Note

A note on the weakly convex and convex domination numbers of a torus

Joanna Raczek*, Magdalena Lemańska*
Department of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

ARTICLE INFO

Article history:

Received 25 March 2009
Received in revised form 25 May 2010
Accepted 3 June 2010
Available online 5 July 2010

Keywords:

Domination number
Convex sets
Torus

Abstract

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest (u, v) path in G. A (u, v) path of length $d_{G}(u, v)$ is called a (u, v)-geodesic. A set $X \subseteq V$ is called weakly convex in G if for every two vertices $a, b \in X$, exists an (a, b) geodesic, all of whose vertices belong to X. A set X is convex in G if for all $a, b \in X$ all vertices from every (a, b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.

© 2010 Elsevier B.V. All rights reserved.

1. Definitions

Here we consider simple, undirected and connected graphs $G=(V, E)$ with $|V|=n$. The open neighbourhood $N_{G}(v)$ of a vertex $v \in V$ is the set of all vertices adjacent to v and the closed neighbourhood $N_{G}[v]$ of a vertex $v \in V$ is the set $N_{G}(v) \cup\{v\}$. A subset D of V is dominating if every vertex of $V-D$ has at least one neighbour in D. Let $\gamma(G)$ be the minimum cardinality of a dominating set of G.

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest (u, v) path in G. A (u, v) path of length $d_{G}(u, v)$ is called a (u, v)-geodesic.

A set $X \subseteq V$ is called weakly convex in G if for every two vertices $a, b \in X$, exists an (a, b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all $a, b \in X$ all vertices from every (a, b)-geodesic belong to X. A set $X \subseteq V$ is a weakly convex dominating set in G if X is weakly convex and dominating. Further, X is a convex dominating set if it is convex and dominating. The weakly convex domination number $\gamma_{\text {wcon }}(G)$ of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number $\gamma_{c o n}(G)$ of a graph G is the minimum cardinality of a convex dominating set of G. Convex and weakly convex domination numbers were first introduced by Topp [4].

2. Cartesian product

The Cartesian product of two graphs G_{1} and G_{2}, denoted by $G=G_{1} \square G_{2}$, is the graph with vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ if and only if the following holds:
(a) $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{1}\right)$,
(b) $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{2}\right)$.

For $v_{i} \in V\left(G_{2}\right), G_{1}^{i}$ denotes the subgraph of $G_{1} \square G_{2}$ induced by $V\left(G_{1}\right) \times\left\{v_{i}\right\}$ and we call G_{1}^{i} the i th copy of G in $G_{1} \square G_{2}$. If $V\left(G_{2}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$, then G_{1}^{i} and G_{1}^{j} are neighbouring copies in $G_{1} \square G_{2}$ if $v_{i} v_{j} \in E\left(G_{2}\right)$. The Cartesian product of two cycles C_{m} and C_{n} is called a torus, if $m \geq 3$ and $n \geq 3$. The problem of domination in a torus was considered in [5]. The bondage

[^0]

Fig. 1. The case (a).
number and signed domatic number of a torus is studied in [2] and in [3], respectively. Here we consider weakly convex and convex domination numbers of a torus.

In 1963 Vizing conjectured that $\gamma\left(G_{1} \square G_{2}\right) \geq \gamma\left(G_{1}\right) \gamma\left(G_{2}\right)$ for every two graphs G_{1} and G_{2}. In [1] it was proven that the following Vizing-type inequality for the convex domination number is true.

Theorem 1 ([1]). For connected graphs G_{1} and G_{2},

$$
\gamma_{\text {con }}\left(G_{1}\right) \gamma_{\text {con }}\left(G_{2}\right) \leq \gamma_{\text {con }}\left(G_{1} \square G_{2}\right) .
$$

It is easy to verify that the convex domination number of a cycle C_{m} on $m \geq 6$ vertices equals m. Hence, Theorem 1 implies what follows.

