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Abstract. In this work we will be concerned with the existence of almost homoclinic solutions
for a Newtonian system q̈ +∇qV (t, q) = f(t), where t ∈ R, q ∈ Rn. It is assumed that a potential
V : R × Rn → R is C1-smooth and its gradient map ∇qV : R × Rn → Rn is bounded with
respect to t. Moreover, a forcing term f : R→ Rn is continuous, bounded and square integrable.
We will show that the approximative scheme due to J. Janczewska (see [J2]) for a time periodic
potential extends to our case.

1. Introduction. This paper is devoted to the study of the existence of almost homo-
clinic solutions for a perturbed Newtonian system

q̈ +∇qV (t, q) = f(t), (1)
where t ∈ R and q ∈ Rn. If 0 ∈ Rn is not a stationary point of (1) (for example,
if ∇qV (t, 0) = 0 for all t ∈ R and f 6= 0, which usually takes place in applications)
then (1) does not possess homoclinics to 0 in the classical meaning. Nevertheless we can
study the existence of a solution q : R → Rn vanishing at ±∞. Furthermore, under
suitable conditions on V , q̇(t)→ 0 as t→ ±∞ (see [J1, IJ3]). In many papers concerning
Newtonian systems, although 0 ∈ Rn is not a stationary point, their solutions satisfying
(q(t), q̇(t))→ (0, 0) are said to be homoclinic to 0 (see for instance [S, TX2, ZY]).

We introduce the notion of almost homoclinics (to 0), following J. Janczewska (see
[J1, J2, IJ3]).
Definition 1.1. A solution q : R→ Rn of the system (1) is called almost homoclinic if

q(±∞) = lim
t→±∞

q(t) = 0.
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In [J2] J. Janczewska studied the existence of almost homoclinic solutions of the
Newtonian system (1) under the following hypotheses:

(C1) V : R × Rn → R is C1-smooth with respect to all variables and T -periodic with
respect to t, T > 0,

(C2) f : R→ Rn is nontrivial, bounded, continuous and square integrable.

In order to briefly sketch her approximative method we set up notation. For simplicity,
T will be set equal to 1. From now on, (·, ·) : Rn × Rn → R denotes the standard inner
product in Rn and | · | : Rn → [0,∞) is the induced norm. Let E denote the Sobolev
space W 1,2(R,Rn) of functions on R with values in Rn equipped with the norm

‖q‖E =
(∫ ∞
−∞

(
|q(t)|2 + |q̇(t)|2

)
dt
)1/2

.

For each k ∈ N, set Ek = W 1,2
2k (R,Rn), the Sobolev space of 2k-periodic functions under

the norm

‖q‖Ek
=
(∫ k

−k

(
|q(t)|2 + |q̇(t)|2

)
dt
)1/2

.

Finally, let Cm
loc(R,Rn), where m ∈ N ∪ {0}, denote the space of Cm functions under

the topology of almost uniformly convergence of functions and all derivatives up to the
order m. Let us consider the sequence of periodic boundary value problems{

q̈(t) +∇qV (t, q(t)) = fk(t)
q(−k)− q(k) = q̇(−k)− q̇(k) = 0,

(2)

where for each k ∈ N, fk : R → Rn is a 2k-periodic extension of the restriction of f to
the interval [−k, k).

Theorem 1.2. Let V and f satisfy (C1) and (C2). Assume also that for each k ∈ N
the boundary value problem (2) has a solution qk ∈ Ek and {‖qk‖Ek

}k∈N is a bounded
sequence in R. Then there exists a subsequence {qkj}j∈N converging in the topology of
C2

loc(R,Rn) to a function q ∈ E which is an almost homoclinic solution of the Newtonian
system (1).

