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Abstract. In this work we will be concerned with the existence of almost homoclinic solutions
for a Newtonian system G+ V,V (¢, q) = f(t), where t € R, g € R". It is assumed that a potential
V :R xR" = R is C*-smooth and its gradient map V,V : R x R® — R" is bounded with
respect to t. Moreover, a forcing term f : R — R" is continuous, bounded and square integrable.
We will show that the approximative scheme due to J. Janczewska (see [J2]) for a time periodic
potential extends to our case.

1. Introduction. This paper is devoted to the study of the existence of almost homo-
clinic solutions for a perturbed Newtonian system

Q+qu(t’q) = f(t)’ (1)
where t € R and ¢ € R™. If 0 € R” is not a stationary point of (for example,
it V,V(t,0) = 0 for all ¢ € R and f # 0, which usually takes place in applications)
then does not possess homoclinics to 0 in the classical meaning. Nevertheless we can
study the existence of a solution ¢ : R — R"™ vanishing at t+oo. Furthermore, under
suitable conditions on V, ¢(t) — 0 as t — +oo (see [J1, [[J3]). In many papers concerning
Newtonian systems, although 0 € R™ is not a stationary point, their solutions satisfying
(q(t),4(t)) — (0,0) are said to be homoclinic to 0 (see for instance [S, [TX2] [ZY]).

We introduce the notion of almost homoclinics (to 0), following J. Janczewska (see
[J1L, [T2], LT3]).

DEFINITION 1.1. A solution ¢ : R — R™ of the system is called almost homoclinic if
q(x00) = lim q(t) = 0.
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In [J2] J. Janczewska studied the existence of almost homoclinic solutions of the
Newtonian system under the following hypotheses:

(C1) V : R x R® — R is C'-smooth with respect to all variables and T-periodic with
respect to t, T' > 0,
(C2) f:R — R" is nontrivial, bounded, continuous and square integrable.

In order to briefly sketch her approximative method we set up notation. For simplicity,
T will be set equal to 1. From now on, (-,-) : R™ x R™ — R denotes the standard inner
product in R and |- | : R” — [0,00) is the induced norm. Let E denote the Sobolev
space W12(R,R") of functions on R with values in R” equipped with the norm

o0 1/2
lale = ([ (a(®F + late)?) dt)

e}

For each k € N, set Ey = W;,f (R,R™), the Sobolev space of 2k-periodic functions under
the norm

k
lalle, = (| (o) + Py ae) ™"

Finally, let CJ7.(R,R™), where m € N U {0}, denote the space of C™ functions under
the topology of almost uniformly convergence of functions and all derivatives up to the
order m. Let us consider the sequence of periodic boundary value problems

{q'os) + VgVt (1) = fil®)

a(=k) — q(k) = ¢(=k) — 4(k) =0,
where for each k£ € N, fi : R — R" is a 2k-periodic extension of the restriction of f to
the interval [—k, k).

THEOREM 1.2. Let V and f satisfy (C1) and (C2). Assume also that for each k € N
the boundary value problem has a solution qi € Ey and {||gk|| &, }ren s a bounded
sequence in R. Then there exists a subsequence {qy,}jen converging in the topology of
CL.(R,R™) to a function q € E which is an almost homoclinic solution of the Newtonian
system .

Theoremprovides the approximative method of finding almost homoclinics for .
The original system is approximated by time periodic ones (2)), with larger and larger
time periods. The proof relies mainly on the Ascoli-Arzela lemma. The idea to get a
homoclinic solution as a limit of periodic ones goes back at least as far as [R], where Paul
H. Rabinowitz studied unperturbed Newtonian systems

G+ V,V(t,q =0,
t € R, g € R™, with periodic potentials of the form

Besides time periodicity condition on L and W, he assumed that L is a continuous matrix
valued function such that L(t) is positive definite and symmetric for each t € R, W is
C'-smooth, satisfies the superquadratic growth condition by Ambrosetti and Rabinowitz,
and V,W(t,q) = o(|q|) as |¢| — 0 uniformly in ¢. In [IJ1] M. Izydorek and J. Janczewska

(2)
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extended his result to perturbed Newtonian systems with a nonperiodic forcing term f
and V of the form

V(t,q) = —K(t,q) + W(t,q),

where W as above and K is a C''-smooth time periodic potential satisfying the so-called
pinching condition. In [[J2] they applied the same approximative scheme to another class
of potentials (generally speaking, coercive ones). This gave a motivation to formulate
and prove an abstract result which is Theorem Up till now this method has been
applied many times (see for instance [TX1I [TX2| [ZY] and citations for [LJI] and [LJ2] in
MathSciNet). Moreover, the method was also adapted to second order discrete Hamilto-
nian systems (see [TLX]), Liénard type systems (see [Z]), second order differential systems
with p-Laplacian operator (see [LL [TX3]) and mixed type functional differential equations
(see [J13]).