Corollary 2. Let C_{m} and C_{n} be cycles on $m \geq 6$ and $n \geq 6$ vertices, respectively. Then

$$
\gamma_{\mathrm{con}}\left(C_{m} \square C_{n}\right)=m n .
$$

A similar result may be proven for the weakly convex domination number.
Theorem 3. Let C_{m} and C_{n} be the cycles on $m \geq 7$ and $n \geq 7$ vertices, respectively. Then

$$
\gamma_{\text {wcon }}\left(C_{m} \square C_{n}\right)=m n .
$$

Proof. Let $G=C_{m} \square C_{n}$, where $V(G)=\left\{\left(x_{i}, y_{j}\right): x_{i} \in V\left(C_{m}\right), y_{j} \in V\left(C_{n}\right), 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $m, n \geq 7$. Suppose $\gamma_{\text {wcon }}(G)<m n$. Let D be a minimum weakly convex dominating set of G. Since $|D|<m n$ we assume, without of loss of generality, that $\left(x_{3}, y_{3}\right) \notin D$. Then $\left(x_{3}, y_{3}\right)$ belongs to the $\left(\left(x_{3}, y_{2}\right),\left(x_{3}, y_{4}\right)\right)$-geodesic and thus $\left(x_{3}, y_{2}\right) \notin D$ or $\left(x_{3}, y_{4}\right) \notin D$. Without loss of generality, let $\left(x_{3}, y_{2}\right) \notin D$. Similarly, $\left(x_{3}, y_{3}\right)$ belongs to the $\left(\left(x_{3}, y_{1}\right),\left(x_{3}, y_{4}\right)\right)$-geodesic and thus we let $\left(x_{3}, y_{1}\right) \notin D$. Further, $\left(x_{3}, y_{3}\right)$ belongs to the $\left(\left(x_{2}, y_{3}\right),\left(x_{4}, y_{3}\right)\right)$-geodesic so, without loss of generality, we let $\left(x_{2}, y_{3}\right) \notin D$. Each $\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{4}\right)\right)$-geodesic contains $\left(x_{3}, y_{3}\right)$ or $\left(x_{3}, y_{2}\right)$ or $\left(x_{2}, y_{3}\right)$, so $\left(x_{2}, y_{2}\right) \notin D$ or $\left(x_{3}, y_{4}\right) \notin D$.
(a) If $\left(x_{2}, y_{2}\right) \notin D$, then $\left(x_{4}, y_{2}\right) \in D$ dominates $\left(x_{3}, y_{2}\right)$. Moreover, since D is weakly convex, $\left(x_{1}, y_{2}\right) \notin D$. However this implies that $\left(x_{2}, y_{1}\right) \in D$ which is a contradiction, because no $\left(\left(x_{2}, y_{1}\right),\left(x_{4}, y_{2}\right)\right)$-geodesic is contained in D. (See Fig. 1 , some edges in the figures are omitted to make them more clear.)
(b) If $\left(x_{3}, y_{4}\right) \notin D$, then $\left(x_{4}, y_{3}\right) \in D$ dominates $\left(x_{3}, y_{3}\right)$. Moreover, since D is weakly convex, $\left(x_{1}, y_{3}\right) \notin D$ and $\left(x_{2}, y_{4}\right) \notin D$. However, this implies that $\left(x_{2}, y_{2}\right) \in D$ which is a contradiction, because no $\left(\left(x_{2}, y_{2}\right),\left(x_{4}, y_{3}\right)\right)$-geodesic is contained in D. (See Fig. 2.)

The following propositions give exact values for the convex domination number and the weakly convex domination number for a torus $G=C_{m} \square C_{n}$, where $n \in\{3,4,5,6\}$. We start with a lemma.

Lemma 4. Let $G=C_{m} \square C_{n}$, where $n \geq 3$ and $m \geq 5$. Let D be a minimum weakly convex dominating set of G such that $\left(x_{3}, y_{j}\right) \notin$ D for $j \in\{1,2,3\}$. Then, without loss of generality, $\left(x_{i}, y_{j}\right) \notin D$ for $i \in\{2,3\}, j \in\{1,2,3\}$ and $\left(x_{1}, y_{2}\right) \in D,\left(x_{4}, y_{2}\right) \in D$.
Proof. Let G and D be defined as above. Since D is dominating, $\left(x_{3}, y_{2}\right)$ has a neighbour in D. Without loss of generality let $\left(x_{4}, y_{2}\right) \in D$. Since $m \geq 5$, each $\left(\left(x_{2}, y_{1}\right)\right.$, $\left(x_{4}, y_{2}\right)$)-geodesic contains $\left(x_{3}, y_{1}\right)$ or $\left(x_{3}, y_{2}\right)$, so the weak convexity of D implies that $\left(x_{2}, y_{1}\right) \notin D$. By similar arguments, $\left(x_{2}, y_{3}\right) \notin D$ and $\left(x_{2}, y_{2}\right) \notin D$. Hence, $\left(x_{1}, y_{2}\right) \in D$ dominates $\left(x_{2}, y_{2}\right)$. (See Fig. 3.)

