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Abstract: The article concerns the automation of vessel movement anomaly detection for 

maritime and coastal traffic safety services. Deep Learning techniques, specifically 

Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of 

the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the 

form of a grayscale image, were generated. 1458 convolutional neural networks with different 

structures were trained to find the best structure to classify anomalies. The influence of 

various parameters of network structures on the overall accuracy of classification was 

examined. For the best networks, class prediction rates were examined. Activations of 

selected convolutional layers were studied and visualized to present how the network works in 

a friendly and understandable way. The best convolutional neural network for detecting vessel 

movement anomalies has been proposed. The proposed CNN is compared with multiple 

baseline algorithms trained on the same dataset. 

Keywords: convolutional neutral networks, deep learning, anomaly detection, vessel 

movement anomalies, radar datasets 

1. Introduction

Monitoring of the vessel traffic at sea and near the maritime borders is a crucial task of 

many uniformed services, such as the Border Guard or the Maritime Office. These 

organizations have to be equipped with technology enabling communication, acquisition, 

exchange and visualization of data in various operational situations, as well as the 

classification of vessel behaviors. The amount of data to be analyzed is increasingly 

overwhelming for human operators. It is common for a single operator to observe multiple 

screens at the same time. In such conditions, it is very easy to make a mistake, which can be 

very detrimental. Therefore, it is important to develop techniques to automate some elements 

of the operator’s work. It is necessary to provide automatic processing to synthesize the 

behaviors of vessels to relieve the operator and present him with ready results of analyses in 

an understandable and practical way. One such element of the operator’s work is the detection 

and classification of so-called vessel movement anomalies. 
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A vessel movement anomaly may take various forms. It may be a situation in which a 

ship significantly deviates from the set course or a situation in which two ships are getting 

close enough for smuggling. It may also be a situation where the ship is moving in the wrong 

direction or is entering a restricted area. This article discusses vessel route anomalies relevant 

to the Maritime Regional Unit of the Polish Border Guard. As a result of the dialogue with the 

Border Guard, a list of vessel anomalies of interest for to the employees of the border guard 

was determined. Although the list of the defined anomalies was very long, the following 

anomalies were selected for this stage of the research: the vessel is far away from the area, the 

vessel is near the area and it will not enter the area, the vessel is near the area and it will enter 

the area, the vessel is inside the area. The area can be understood as a fairway or a restricted 

area. 

An important limitation to consider when designing methods for detecting or 

classifying anomalies is that the data from the Automatic Identification System (AIS) is not 

trustworthy. In case of malicious event, such as smuggling contraband or military operations, 

enemy vessels would simply not transmit AIS signals. In addition, nowadays we are aware 

that AIS is very susceptible to AIS spoofing and AIS poisoning attacks [1]. These attacks are 

designed to fabricate false AIS signals that provide a false location of a vessel, e.g. to cover 

up the fact of hijacking a ship. These attacks can lead to misinformation or diversion. For the 

above reasons, the Border Guard is not interested in detecting anomalies based on AIS data. 

On this basis, there is a critical need for new anomaly detection methods, which process the 

data obtained from radars. 

This article presents an innovative solution to the problem of classification of vessel 

movement anomalies using Convolutional Neural Networks (CNNs). To the best of the 

authors’ knowledge, this is the first work on this subject using Deep Learning techniques. The 

motivation to use this technique is the remarkable achievements of convolutional neural 

networks in solving problems of image classification. The goal of the paper is to use the 

object detection approach for images to classify vessel movement anomalies obtained from 

radar data.  

The novelty and contribution of this paper is listed below. 

 An innovative approach of using a convolutional neural network for the purpose of

vessel movement anomaly detection and classification.

 New synthetic radar datasets for the proposed CNN training. The generated datasets

(originally saved as data vectors) were visualized as images.

 In-depth study leading to the selection of the best CNN structure (from a pool of 1458

trained variants) for the considered classification of vessel movement anomalies.

 Detection of anomalies and their further classification into groups of anomalies

(defined by the cooperating the Maritime Unit of the Polish Border Guard) in order to

study the decision accuracy of the proposed CNN and cover different scenarios of

practical application.

 Investigation of the impact of changes in various network structure hyperparameters

and learning hyperparameters on the overall classification accuracy.

 Comparison of the proposed method with other machine learning methods using the

same training datasets.
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 Use of heatmaps of layer activations at various depths in the CNN to explain and 

visualize how the proposed networks work for better interpretability. 

The structure of this article can be summarized as follows. Related work is described 

in Section 2. Section 3 presents the research methodology. The generation of new datasets is 

described in Section 4. Section 5 describes the tested network structures and the learning 

parameters used. An analysis of the overall accuracy as well as specific class prediction rates 

of the trained networks is presented in Section 6. Section 7 describes the structure of the 

proposed network. A comparison of the proposed CNN and other machine learning 

algorithms trained on the same dataset is presented in Section 8. An analysis of activations of 

selected layers and a discussion on interpretability are included in Section 9. Conclusions are 

included in Section 10. 