Our aim is to extend Theorem to a wider class of potentials. Namely, we show
that (C1) may be replaced by

(C3) V is Cl-smooth and V,V is bounded with respect to a time variable,

which needs only a slight change in the proof. We will consider the sequence of periodic
boundary value problems

{q(t) + VaVilt,a(t) = fi(t)
a(=k) — q(k) = ¢(—k) — d4(k) = 0,
where for each k € N, fi is as above and Vi, : R x R™ — R is a 2k-periodic extension of
V:[-kk) xR" > R.

We will prove the following theorem.

(3)

MAIN THEOREM 1.3. Let f and V satisfy (C2) and (C3). Assume also that for each k € N
the boundary value problem possesses a periodic solution q, € Ey, and {||qr|| g, tren is
a bounded sequence in R. Then there exists a subsequence {qx, } jen going in the topology of

C2.(R,R") to a function q € E which is an almost homoclinic solution of the Newtonian

system .

2. The proof of Main Theorem. This section will be devoted to the proof of Theorem
3] At the beginning we review two standard inequalities.

Let L2 (R,R") denote the space of functions on R with values in R™ locally square
integrable.

Fact 2.1 (see [LJ1, Fact 2.8]). Let ¢ : R — R™ be a continuous mapping such that
g € LE (R,R™). Then for each t € R,
1/2

t+1/2
'q“)'<ﬁ(/t (|q<s>|2+|q'<s>|2)ds) | (1)

—1/2

Let L3 (R,R™) be the space of 2k-periodic essentially bounded measurable functions
on R with values in R™ under the norm

lallzg; = esssup{lq(t)| : ¢ € [k, K]}
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From the estimate we conclude that for each £ € N and ¢ € Ey,
lallzse < V2gllg, (5)

(see Proposition 1.1]).
We have divided the proof of Theorem [I.3] into two lemmas.

LEMMA 2.2. Let f and V satisfy (C2) and (C3). Assume that for each k € N the boundary
value problem has a solution qi € Ey. If {||lqk||E, tren is a bounded sequence in R
then there exist a subsequence {q, }jen and a function q € E such that

Qrk; = q as j— 00
in CL (R, R™).

Proof. Our first goal is to show that {gx } ken, {Gr tren and {§i }xen are uniformly bounded
sequences in L3 (R, R™). By assumption, there is M > 0 such that for all k € N we have

gz, < M. (6)
Combining with (@ we get
lgkllng < V2M = M. (7)

By (C2) and (C3), it may be concluded that there is My > 0 such that for each k € N
and ¢t € [—k, k),

|Gk (8)] < [VVie(t, ai ()] + [ fe@)] = [VoV(t e ()| + [f ()] < Mz,
and, in consequence, for each k € N,
lGkllrge < Ms. (8)

Let ¢ (I = 1,2,...,n) stand for the I-th coordinate of the mapping g. Using the
Mean Value Theorem, for each k € N, [ = 1,2,...,n, and ¢t € R there is t%c € [t —1,t
such that

t
i) = [ dk(s)ds = ah(®) ~ dhie - D).
t—1
Moreover, we have

dL(t) = / () ds 4 L (i),

2
Applying (7) and (8], we obtain
t
4L ()] < / 16L()] ds + gL (t) — gh(t — 1)| < Mp + 20y,
t—1

and finally,

To finish the proof, it is sufficient to show that {g; }ren and {g tren are equicontinuous.
Fix k € N and t1,t2 € R. The estimates @ and now lead to

to
at) ~ an(t2) = | [ o) ds| < Malea 1
t1
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and

lgx(t2) — dr(t1)] =

to
/ () ds| < Mlts — 11|

ty

Note that we have actually proved that {gx}ren and {¢x }ren satisfy the Lipschitz condi-
tion with constants independent of k. Hence they are equicontinuous. Using the Arzeli—
Ascola lemma we receive the claim. m

LEMMA 2.3. Let f and V satisfy (C2) and (C3). The function q given by Lemma is
an almost homoclinic solution of the Newtonian system and qg; — q as j — oo in the
topology of CZ (R, R™).