Proposition 5. Let $G=C_{m} \square C_{3}$, where $m \geq 3$. Then

$$
\gamma_{\mathrm{wcon}}(G)=\gamma_{\mathrm{con}}(G)=m .
$$

Proof. Since $\gamma_{\text {con }}(G) \geq \gamma_{\text {wcon }}(G) \geq \gamma(G)=3$ and the set $\left\{\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{3}\right)\right\}$ is a convex dominating set of G, the result is true for $m=3$. Let $G=C_{m} \square C_{3}$, where $m \geq 4$ and denote $V(G)=\left\{\left(x_{i}, y_{j}\right): x_{i} \in V\left(C_{m}\right), y_{j} \in V\left(C_{3}\right), 1 \leq i \leq\right.$

Fig. 2. The case (b).

Fig. 3. Illustration for the Lemma 4.
$m, 1 \leq j \leq 3\}$. We show that $D=\left\{\left(x_{i}, y_{1}\right): 1 \leq i \leq m\right\}$ is a minimum convex and weakly convex dominating set of G. It is obvious that D is convex and dominating, so $\gamma_{\text {wcon }}(G) \leq \gamma_{\text {con }}(G) \leq m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D^{\prime} \subseteq V(G)$ such that $\left|D^{\prime}\right|<|D|=m$. However, it is possible to verify that for $C_{4} \square C_{3}$ we cannot find a weakly convex dominating set of cardinality at most 3 . Hence, in what follows we assume $m \geq 5$. Since $\left|D^{\prime}\right|<m$, there exists an index i such that all three vertices of $V\left(C_{3}^{i}\right)$ do not belong to D^{\prime}. Without loss of generality, let $i=3$. By Lemma 4, we obtain that $\left(x_{l}, y_{k}\right) \notin D^{\prime}$ for $l \in\{2,3\}, k \in\{1,2,3\}$ and $\left(x_{1}, y_{2}\right) \in D^{\prime}$, $\left(x_{4}, y_{2}\right) \in D^{\prime}$ (See Fig. 4.)

Recall that $\gamma_{\text {wcon }}\left(C_{k}\right)=k$ for $k \geq 7$. For this reason, since D^{\prime} is weakly convex and $d_{G}\left(\left(x_{1}, y_{2}\right),\left(x_{4}, y_{2}\right)\right) \leq 3$, we conclude that $m \leq 6$. Hence, $\left|D^{\prime}\right|<6$. Since D^{\prime} is dominating, $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{3}\right),\left(x_{4}, y_{1}\right),\left(x_{4}, y_{3}\right) \in D^{\prime}$. However, this implies that $\left|D^{\prime}\right| \geq 6$, a contradiction. Therefore, $\gamma_{\text {wcon }}(G)=\gamma_{\text {con }}(G)=m$.

Proposition 6. Let $G=C_{m} \square C_{4}$, where $m \geq 7$. Then

$$
\gamma_{\mathrm{wcon}}(G)=\gamma_{\mathrm{con}}(G)=2 m
$$

Proof. Let $G=C_{m} \square C_{4}$, where $m \geq 7$ and denote $V(G)=\left\{\left(x_{i}, y_{j}\right): x_{i} \in V\left(C_{m}\right), y_{j} \in V\left(C_{4}\right), 1 \leq i \leq m, 1 \leq j \leq 4\right\}$. We show that $D=\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq m, 1 \leq j \leq 2\right\}$ is a minimum weakly convex and convex dominating set of G. It is obvious that D is convex and dominating, so $\gamma_{\text {wcon }}(G) \leq \gamma_{\text {con }}(G) \leq 2 m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D^{\prime} \subseteq V(G)$ such that $\left|D^{\prime}\right|<|D|=2 m$. Then there exists an index i such that at least three vertices of $V\left(C_{4}^{i}\right)$ do not belong to D^{\prime}. Without loss of generality, let $\left(x_{3}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right) \notin D^{\prime}$. Now, by Lemma 4 , we obtain that $\left(x_{l}, y_{k}\right) \notin D^{\prime}$ for $l \in\{2,3\}, k \in\{1,2,3\}$ and $\left(x_{1}, y_{2}\right) \in D^{\prime},\left(x_{4}, y_{2}\right) \in D^{\prime}$. Now, since D^{\prime} is weakly convex and $d_{G}\left(\left(x_{1}, y_{2}\right),\left(x_{4}, y_{2}\right)\right) \leq 3$, we conclude that $m \leq 6$ which is impossible. Hence, $\gamma_{\text {wcon }}(G)=\gamma_{\text {con }}(G)=2 m$.