 

2. Related Work 

 

Previous work on the detection of vessel movement anomalies can mostly be divided 

into four groups: methods based on Support Vector Machines (SVM), methods based on 

Neural Networks (classic NN, i.e. shallow and fully connected), methods based on Gaussian 

Mixture Models (GMM), and methods based on Bayesian Networks (BN). 

An example of SVM-based methods is presented in [2]. Li et al. proposed a SVM-

based method that extracts high abstract movement features, such as turning left or looping, 

from the vessel’s path and then clusters these features into so-called motives. The authors 

showed that the SVM trained on these high abstract features can classify better than a SVM 

trained on time series of geographic locations. However, SVM-based methods suffer from 

limitation to binary classes, impeded communication of the learned models, inability of partial 

assignment and significant computational complexity. 

Examples of NN-based methods can be found in [3–5]. NNs can be used to detect 

anomalies in a manner that a vector containing a series of geographical coordinates is 

introduced as the input, and the network maps it to the appropriate output class. Rhodes et al. 

proposed a method of clustering normal vessel speeds using a fuzzy neural network. A vessel 

speed that was not considered normal by the network was considered an anomaly. Rhodes et 

al. also proposed a method for anomaly detection based on a NN by predicting the future 

movement of the ship. However, classification models taught by classical neural networks are 

difficult to interpret by a human operator. 

Examples of GMM-based methods can be found in [6–8]. The goal of a GMM is to 

present clustering of training data and its ability to spread across a multi-dimensional space. 

Kraiman et al. presented a method for clustering of vessel data in high-dimensional feature 

space using a GMM as a statistical model of normal data. In that method, learned GMM and 

Bayesian analysis is used for anomaly detection. Laxhammar et al. compared the anomaly 

detection performance of a GMM and a Kernel Density Estimator (KDE), which is a 

generalization of a GMM, on AIS data and stochastically generated anomalous paths. For 

each method, they measured the number of iterations required to correctly classify the path as 

an anomaly. Laxhammar et al. also proposed an unsupervised data clustering of normal vessel 

traffic patterns, described in terms of instantaneous course, speed and position of vessels. The 

GMM is applied as the cluster model with the clustering algorithm being the greedy version 
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of the Expectation-Maximization method. The presented results showed that the most 

prominent anomalies are vessels crossing sea lanes, vessels moving in close proximity to sea 

lanes and vessels moving in the opposite direction of sea lanes. Unfortunately, the GMM’s 

anomaly threshold highly influences the system usability for anomaly detection. Thus, to 

increase the efficiency of the system, the operator should be able to dynamically set the 

appropriate threshold value during system runtime. A GMM and KDE are also used in the 

core of the Traffic Route Extraction and Anomaly Detection (TREAD) method for vessel 

movement anomaly detection [9]. 

Examples of BN-based methods can be found in [10,11]. Mascaroa et al. developed an 

anomaly detection method using Bayesian Networks trained on real-world AIS data and 

complementary data, obtaining both static and dynamic models of Bayesian Network. The 

authors also showed that a dynamic and static model can be combined to improve the overall 

anomaly detection performance. Johansson and Falkman proposed a different method for 

detection of anomalous vessel behavior based on a BN. This method was tested on synthetic 

data and can successfully be utilized to detect single parameter anomalies, for instance, vessel 

speeding. The advantages of a BN are that these networks are easy to examine and verify, it is 

easy to introduce expert knowledge to the model, and they are easily interpreted by a human. 

However, according to Johansson and Falkman, detecting anomalies with a BN is not an ideal 

solution. The method does not detect all of the desired anomalies, unless the detection 

threshold is raised, causing a vast amount of false positives. 

There are papers [12,13] in which deep learning techniques were used to solve such 

problems as recognition of ship outlines in images, vessel type classification or post 

processing of radar data for object detection. However, none of these works address the 

problem of vessel movement anomalies.  

To the best of the authors’ knowledge this paper is the first work on vessel movement 

anomaly detection using deep learning techniques, in particular, convolutional neural 

networks (CNNs). It is difficult or even impossible to compare our work with methods that 

detect vessel movement anomalies based on, e.g. type, category, speed or any other vessel 

parameters obtained from the AIS system due to the different interpretation of anomalies for 

vessel movement as well as the very different input data. Moreover, the AIS system is viewed 

by the Maritime Unit of Border Guard as an unreliable source of information in the event of 

anomaly detection. The use of deep learning techniques on data obtained from radars allowed 

us not only to successfully detect anomalies, but also to further classify them into anomaly 

groups. 

In the past, deep learning techniques have often been discarded in these applications 

due to difficulties of human interpretation of the learned model. Thanks to research like the 

Heatmapping project [14,15] this is no longer true. This article also attempts to explain how 

the network works through visualization of the network “thinking”. 

3. Proposed Methodology

Before conducting the research described in this article, a prototype of anomaly 

detection software, that worked in an analytical manner in accordance with the given rules 

and without using machine learning, had been programmed. Unfortunately, that solution did 
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not meet the authors’ expectations for the following reasons. Firstly, that approach turned out 

to be immensely slow and inadequately scalable in terms of the computing resources for a 

large number of observed objects, which is the case with the Border Guard monitoring the 

entire coast. Secondly, such approach was a closed implementation and did not allow for an 

easy addition of new anomaly definitions without extra programming, without increasing the 

complexity of the system and without increasing the required computing resources. Therefore, 

a need arose to develop a new approach, which is presented in this article. 