The proof is the same as that of Lemma 2.5 in [J2], therefore we omit it.

3. Applications. One can ask how strong the assumption of the existence of an ap-
proximative sequence {gi }ren both in Theorem and Theorem is.

It is evident that to apply Theorem [[.2]and Theorem[I.3] we need suitable assumptions
on the potential and the external force besides (C1)—(C2) or (C2)—(C3), respectively.
By suitable we mean assumptions implying the existence of an approximative sequence
{4k }ren. For a treatment of perturbed Newtonian systems with time periodic potentials,
possessing approximative sequences we refer the reader to [LJ1l, [IJ2, [J3] [J2, [TXT] [TX2]
ZY]. It is worth pointing out that in all these papers {qx }ren is obtained by variational
methods (the Mountain Pass Lemma or standard minimizing arguments).

In this section we present an example of a class of perturbed Newtonian systems
without periodic potentials, having approximative sequences.

Consider the Newtonian system

G—VqV(t.q) = f(t), (10)
where t € R, g € R?, and V : R x R®” — R and f : R — R" satisfy the hypotheses
(C2)—(C3). Moreover,

(C4) V(t,q) > b(t)|q|?* for all t € R and ¢ € R™, where b : R — (0,00) is a continuous
function that achieves a minimum on R,
(C5) V(t,0) =0 for each ¢ € R.

THEOREM 3.1. Let V and f satisfy (C2)—(C5). Then the Newtonian system (LO]) pos-
sesses an almost homoclinic solution.

We will prove Theorem [3.1] by using Theorem The approximative sequence of
periodic boundary value problems for the Newtonian system takes the form

{d(t) — VoVi(t. q(t) = fr(t)
a(=k) — q(k) = 4(—k) — d4(k) =0,
where for all k € N, fr : R - R™ and Vi : R x R” — R are 2k-periodic extensions of
fil=kk) > R"and V : [k, k) x R" — R, respectively.

For all k € N, let the functional I : £}, — R be given by

k
1) = [ (307 + Vett.a®) + (i), ae) .

(11)
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One knows that for a fixed k& € N critical points of the functional I are 2k-periodic
solutions of . To prove that I, achieves a minimum on E}, we apply a classical result
of the calculus of variations.

THEOREM 3.2 (see [MW], Theorem 1.1])). If ¢ : X — R is a weakly lower semicontinuous
functional on a reflexive Banach space X and has a bounded minimizing sequence, then
@ has a minimum on X.
Proof of Theorem . Let B = minger b(t), A = min{%,B} and L = || f||z2rrn). Ap-
plying (C4) and the Schwarz inequality we get
k
1.
Ii(g) > / (S1OF + bW + (fu(e),a(0))) e 2 Ay, ~ Llal,

Thus I}, is bounded from below and coercive.
Let L3, (R,R™) be the space of 2k-periodic square integrable functions on R with

k 1/2
lallzz, = ([ oo ar) "

Assume that ¢, — ¢ in Ey and, in consequence, ¢,, — ¢ in L3, (R,R™). As the square of

values in R™ under the norm

norm in a Hilbert space is weakly lower semicontinuous, we deduce that the functional
i+ B, = R given by
= kl'tZdt—1 il
oula) = [ Gl at= lalss,

is also weakly lower semicontinuous. Furthermore, ¢,, — ¢ almost uniformly on R, and
hence

k k
/ (Vie(t, am (1) + (fr(t), g (1)) dt—>/_k(Vk(taq(t))+(fk(t)vQ(t))) dt

—k
as m — 0o, which means that the functional v : Ex, — R given by
k

Ulq) = / (Vi(t, () + (fu(t). q(1))) dt

—k
is weakly continuous. By the above, I} is weakly lower semicontinuous and by Theo-
rem I, achieves a minimum on Ejy, i.e. for all k € N there is g, € Ej such that
Ii(gk) = min Ir(q)  and  Ij(qx) = 0.
qEEy

By (C5), for all k € N, we have I;(0) = 0. Choosing 6 = L/A, we see that for all k € N,
if [|q|| g, > 6 then I;(g) > 0. Hence [|qx ||, < 0 for all k € N. By the use of Theorem [I.3]
we get the claim. m

EXAMPLE 3.3. Let V:RxR — Rand f : R — R be given by V(¢,q) = (e=*" +1)¢? and
ft) = e~t". The Newtonian system is as follows

) =20 + D)g(t) = e .

It is immediate that V and f satisfy the hypotheses (C2)—-(C5) of Theorem and
so the system above has an almost homoclinic solution.
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