The straightforward, albeit technical proof of the following observation is omitted.
Observation 7. The weakly convex domination number and convex domination numbers of the Cartesian product of C_{m} and C_{4}, where $m \in\{4,5,6\}$, are also equal to $2 m$.

Proposition 8. Let $G=C_{m} \square C_{5}$, where $m \geq 5$. Then

$$
\gamma_{\mathrm{wcon}}(G)=\gamma_{\mathrm{con}}(G)=3 \mathrm{~m}
$$

Proof. Let $G=C_{m} \square C_{5}$, where $m \geq 5$ and denote $V(G)=\left\{\left(x_{i}, y_{j}\right): x_{i} \in V\left(C_{m}\right), y_{j} \in V\left(C_{5}\right), 1 \leq i \leq m, 1 \leq j \leq 5\right\}$. We show that $D=\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq m, 1 \leq j \leq 3\right\}$ is a minimum convex and weakly convex dominating set of G. It is obvious that D is convex and dominating, so $\gamma_{\text {wcon }}(\bar{G}) \leq \gamma_{\text {con }}(G) \leq 3 \mathrm{~m}$. Suppose D is not a minimum weakly convex dominating set

Fig. 4. The $C_{m} \square C_{3}$ (some edges are omitted).

Fig. 5. Case (a) of $C_{m} \square C_{5}$.
of G. Then there exists a weakly convex dominating set $D^{\prime} \subseteq V(G)$ such that $\left|D^{\prime}\right|<|D|=3 m$. Therefore, there exists an index i such that at least three vertices of $V\left(C_{5}^{i}\right)$ do not belong to D^{\prime}. Since D^{\prime} is weakly convex, those three vertices induce a P_{3} in G. Without loss of generality, let $\left(x_{3}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right) \notin D^{\prime}$. Now, by Lemma 4 , we obtain that $\left(x_{1}, y_{k}\right) \notin D^{\prime}$ for $l \in\{2,3\}, k \in\{1,2,3\}$ and $\left(x_{1}, y_{2}\right) \in D^{\prime},\left(x_{4}, y_{2}\right) \in D^{\prime}$. Again we conclude that $m \leq 6$.