The purpose of the proposed approach is the detection and classification of vessel 

movement anomalies using convolutional neural networks. The reasons for the use of 

convolutional neural network are as follows.  

 There is no need to develop any analytical model or feature selection. A CNN uses a

convolution of the image and filters to learn features by itself and passes them to

deeper layers until the network achieves an output which is invariant to geometrical

distortions in input images.

 Once trained, a convolutional neural network can report a decision very quickly. The

reply is almost instantaneous – within a few milliseconds on a simple PC.

 An existing CNN can always learn new anomaly classes. A scenario with four classes

of anomalies was considered in this paper but in the future we intend to increase their

number significantly, including more non-linear problems. A CNN is well suited for

an increasing number of classes as it handles multi-class problems by producing

probabilities for each class.

 A CNN classifier for multiple classes can be trained in one go.

 The aim of the study was to build a single network to detect multiple complex

anomalies with the possibility to add new anomaly classes without changing the

algorithm or the structure of the system.

 The architecture of a CNN inherently supports parallelization. NVidia CUDA

technology can be used to significantly increase both the training and the decision

time.

 A CNN analyzes the local spatial coherence of images. This feature not only reduces

the number of operations needed to process an image (by operating on patches of

meaningful pixels), but also adequately reflects the real life interpretation of the input

data.

 It is easy to interpret a CNN’s workflow with the use of heatmaps of layers’

activations. This is a direct counterpart to an MRI scan of a human brain.

Based on the above-mentioned properties, one can see that convolutional neural networks are 

an ideal tool for the designated approach, which is discussed in detail below. 

The input of the proposed method is a data vector containing data about the restricted 

zone (number of vertices and geographic coordinates of the vertices) and data about the 

vessel’s movement (sequence of 10 consecutive vessel positions). The input data is processed 

and converted into an image. The output of the method is the decision whether a given vessel 

movement is normal (anomaly class 0) or is an anomaly, and if so, to classify this anomaly 

into one of three classes (anomaly classes 1–3).  
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The flowchart for the proposed method is shown in Figure 1. The vessel movement 

data coming from radars are stored in the surveillance system database. The restricted area is 

defined by the operator and its definition is stored in the surveillance system database. Before 

the data is fed from the database into the convolutional neural network, it is converted into an 

image. The convolutional neural network classifies the input data into one of the anomaly 

classes. Class 0 means normal vessel movement, i.e. no anomalies. The decision on anomaly 

detection and the decision on the anomaly class, in case of its detection, are transferred back 

to the surveillance system, to the presentation module. Classifier prediction scores can also be 

transferred to the presentation module, so that the operator of the surveillance system has full 

information about the certainty of the decisions. 

Fig.1. The proposed approach flowchart. 

The research can be presented as a sequence of six detailed tasks: 1. Generation of 

new datasets containing anomalies of various classes. 2. Training of convolutional neural 

networks of various structures. 3. Searching for the best shape of the network based on the 

accuracy of the trained networks, as well as an analysis of rates of specific class predictions 

for the best networks. 4. Determining the structure of the proposed network for the considered 

problem and future research. 5. Comparison with multiple baseline algorithms using the same 

dataset. 6. Analysis of layer activations for explanation and interpretation of the learned 

model. 

The first task was to write an application to generate random forbidden areas and 

random routes of vessels in relation to the area. The routes were drawn in such a way as to 

obtain the appropriate classes of vessel movement anomalies. Each instance of a vessel route 

was visualized in the form of a grayscale image. The idea was to use the achievements of 

image recognition through deep learning. Three variants of datasets were produced for three 

classification scenarios. Details are described in Section 4. 

The second task was to use the previously created datasets to train 1458  networks of 

various structures. The trained networks differed in the number of convolutional layers, the 

number and size of filters in the convolutional layers, the number of fully connected layers, 

the types of functions in the activation layers, and the types of normalization layers. The goal 

of training such a large number of networks was to find a favorable network shape to solve 

the classification problem under consideration. Details are described in Section 5. 

The third task was to evaluate the 1458 trained networks. The evaluation criterion was 

the resulting accuracy of the network. The impact of individual variable elements of the 
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network structure on their resulting classification accuracy was examined. Based on the 

obtained results, the best structures of networks for the three dataset variants were selected. 

Next, more detailed analysis of the accuracy of the networks was conducted. Rates for all 

possible class predictions were calculated for the selected best network structures. The 

greatest difficulty in the considered classification scenarios and the problems for visualization 

of the samples in the datasets were identified. The results are presented in Section 6. 

The fourth task was to choose the structure of the proposed convolutional neural 

network for the considered problem. The intention is that this proposed network will be the 

starting point for future research using real-life data from radar devices. Details are described 

in Section 7. 

The fifth task was to compare the proposed CNN with multiple baseline algorithms 

using the same dataset. The comparison includes accuracy, training time, decision time, and 

interpretability. The proposed CNN and the second best method are compared using ROC 

curves and confusion matrices. Details are described in Section 8. 

