), hence PFix(χS2,µ)f ∈ Fix(χS).
(1) ⇒ (3). Let µ ∈ C(K)′ vanish on Fix(χS)⊕ lin rg(I−χ S). The Hahn-Banach

theorem yields that it suffices to show that ⟨f, µ⟩ = 0, since Fix(χS)⊕lin rg(I−χS) is
a closed subspace of C(X). For every h ∈ C(X), g ∈ G we have ⟨h−χ(g)Sgh, µ⟩ =
0, so ⟨h, (χ(g)Sg)

′µ⟩ = ⟨χ(g)Sgh, µ⟩ = ⟨h, µ⟩, hence µ ∈ Fix(χS)′. We have S′
g|µ| ≥

|S′
gµ| = |χ(g)µ| = |µ|, so |µ| ∈ Fix(S ′). We can assume that |µ| ∈ PS . There exists

h ∈ L2(|µ|) with µ = h|µ| and by Lemma 2.5 in [10] there is h ∈ Fix(χS2,|µ|)
∗. We

have

⟨f, µ⟩ =
∫
X

fdµ =

∫
X

fhd|µ| = ⟨f, h⟩L2(|µ|) =

= ⟨f, (AχS2,|µ|
α )∗h⟩L2(|µ|) = ⟨AχS2,|µ|

α f, h⟩L2(|µ|)

for some strong right χS2,|µ|-ergodic net A
χS2,|µ|
α . Passing to the limit gives

⟨f, µ⟩ = ⟨PFix(χS2,|µ|)f, h⟩L2(|µ|) = ⟨PFix(χS2,|µ|)f, µ⟩ = 0,

since PFix(χS2,|µ|)f ∈ Fix(χS) by (1).
■
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