If $\left(x_{4}, y_{3}\right) \notin D^{\prime}$, then $\left(x_{3}, y_{4}\right) \in D^{\prime}$ and so no $\left(\left(x_{4}, y_{2}\right),\left(x_{3}, y_{4}\right)\right)$-geodesic is contained in D^{\prime}. Thus we conclude that $\left(x_{4}, y_{3}\right) \in D^{\prime}$. By similar reasoning and symmetry we obtain that $\left(x_{1}, y_{3}\right) \in D^{\prime},\left(x_{4}, y_{1}\right) \in D^{\prime}$ and $\left(x_{1}, y_{1}\right) \in D^{\prime}$. Further, since D^{\prime} is weakly convex, we have that $\left(x_{5}, y_{k}\right) \in D^{\prime}$ for $k \in\{1,2,3\}$ and if $m=6$ then, additionally, $\left(x_{6}, y_{k}\right) \in D^{\prime}$ for $k \in\{1,2,3\}$.
(a) Suppose $\left(x_{3}, y_{4}\right) \in D^{\prime}$. Then $\left(x_{4}, y_{4}\right)$ belongs to the $\left(\left(x_{3}, y_{4}\right),\left(x_{4}, y_{3}\right)\right)$-geodesic that does not contain vertices from $V(G)-D^{\prime}$, so $\left(x_{4}, y_{4}\right) \in D^{\prime}$. Similarly, considering the $\left(\left(x_{3}, y_{4}\right),\left(x_{1}, y_{3}\right)\right)$-geodesic outside of D^{\prime} we conclude that $\left(x_{1}, y_{4}\right) \in D^{\prime}$ and $\left(x_{2}, y_{4}\right) \in D^{\prime}$. This implies that $\left(x_{5}, y_{4}\right) \in D^{\prime},\left(x_{5}, y_{5}\right) \in D^{\prime},\left(x_{4}, y_{5}\right) \in D^{\prime}$ and $\left(x_{1}, y_{5}\right) \in D^{\prime}$ (see Fig. 5). Then $\left|D^{\prime}\right| \geq 17$ for $m=5$ and $\left|D^{\prime}\right| \geq 20$ for $m=6$. However this contradicts $\left|D^{\prime}\right|<3 m$.
(b) Thus, $\left(x_{3}, y_{4}\right) \notin D^{\prime}$. If $\left(x_{2}, y_{4}\right) \in D^{\prime}$, then each $\left(\left(x_{2}, y_{4}\right),\left(x_{4}, y_{3}\right)\right)$-geodesic would contain vertices from $V(G)-D^{\prime}$, so $\left(x_{2}, y_{4}\right) \notin D^{\prime}$. If $\left(x_{4}, y_{4}\right) \notin D^{\prime}$, then $\left(x_{3}, y_{5}\right) \in D^{\prime}$ dominates $\left(x_{3}, y_{4}\right)$. However, each $\left(\left(x_{3}, y_{5}\right),\left(x_{4}, y_{3}\right)\right)$-geodesic contains vertices from $V(G)-D^{\prime}$. Thus, $\left(x_{4}, y_{4}\right) \in D^{\prime}$. Similarly we obtain that $\left(x_{1}, y_{4}\right) \in D^{\prime}$. Since D^{\prime} is weakly convex, $\left(x_{5}, y_{4}\right) \in D^{\prime},\left(x_{1}, y_{5}\right) \in D^{\prime},\left(x_{4}, y_{5}\right) \in D^{\prime}$ and $\left(x_{5}, y_{5}\right) \in D^{\prime}$ (see Fig. 5). Thus, $\left|D^{\prime}\right| \geq 15$ for $m=5$. If $m=6$, then $\left(x_{6}, y_{k}\right) \in D^{\prime}$ for $k \in\{1,2, \ldots, 5\}$ and thus $\left|D^{\prime}\right| \geq 20$. However both cases contradict the fact that $\left|D^{\prime}\right|<3 m$ (Fig. 6).

Our last result for the Cartesian product of two cycles concerns only weakly convex domination.
Proposition 9. Let $G=C_{m} \square C_{6}$, where $m \geq 6$. Then

$$
\gamma_{\mathrm{wcon}}(G)=4 m
$$

Proof. Let $G=C_{m} \square C_{6}$, where $m \geq 6$ and denote $V(G)=\left\{\left(x_{i}, y_{j}\right): x_{i} \in V\left(C_{m}\right), y_{j} \in V\left(C_{6}\right), 1 \leq i \leq m, 1 \leq j \leq 6\right\}$. We show that $D=\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq m, 1 \leq j \leq 4\right\}$ is a minimum weakly convex dominating set of G. It is obvious that D is weakly convex and dominating, so $\gamma_{\text {wcon }}(G) \leq 4 m$. Suppose D is not a minimum weakly convex dominating set of G. Then there exists a weakly convex dominating set $D^{\prime} \subseteq V(G)$ such that $\left|D^{\prime}\right|<|D|=4 m$ and therefore there exists an index i such that at least three vertices of $V\left(C_{6}^{i}\right)$ do not belong to D^{\prime}. Since D^{\prime} is weakly convex, those three vertices induce a P_{3} in

Fig. 6. Case (b) of $C_{m} \square C_{5}$.

Fig. 7. Case (a): subcase $\left(x_{3}, y_{5}\right) \in D^{\prime}$ of $C_{6} \square C_{6}$.
G. Without loss of generality, let $\left(x_{3}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right) \notin D^{\prime}$. Now, by Lemma 4 , we obtain that $\left(x_{l}, y_{k}\right) \notin D^{\prime}$ for $l \in\{2,3\}$ and $k \in\{1,2,3\}$ and $\left(x_{1}, y_{2}\right) \in D^{\prime},\left(x_{4}, y_{2}\right) \in D^{\prime}$. Again we conclude that $m \leq 6$.