The sixth task was to perform detailed tests of the activations of selected network 

layers were performed using heatmaps. Deep learning methods are often accused of being 

incomprehensible to humans. Hence, the purpose of this study was to explain and understand 

the performance of the trained networks. The reasoning of the best network for the most 

complex dataset variant was visualized. Heatmaps of layer activations at various depths in the 

network were presented. The results are presented in Section 9. 

For the generation of new datasets, an application was written in the C# language in 

the .NET framework. As the programming language for training and validation of the 

convolutional neural networks and their further analyses the MATLAB 2018a with Deep 

Learning Toolbox was selected. The calculations were made utilizing the CUDA technology 

and a Nvidia GeForce GTX 1080 Ti graphics card. 

4. New Datasets

For the purpose of the research, datasets for the training and validation of 

convolutional neural networks were generated. The data characteristics were determined from 

cooperation with the Maritime Regional Unit of the Polish Border Guard. An important 

assumption was that the data were to be geographic coordinates obtained only from radars. 

Data from the AIS system are of little interest for the border guard for many reasons. Firstly, 

persons of interest to the border guard will always turn off AIS transmitters during illegal 

activities, whether smuggling, hijacking, intelligence, etc. Secondly, cases of AIS spoofing 

are widely known, which completely undermine the credibility of data from the AIS system. 

As a result of the cooperation, a list of vessel movement anomalies interesting for the 

operators of the border guard was determined. Although the list of defined anomalies was 

very long, only a group of anomalies related to the movement of the object relative to the 

designated area was selected at this stage of the research. The designated area may be, e.g. a 

fairway or a restricted area, depending on the circumstances. Hence, examples of anomalies in 

this group may be the following situations: the ship is too close to the area, the ship is in the 

area, the ship enters the area, the ship leaves the area, etc. 
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An application was written in the C# language in the .NET framework. The 

application generates random restricted areas and random routes of vessels in relation to the 

area. The aim of the research was to utilize the significant achievements of object detection in 

images through deep learning, thus, the data was to be presented as an image. In order to 

facilitate processing, the data was visualized in the form of one-channel grayscale PNG files. 

Restricted areas were randomly generated closed figures with different numbers of 

vertices. Various appearances for the areas were considered, such as figures filled with solid 

gray with visible edges, figures filled with solid gray without edges, or empty figures with 

only visible edges. After preliminary testing, it was found that the best results were obtained 

for figures filled with solid gray with no visible edges, thus such were used for the remainder 

of the study. 

In order to draw the path of the vessel, a series of geographical positions were 

randomly generated. The shape of the path was pseudo-random, but the generator was written 

in such a way as to obtain four types of shapes: straight path, arc path, zigzag path, combined 

path from two other types. To illustrate the variable speed of vessels, the distance between 

successive positions was randomized from the given range. Various appearances for the 

travelled routes were considered. Paths with a highlighted head, i.e. the youngest position on 

the path, or without a visible head, were considered. Furthermore, the path could have been a 

solid color or darkening in grayscale with distance. After preliminary testing, it was found 

that the best results were obtained for the path with a visible head and the color changing in 

grayscale from white for the most recent position to black for the oldest position. 

Three variants of the anomaly classification were defined, which differ in the number 

of classes. Variant A covered a classification scenario in which there were only two classes of 

anomalies: “class 0–2” which means that the vessel is outside the area, and “class 3” which 

means that the vessel is inside the area. Variant B included a classification scenario in which 

there were three classes of anomalies: “class 0” – the vessel is far from the area; “class 1–2” – 

the vessel is near the area but still outside of it; “class 3” – the vessel is inside the area. While, 

the most complex variant, C, included a scenario in which there were four classes: “class 0” – 

the vessel is far away from the area, “class 1” – the vessel is near the area and will not enter 

the area; “class 2” – the vessel is near the area and will enter the area; “class 3” – the vessel is 

inside the area. 

It should be noted that the datasets in variants A and B are only a prelude to our 

research. The reader should pay the greatest attention to the dataset in variant C as it is closest 

to our target anomaly list, which is described in Section 8.  

The routes were drawn in such a way as to obtain the above-mentioned four classes of 

vessel movement anomalies. The threshold of proximity to the forbidden area was set to 0.05 

degrees in the decimal degrees format. For each of the 4 classes of anomalies, 5 groups of 

areas with the number of vertices varied from 4 to 8 were generated. For each group of areas, 

4 subgroups of paths with 4 previously mentioned types of shapes were generated. In each 

subgroup, 1000 paths of a given anomaly class were generated. In total, 4×5×4×1000 = 

80,000 images were generated. The resulting images were sorted to get three variants of 

datasets for three classification scenarios. Examples of images for various anomaly classes in 

three variants of datasets are shown in Figures 2 to 4. 
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Fig.2. Examples of class 0–2 and class 3 anomalies in the variant A dataset. 

Fig.3. Examples of class 0, class 1–2 and class 3 anomalies in the variant B dataset. 

Fig.4. Examples of class 0, class 1, class 2 and class 3 anomalies in the variant C dataset. 

5. Network Structures and Learning Parameters

All three variants of datasets described in Section 4 were used to train convolutional 

neural networks of various structures. The goal was to find a favorable network shape to solve 

the considered classification problem. 