Theorem 1.2 provides the approximative method of finding almost homoclinics for (1).
The original system (1) is approximated by time periodic ones (2), with larger and larger
time periods. The proof relies mainly on the Ascoli-Arzelà lemma. The idea to get a
homoclinic solution as a limit of periodic ones goes back at least as far as [R], where Paul
H. Rabinowitz studied unperturbed Newtonian systems

q̈ +∇qV (t, q) = 0,

t ∈ R, q ∈ Rn, with periodic potentials of the form

V (t, q) = − 1
2 (L(t)q, q) +W (t, q).

Besides time periodicity condition on L andW , he assumed that L is a continuous matrix
valued function such that L(t) is positive definite and symmetric for each t ∈ R, W is
C1-smooth, satisfies the superquadratic growth condition by Ambrosetti and Rabinowitz,
and ∇qW (t, q) = o(|q|) as |q| → 0 uniformly in t. In [IJ1] M. Izydorek and J. Janczewska
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extended his result to perturbed Newtonian systems with a nonperiodic forcing term f

and V of the form
V (t, q) = −K(t, q) +W (t, q),

where W as above and K is a C1-smooth time periodic potential satisfying the so-called
pinching condition. In [IJ2] they applied the same approximative scheme to another class
of potentials (generally speaking, coercive ones). This gave a motivation to formulate
and prove an abstract result which is Theorem 1.2. Up till now this method has been
applied many times (see for instance [TX1, TX2, ZY] and citations for [IJ1] and [IJ2] in
MathSciNet). Moreover, the method was also adapted to second order discrete Hamilto-
nian systems (see [TLX]), Liénard type systems (see [Z]), second order differential systems
with p-Laplacian operator (see [L, TX3]) and mixed type functional differential equations
(see [J3]).

Our aim is to extend Theorem 1.2 to a wider class of potentials. Namely, we show
that (C1) may be replaced by

(C3) V is C1-smooth and ∇qV is bounded with respect to a time variable,

which needs only a slight change in the proof. We will consider the sequence of periodic
boundary value problems{

q̈(t) +∇qVk(t, q(t)) = fk(t)
q(−k)− q(k) = q̇(−k)− q̇(k) = 0,

(3)

where for each k ∈ N, fk is as above and Vk : R× Rn → R is a 2k-periodic extension of
V : [−k, k)× Rn → R.

We will prove the following theorem.

Main Theorem 1.3. Let f and V satisfy (C2) and (C3). Assume also that for each k ∈ N
the boundary value problem (3) possesses a periodic solution qk ∈ Ek and {‖qk‖Ek

}k∈N is
a bounded sequence in R. Then there exists a subsequence {qkj

}j∈N going in the topology of
C2

loc(R,Rn) to a function q ∈ E which is an almost homoclinic solution of the Newtonian
system (1).

2. The proof of Main Theorem. This section will be devoted to the proof of Theorem
1.3. At the beginning we review two standard inequalities.

Let L2
loc(R,Rn) denote the space of functions on R with values in Rn locally square

integrable.

Fact 2.1 (see [IJ1, Fact 2.8]). Let q : R → Rn be a continuous mapping such that
q̇ ∈ L2

loc(R,Rn). Then for each t ∈ R,

|q(t)| ≤
√

2
(∫ t+1/2

t−1/2

(
|q(s)|2 + |q̇(s)|2

)
ds

)1/2
. (4)

Let L∞2k(R,Rn) be the space of 2k-periodic essentially bounded measurable functions
on R with values in Rn under the norm

‖q‖L∞
2k

= ess sup{|q(t)| : t ∈ [−k, k]}.
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From the estimate (4) we conclude that for each k ∈ N and q ∈ Ek,

‖q‖L∞
2k
≤
√

2 ‖q‖Ek
(5)

(see [IJ1, Proposition 1.1]).
We have divided the proof of Theorem 1.3 into two lemmas.

Lemma 2.2. Let f and V satisfy (C2) and (C3). Assume that for each k ∈ N the boundary
value problem (3) has a solution qk ∈ Ek. If {‖qk‖Ek

}k∈N is a bounded sequence in R
then there exist a subsequence {qkj

}j∈N and a function q ∈ E such that

qkj
→ q as j →∞

in C1
loc(R,Rn).