Moreover, by similar reasoning as in the proof of previous proposition, we obtain that $\left(x_{l}, y_{k}\right) \in D^{\prime}$ for $l \in\{1,4,5,6\}$ and $k \in\{1,2,3\}$.
(a) If $\left(x_{3}, y_{4}\right) \in D^{\prime}$, then by considering $\left(\left(x_{3}, y_{4}\right),\left(x_{4}, y_{3}\right)\right)$-geodesics we conclude that $\left(x_{4}, y_{4}\right) \in D^{\prime}$. Similarly, $\left(x_{1}, y_{4}\right)$ and $\left(x_{2}, y_{4}\right)$ belong to a $\left(\left(x_{3}, y_{4}\right),\left(x_{1}, y_{3}\right)\right)$-geodesic and thus they belong to D^{\prime}. If $\left(x_{3}, y_{5}\right) \in D^{\prime}$, then each $\left(\left(x_{3}, y_{5}\right),\left(x_{4}, y_{1}\right)\right)$ geodesic in D^{\prime} contains $\left(x_{4}, y_{6}\right)$, so $\left(x_{4}, y_{6}\right) \in D^{\prime}$ and further $\left(x_{4}, y_{5}\right) \in D^{\prime}$. Similarly, each $\left(\left(x_{3}, y_{5}\right),\left(x_{1}, y_{1}\right)\right)$-geodesic in D^{\prime} contains $\left(x_{1}, y_{6}\right)$, so $\left(x_{1}, y_{6}\right) \in D^{\prime}$ and further $\left(x_{1}, y_{5}\right) \in D^{\prime}$ and thus (x_{2}, y_{5}) $\in D^{\prime}$ (see Fig. 7). Since D^{\prime} is weakly convex, $\left(x_{2}, y_{6}\right),\left(x_{3}, y_{6}\right) \in D^{\prime}$ or $\left(x_{5}, y_{6}\right),\left(x_{6}, y_{6}\right) \in D^{\prime}$. In both situations $\left|D^{\prime}\right| \geq 24=4 m$, a contradiction.
Therefore we conclude $\left(x_{3}, y_{5}\right) \notin D^{\prime}$. Since D^{\prime} is weakly convex, $\left(x_{3}, y_{6}\right) \notin D^{\prime}$. If $\left(x_{2}, y_{5}\right) \in D^{\prime}$, then each $\left(\left(x_{2}, y_{5}\right),\left(x_{4}, y_{1}\right)\right)$-geodesic would contain vertices of $V(G)-D^{\prime}$ which is impossible. Thus $\left(x_{2}, y_{5}\right) \notin D^{\prime}$ and further $\left(x_{2}, y_{6}\right) \notin D^{\prime}$. Since D^{\prime} is dominating, $\left(x_{1}, y_{6}\right) \in D^{\prime},\left(x_{4}, y_{6}\right) \in D^{\prime}$. Moreover, the weakly convexity of D^{\prime} implies that $\left(x_{l}, y_{5}\right) \in D^{\prime}$ for $l \in\{1,4,5,6\}$ and $\left(x_{l}, y_{6}\right) \in D^{\prime}$ for $l \in\{5,6\}$ (see Fig. 8). However then $\left|D^{\prime}\right| \geq 24$, a contradiction.
(b) If $\left(x_{3}, y_{4}\right) \notin D^{\prime}$, then by the similar reasoning as in the proof of Proposition 8 , we obtain that $\left(x_{2}, y_{4}\right) \notin D^{\prime}$ and $\left(x_{l}, y_{4}\right) \in D^{\prime}$ for $l \in\{1,4,5,6\}$. Now, the rest of the proof is similar to the proof of the Case (a) and (b) of Proposition 8.

Fig. 8. Case (a): subcase $\left(x_{3}, y_{5}\right) \notin D^{\prime}$ of $C_{6} \square C_{6}$.

Acknowledgement

We thank the referee for suggestions which improved the quality of this paper.

References

[1] J. Cyman, M. Lemańska, J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) $307-316$.
[2] Liying Kang, Moo Young Sohn, Hye Kyung Kim, Bondage number of the discrete torus $C_{n} \times C_{n}$, Discrete Math. 303 (2005) 80-86.
[3] D. Meierling, L. Volkmann, S. Zitzen, The signed domatic number of some regular graphs, Discrete Appl. Math. 157 (8) (2009) 1905-1912.
[4] J. Topp, Personal communication, Gdańsk University of Technology, 2002.
[5] D.M. Van Wieren, Critical cyclic patterns related to the domination number of the torus, Discrete Math. 307 (2007) 615-632.

[^0]: * Corresponding author.

 E-mail addresses: gardenia@pg.gda.pl (J. Raczek), magda@mif.pg.gda.pl (M. Lemańska).