Firstly, an adequate architecture backbone and the considered hyperparameters were 

selected. Hyperparameters for CNN fall into two groups: network structure parameters and 

learning parameters. In the network structure parameters group, the following 

hyperparameters can be distinguished: number of hidden layers, types of layers, number of 

filters, filter size, activation functions, etc. In the learning parameters group the following 

hyperparameters can be distinguished: learning rate, momentum, number of epochs, batch 

size, etc.  

Then a number of architectures were evaluated. We tuned hyperparameters and 

evaluated them empirically. The empirical approach, instead of the analytical one, is a known 

and recognized approach in innovative works using convolutional neural networks. Such 

approach is applicable if no one has previously presented a similar solution to the problem 

under consideration, which could be used as a reference point. If the work is pioneering in its 

application, there is no more direct approach. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Each network structure consists of a convolutional part, a fully connected part and an 

output classification layer. It was decided to investigate networks differing in the number of 

convolutional layers, the number and size of filters in the convolutional layers, the number of 

fully connected layers, the types of functions in the activation layers, and whether different 

normalization layers are present. All variable network structure parameters are described in 

detail in Table I. Since the images in the datasets are relatively simple, no additional pre-

processing of the input images was applied. The pixel values of images sized 256×256 were 

directly fed into the input of the network. The structure of the networks in this study is shown 

in Figure 5. 

Tab.I. Network structure parameters. 

Structure parameter Considered values 

Input layer 

Size of input images 256×256 pixels 

Convolutional part 

The number of convolutional layers 2, 3, or 4 

The number of filters in the first convolution layer 16, 32 or 64 

The number of filters in deeper convolution layers 8, 16, or 32 

Filter size in all of the convolution layers 5×5, 7×7 or 9×9 

Stride value in the first convolutional layer 2 both vertically and horizontally 

Stride value in deeper convolutional layers 1 both vertically and horizontally 

Zero padding in convolutional layers to match the size of the output to the 

size of the input 

Batch normalization layers present or not present 

Activation layers ReLu function, clipped ReLu function, 

or leaky ReLU function with scale 0.01 

Channel-wise local response normalization layers present or not present; 9 channels per 

element 

Fully connected part 

The number of fully connected layers 1 or 2 

The number of neurons in each of the fully 

connected layers 

100 

Activation layer ReLu function, clipped ReLu function, 

or leaky ReLU function with scale 0.01 

Output layer 

The number of output neurons 2, 3 or 4; equal to the number of classes 

Activation layer Softmax function 

Classification output Cross-entropy loss function 
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Fig.5. Variable structure of the CNNs in the research (blue elements are optional and not 

present in every structure, black elements are mandatory). 

The CNNs were trained via supervised learning. The dataset was shuffled once for 

each of the CNNs. Then, 75% of the dataset was allocated to training, and the rest was 

allocated to validation. By shuffling the data, we reduce the variance in learning results and 

ensure that the learned model is general and not overfitted. In cases where data is sorted by its 

classes and types, as in this paper, shuffling the data is a common solution. The purpose of 

shuffling is to ensure that training set and validation set are representative of the overall 

distribution of the data. Moreover, when using the batch gradient descent algorithm, shuffling 

the data is even more important because it avoids the risk that the batch is not representative 

of the overall dataset. In theory, the data could be shuffled even after each epoch to avoid the 

risk of bad batches, but in these studies shuffling was limited to once per training. Data 

shuffling causes each data point in the training set to have an independent impact on the 

model without being biased by the data points before them. 

All learning parameters are described in detail in Table II. The training settings were 

chosen empirically and the goal was to achieve precise training in a reasonable time of a few 

months for all of the combinations of network structures. 

Tab.II. Learning parameters. 

Learning parameter Value 

solving algorithm SGDM (stochastic gradient 

descent with momentum 

optimizer) 

momentum 0.9 

initial learn rate 0.01 

learn rate schedule none 

learn rate drop factor 0.1 
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learn rate drop period 10 

L2 regularization 0.0001 

max epochs 200 

mini-batch size 128 

validation frequency 234 

validation patience 5 

verbose 1 

verbose frequency twice per epoch 

weight learn rate factor in convolutional layers 0.001 

bias learn rate factor in convolutional layers 0.002 

Taking into consideration all of the possible variable parameters of the network 

structures, the total number of trained networks was 1458. The uninterrupted training and 

validation of the above 1458 networks of different structures lasted about 3 months. Checking 

a wider range of parameters can only benefit the final results. As a result, we were able to 

show in the paper the influence of individual parameters of the network structure on the final 

classification efficiency in Section 6. 

Structure parameters for the best networks for the three training dataset variants are 

presented in Section 6. Furthermore, structure parameters for the final proposed method are 

shown in Section 7, moreover, they are presented in the syntax of the Matlab’s Deep Learning 

Toolbox, to facilitate the reproduction of our experiment. 

6. Classification Accuracy

Each variant of the network structure, shown in Figure 5, was tested to present how 

each of them works. From the changes in the architecture, we can obtain changes in: 

classification accuracy, training time, decision time and the number of learnable parameters. 

However, in real use, only classification accuracy and decision time are of great importance. 