Proof. Our first goal is to show that {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are uniformly bounded
sequences in L∞2k(R,Rn). By assumption, there is M > 0 such that for all k ∈ N we have

‖qk‖Ek
≤M. (6)

Combining (5) with (6) we get

‖qk‖L∞
2k
≤
√

2M ≡M1. (7)

By (C2) and (C3), it may be concluded that there is M2 > 0 such that for each k ∈ N
and t ∈ [−k, k),

|q̈k(t)| ≤ |∇qVk(t, qk(t))|+ |fk(t)| = |∇qV (t, qk(t))|+ |f(t)| ≤M2,

and, in consequence, for each k ∈ N,

‖q̈k‖L∞
2k
≤M2. (8)

Let ql
k (l = 1, 2, . . . , n) stand for the l-th coordinate of the mapping qk. Using the

Mean Value Theorem, for each k ∈ N, l = 1, 2, . . . , n, and t ∈ R there is tlk ∈ [t − 1, t]
such that

q̇l
k(tlk) =

∫ t

t−1
q̇l

k(s) ds = ql
k(t)− ql

k(t− 1).

Moreover, we have

q̇l
k(t) =

∫ t

tl
k

q̈l
k(s) ds+ q̇l

k(tlk).

Applying (7) and (8), we obtain

|q̇l
k(t)| ≤

∫ t

t−1
|q̈l

k(s)| ds+ |ql
k(t)− ql

k(t− 1)| ≤M2 + 2M1,

and finally,
‖q̇k‖L∞

2k
≤
√
n (M2 + 2M1) ≡M3. (9)

To finish the proof, it is sufficient to show that {qk}k∈N and {q̇k}k∈N are equicontinuous.
Fix k ∈ N and t1, t2 ∈ R. The estimates (9) and (8) now lead to

|qk(t2)− qk(t1)| =
∣∣∣∫ t2

t1

q̇k(s) ds
∣∣∣ ≤M3|t2 − t1|
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and
|q̇k(t2)− q̇k(t1)| =

∣∣∣∫ t2

t1

q̈k(s) ds
∣∣∣ ≤M2|t2 − t1|.

Note that we have actually proved that {qk}k∈N and {q̇k}k∈N satisfy the Lipschitz condi-
tion with constants independent of k. Hence they are equicontinuous. Using the Arzeli–
Ascolà lemma we receive the claim.

Lemma 2.3. Let f and V satisfy (C2) and (C3). The function q given by Lemma 2.2 is
an almost homoclinic solution of the Newtonian system (1) and qkj

→ q as j →∞ in the
topology of C2

loc(R,Rn).

The proof is the same as that of Lemma 2.5 in [J2], therefore we omit it.

3. Applications. One can ask how strong the assumption of the existence of an ap-
proximative sequence {qk}k∈N both in Theorem 1.2 and Theorem 1.3 is.

It is evident that to apply Theorem 1.2 and Theorem 1.3 we need suitable assumptions
on the potential and the external force besides (C1)–(C2) or (C2)–(C3), respectively.
By suitable we mean assumptions implying the existence of an approximative sequence
{qk}k∈N. For a treatment of perturbed Newtonian systems with time periodic potentials,
possessing approximative sequences we refer the reader to [IJ1, IJ2, IJ3, J2, TX1, TX2,
ZY]. It is worth pointing out that in all these papers {qk}k∈N is obtained by variational
methods (the Mountain Pass Lemma or standard minimizing arguments).

In this section we present an example of a class of perturbed Newtonian systems
without periodic potentials, having approximative sequences.

Consider the Newtonian system

q̈ −∇qV (t, q) = f(t), (10)

where t ∈ R, q ∈ Rn, and V : R × Rn → R and f : R → Rn satisfy the hypotheses
(C2)–(C3). Moreover,

(C4) V (t, q) ≥ b(t)|q|2 for all t ∈ R and q ∈ Rn, where b : R → (0,∞) is a continuous
function that achieves a minimum on R,

(C5) V (t, 0) = 0 for each t ∈ R.