As the differences in decision time for different network architectures are negligible, 

classification accuracy was selected as the main criterion. Ultimately, high classification 

accuracy is a prerequisite for the actual implementation of the proposed method. This section 

shows how changes to the network architecture affect the overall accuracy. The impact of 

architectural changes on the other characteristics mentioned above was omitted, as this would 

unnecessarily lengthen the article and would be irrelevant. 

The overall accuracy of the convolutional neural networks was defined according to 

the following formula: 

𝑎 =
∑ 𝑣𝑘,𝑘
𝐶
𝑘=1

|𝑉|
(1) 

where a is the overall accuracy of the CNN, C is the number of classes, vk,k is the number of 

validation data samples of the k-th class which were predicted as the k-th class by the CNN, 

and |V| is the cardinality of the validation dataset. 

Figure 6 shows the overall accuracy of CNNs with different structures for three 

variants of the datasets used for training and validation. It can be seen that for each dataset 
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variant, some of the studied network structures did not converge at all and the accuracy 

remained at 0.5 for 2 classes, 0.33 for 3 classes, and 0.25 for 4 classes. Apart from these 

cases, the networks quickly acquired the ability to classify with varying levels of 

effectiveness. The best overall accuracy was 0.9821 in the case of the dataset variant of 2 

classes, 0.9523 in the case of 3 classes, and 0.8546 in the case of 4 classes. The network 

structure parameters that achieved these best results are detailed in Table III. These CNN 

structures were studied further at the end of this section. 

Fig.6. Overall accuracy of CNNs for different variants of datasets. 

Tab.III. Best network structure parameters for different dataset variants. 

Structure parameter 2 classes 3 classes 4 classes 

Input layer 

Size of input images 256×256 pixels 

Convolutional part 

The number of convolutional layers 4 4 4 

The number of filters in the first 

convolution layer 

32 32 64 

The number of filters in deeper 

convolution layers 

16 16 32 

Filter size in all of the convolution 

layers 

9×9 9×9 9×9 

Stride value in the first convolutional 

layer 

2 both vertically and horizontally 

Stride value in deeper convolutional 

layers 

1 both vertically and horizontally 

Zero padding in convolutional layers to match the size of the output to the size of the 

input 
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Batch normalization layers not present not present not present 

Activation layers clipped ReLU leaky ReLU leaky ReLU 

Cross-channel normalization layers present present present 

Fully connected part 

The number of fully connected layers 1 1 1 

The number of neurons in each of the 

fully connected layers 

100 100 100 

Activation layers clipped ReLU leaky ReLU leaky ReLU 

Output layer 

The number of output neurons 2 3 4 

Activation layer Softmax Softmax Softmax 

Classification output Cross-entropy 

loss function 

Cross-entropy 

loss function 

Cross-entropy 

loss function 

Overall accuracy 0.9821 0.9523 0.8546 

Figure 7 shows the overall accuracy of the CNNs for different numbers of 

convolutional layers. For each dataset, it can be concluded that networks with 4 convolutional 

layers resulted in the best results, but also the largest number of networks that did not 

converge. 

Figure 8 shows the overall accuracy of the CNNs for different filter sizes in the 

convolutional layers. For each dataset, it was observed that the larger the size of the filters in 

the convolutional layers, the greater the accuracy of the network. 

Figure 9 shows the overall accuracy of the CNNs for different numbers of filters in the 

convolutional layers. It can be seen that the number of filters had a negligible impact on the 

overall accuracy, although the smallest number of networks that did not converge were 

obtained for the largest number of filters. 

Figure 10 shows the overall accuracy of the CNNs for different activation functions. It 

was observed that the type of activation function used had no effect on the overall accuracy of 

the network. All three tested activation functions produced very similar results. 

Figure 11 shows overall accuracy of the CNNs for different normalizations present in 

the networks structures. The combination of batch normalization turned on with cross-channel 

normalization turned on or turned off resulted in almost the same results. However, very 

interesting results were obtained for the combination of batch normalization turned off with 

cross-channel normalization turned on. In this case, there was an extremely large number of 

networks that did not converge, which caused this combination to be initially rejected during 

the initial study. However, the continuation of the research showed that this normalization is 

able to give slightly better results than others, but at the expense of long learning time. 

Figure 12 shows the overall accuracy of CNNs for different numbers of fully 

connected layers. For each dataset, it was observed that a single fully connected layer gives 

the best results. Additionally, a single layer means fewer network parameters to learn. 
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Fig.7. Overall accuracy of CNNs for different numbers of convolutional layers. 

Fig.8. Overall accuracy of CNNs for different filter sizes in convolutional layers. 
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Fig.9. Overall accuracy of CNNs for different numbers of filters in convolutional layers 

(twice as many in the 1st layer). 

Fig.10. Overall accuracy of CNNs for different activation functions. 

Fig.11. Overall accuracy of CNNs for different combinations of normalizations. 
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Fig.12. Overall accuracy of CNNs for different numbers of fully connected layers. 

The rate of a specific class prediction was defined according to the following formula: 

𝑟𝑝,𝑐 =
𝑣𝑝,𝑐

|𝑉𝑐|
(2) 

where rp,c is the prediction rate of a sample of the c-th class as the p-th class, vp,c is the number 

of validation data samples of the c-th class which were labeled as the p-th class by the CNN, 

and |Vc| is the cardinality of a subset of the validation dataset for the c-th class. 

The best CNN structures were indicated for each number of classes in Table III. Rates 

of specific class predictions were calculated for these three networks. The results are 

presented in Tables IV to VI. The highlighted cells in the tables apply to the correct prediction 

of a given class, while the rest apply to different types of incorrect predictions. 

Tab.IV. Rates of specific class predictions in case of two classes. 

rp,c p = “class 0–2” p = “class 3” 

c = “class 0–2” 0.9781 0.0219 

c = “class 3” 0.0139 0.9861 

Tab.V. Rates of specific class predictions in case of three classes. 

rp,c p = “class 0” p = “class 1–2” p = “class 3” 

c = “class 0” 0.9698 0.0292 0.0010 

c = “class 1–2” 0.0478 0.9398 0.0124 

c = “class 3” 0.0004 0.0522 0.9474 

Tab.VI. Rates of specific class predictions in case of four classes. 

rp,c p = “class 0” p = “class 1” p = “class 2” p = “class 3” 

c = “class 0” 0.9280 0.0282 0.0404 0.0034 

c = “class 1” 0.0164 0.6819 0.2370 0.0647 
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c = “class 2” 0.0079 0.1269 0.8477 0.0175 

c = “class 3” 0.0000 0.0200 0.0192 0.9608 

For scenarios with two classes (Table IV) or three classes (Table V) of vessel 

movement anomalies, the selected CNNs provided very satisfactory results. For each class of 

anomaly, there is a very high (~ 0.95) rate of correct classification and very low rates of 

different errors, hence these scenarios can be considered solved. 

However, in the scenario with four classes of anomalies (Table VI), the selected CNN 

classifies class 0 (0.9280) and class 3 (0.9608) very well, has reduced effectiveness for class 2 

(0.8477) and is relatively often mistaken for class 1 (0.6819). Additional studies were 

performed and instances of the same CNNs were trained with similar results. In some cases, 

the situation for classes 1 and 2 was reversed, but the biggest challenge was always the correct 

distinction between class 1 or class 2. As a reminder, class 1 means the vessel is near the area, 

and will not enter the area, and class 2 means the vessel is near the area and will enter the 

area. Note that both classes apply when the vessel is considered to be close to the area. It was 

concluded that the problem may be in the form of visualization of the data samples, i.e. 

information on the direction of the vessel’s movement should be marked differently. 

Based on the high rates in the first and the last row in Table VI, it should be 

understood that the networks trained on the variant C of the dataset will also very effectively 

classify the data from variants A and B. It can be seen from the contents of this table that the 

proposed architecture is very well generalized for datasets with a smaller number of classes. 

This is achieved mainly due to the very high rate of true positive classification in the case of 

"class 0" and "class 3". As a result, the network trained on a dataset in variant C can be 

successfully used to distinguish between a smaller number of classes, e.g. for the 

classification "class 0-2" vs "class 3" or "class 0" vs "class 1-2" vs "class 3". In addition, the 

output of the proposed method can be presented as a set of probabilities or percentage weights 

for each class to give the operator more context regarding the final decision in the case of 

classes that are very similar, e.g. "class 1" and "class 2". 

7. Proposed Convolutional Neural Network

Based on the results of the research presented in the earlier sections and the 

conclusions drawn from them, the resulting structure of the convolutional neural network for 

the considered classification of vessel movement anomalies was proposed. The structure was 

presented in Figure 13 as well as in Table VII using the syntax of the Matlab Deep Learning 

Toolbox. Classification accuracy was 0.9280 for anomaly class 0, 0.6819 for anomaly class 1, 

0.8477 for anomaly class 2, and 0.9608 for anomaly class 3. The overall accuracy was 0.8546. 

The total number of learnable parameters in the network is 52,766,424. D
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Fig.13. Final structure of the convolutional neural network for the considered classification of 

vessel movement anomalies. 

Tab.VII. Final structure of the convolutional neural network for the considered classification 

of vessel movement anomalies. 

Index Layer type Description Learnable parameters 

1 Image Input 256x256x1 images with ‘zerocenter’ 

normalization 

2 Convolution (1st) 64 9x9x1 convolutions with stride [2  

2] and padding ‘same’

Weights 9×9×1×64 

Bias 1×1×64 

3 Leaky ReLU leaky ReLU function with scale 0.01 

4 Cross Channel 

Normalization 

cross channel normalization with 9 

channels per element 

5 Convolution (2nd) 32 9x9x64 convolutions with stride 

[1  1] and padding ‘same’ 

Weights 9×9×64×32 

Bias 1×1×32 

6 Leaky ReLU leaky ReLU function with scale 0.01 

7 Cross Channel 

Normalization 

cross channel normalization with 9 

channels per element 

8 Convolution (3rd) 32 9x9x32 convolutions with stride 

[1  1] and padding ‘same’ 