Theorem 3.1. Let V and f satisfy (C2)–(C5). Then the Newtonian system (10) pos-
sesses an almost homoclinic solution.

We will prove Theorem 3.1 by using Theorem 1.3. The approximative sequence of
periodic boundary value problems for the Newtonian system (10) takes the form{

q̈(t)−∇qVk(t, q(t)) = fk(t)
q(−k)− q(k) = q̇(−k)− q̇(k) = 0,

(11)

where for all k ∈ N, fk : R → Rn and Vk : R × Rn → R are 2k-periodic extensions of
f : [−k, k)→ Rn and V : [−k, k)× Rn → R, respectively.

For all k ∈ N, let the functional Ik : Ek → R be given by

Ik(q) =
∫ k

−k

(1
2 |q̇(t)|

2 + Vk(t, q(t)) + (fk(t), q(t))
)
dt.
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One knows that for a fixed k ∈ N critical points of the functional Ik are 2k-periodic
solutions of (11). To prove that Ik achieves a minimum on Ek we apply a classical result
of the calculus of variations.

Theorem 3.2 (see [MW, Theorem 1.1]). If ϕ : X → R is a weakly lower semicontinuous
functional on a reflexive Banach space X and has a bounded minimizing sequence, then
ϕ has a minimum on X.

Proof of Theorem 3.1. Let B = mint∈R b(t), A = min{ 1
2 , B} and L = ‖f‖L2(R,Rn). Ap-

plying (C4) and the Schwarz inequality we get

Ik(q) ≥
∫ k

−k

(1
2 |q̇(t)|

2 + b(t)|q(t)|2 + (fk(t), q(t))
)
dt ≥ A‖q‖2

Ek
− L‖q‖Ek

.

Thus Ik is bounded from below and coercive.
Let L2

2k(R,Rn) be the space of 2k-periodic square integrable functions on R with
values in Rn under the norm

‖q‖L2
2k

=
(∫ k

−k

|q(t)|2 dt
)1/2

.

Assume that qm ⇀ q in Ek and, in consequence, q̇m ⇀ q̇ in L2
2k(R,Rn). As the square of

norm in a Hilbert space is weakly lower semicontinuous, we deduce that the functional
ϕk : Ek → R given by

ϕk(q) =
∫ k

−k

1
2 |q̇(t)|

2 dt = 1
2‖q̇‖

2
L2

2k

is also weakly lower semicontinuous. Furthermore, qm → q almost uniformly on R, and
hence ∫ k

−k

(
Vk(t, qm(t)) + (fk(t), qm(t))

)
dt→

∫ k

−k

(
Vk(t, q(t)) + (fk(t), q(t))

)
dt

as m→∞, which means that the functional ψk : Ek → R given by

ψk(q) =
∫ k

−k

(
Vk(t, q(t)) + (fk(t), q(t))

)
dt

is weakly continuous. By the above, Ik is weakly lower semicontinuous and by Theo-
rem 3.2, Ik achieves a minimum on Ek, i.e. for all k ∈ N there is qk ∈ Ek such that

Ik(qk) = min
q∈Ek

Ik(q) and I ′k(qk) = 0.

By (C5), for all k ∈ N, we have Ik(0) = 0. Choosing δ = L/A, we see that for all k ∈ N,
if ‖q‖Ek

> δ then Ik(q) > 0. Hence ‖qk‖Ek
≤ δ for all k ∈ N. By the use of Theorem 1.3

we get the claim.

Example 3.3. Let V : R×R→ R and f : R→ R be given by V (t, q) = (e−t2 + 1)q2 and
f(t) = e−t2 . The Newtonian system is as follows

q̈(t)− 2(e−t2
+ 1)q(t) = e−t2

.

It is immediate that V and f satisfy the hypotheses (C2)–(C5) of Theorem 3.1, and
so the system above has an almost homoclinic solution.
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