Weights 9×9×32×32 

Bias 1×1×32 

9 Leaky ReLU leaky ReLU function with scale 0.01 

10 Cross Channel 

Normalization 

cross channel normalization with 9 

channels per element 

11 Convolution (4th) 32 9x9x32 convolutions with stride 

[1  1] and padding ‘same’ 

Weights 9×9×32×32 

Bias 1×1×32 

12 Leaky ReLU leaky ReLU function with scale 0.01 

13 Cross Channel cross channel normalization with 9 
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Normalization channels per element 

14 Fully Connected fully connected layer with 100 

neurons 

Weights 100×524288 

Bias 100×1 

15 Leaky ReLU leaky ReLU function with scale 0.01 

16 Fully Connected fully connected layer with 4 neurons Weights 4×100 

Bias 4×1 

17 Softmax softmax function 

18 Classification Output cross-entropy loss function – 

crossentropyex with ‘anomaly0’, 

‘anomaly1’, ‘anomaly2’, and 

‘anomaly3’ classes. 

8. Comparison

In this section, the proposed CNN from the Section 7 is compared with multiple 

baseline algorithms using the same dataset. The advantages of these methods are discussed in 

terms of accuracy, training time, decision time, and interpretability. Additionally, we present 

ways to compare the proposed CNN with other algorithms outside this paper via commonly 

known tools such as ROC curves and confusion matrices. In the end of this section, we 

explain why the problem is not linearly separable. 

For comparison, we chose the most important dataset for us, i.e. variant C with four 

classes of anomalies. The choice of this variant of the dataset was dictated by the fact that it is 

the closest to the real life application for which we are conducting this study. In fact, in the 

future, the list of anomalies will be expanded to around 20 anomalies. Although the datasets 

in variants A and B served well in the early stages of research for the initial selection of 

parameters, comparing the algorithms based on variants A and B would serve purely 

academic purposes and would be out of touch with practice. 

The following algorithms were selected for comparison: decision tree, SVM with 

different kernel functions (linear, quadratic, cubic, and Gaussian), K Nearest Neighbors 

(KNN) with different distance metrics (Euclidean, cosine, cubic, and weighted), Ensemble 

classifiers with different ensemble methods (AdaBoost with decision tree learners, Random 

forest with decision tree learners, Subspace with discriminant learners, Subspace with nearest 

neighbor learners, and RUSBoost with decision tree learners). The results of the comparison 

are presented in Table VIII. 

Tab.VIII. Comparison of the proposed CNN with baseline algorithms using the same dataset. 

Algorithm Accuracy 
Training 

time 

Decision 

time 
Interpretability 

The proposed CNN 0.855 5.97 h 0.0082 s 

Easy due to 

heatmaps; 

hard otherwise 

Decision Tree 0.385 20 s 0.0018 s Easy 

SVM (Linear kernel 

function) 
0.385 1.39 h 0.0047 s Easy 
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SVM (Quadratic 

kernel function) 
0.716 2.73 h 0.0278 s Hard 

SVM (Cubic kernel 

function) 
0.535 4.43 h 0.0293 s Hard 

SVM (Gaussian 

kernel function) 
0.571 0.33 h 0.0390 s Hard 

KNN (Euclidean 

distance metric) 
0.480 0.98 h 0.0185 s Hard 

KNN (Cosine 

distance metric) 
0.531 1.04 h 0.0463 s Hard 

KNN (Cubic 

distance metric) 
0.480 2.35 h 0.1068 s Hard 

Weighted KNN 

(Euclidean distance 

metric) 

0.491 1.42 h 0.0189 s Hard 

Ensemble Classifier 

(AdaBoost with 

decision tree 

learners) 

0.378 1.51 h 0.0126 s Hard 

Ensemble Classifier 

(Random forest with 

decision tree 

learners) 

0.556 1.58 h 0.1242 s Hard 

Ensemble Classifier 

(Subspace with 

discriminant 

learners) 

0.389 1.58 h 0.0195 s Hard 

Ensemble Classifier 

(Subspace with 

nearest neighbor 

learners) 

0.503 2.02 h 0.2326 s Hard 

Ensemble Classifier 

(RUSBoost with 

decision tree 

learners) 

0.376 
2.10 h 

0.0121 s Hard 

In terms of the accuracy of classification, which is the primary criteria of comparison, 

the most effective method is the proposed CNN with an accuracy of 0.855, followed by 

Quadratic SVM with an accuracy of 0.716. The next five methods are characterized by an 

accuracy of approx. 0.55, and the rest have an accuracy below 0.5. This clearly shows the 

supremacy of convolutional neural networks. 

In terms of training time, the proposed CNN was found to be the slowest, with a 

training time of 5.97 h, which was to be expected, followed again by quadratic SVM, with a 

training time of 2.73 h. However, it should be noticed that this parameter is practically 

irrelevant, because in practical applications, an already trained and ready network would be 

used in the system. In addition, one should be aware of the possibility of accelerating deep 

network training thanks to the ever evolving Nvidia CUDA technology. 
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In terms of decision time, the proposed CNN is in the top 3 methods with a decision 

time of 0.0082 s, rivaled only by decision tree with 0.0018 s and linear SVM with 0.0047 s. 

However, neither decision tree nor linear SVM demonstrated satisfactory classification 

performance. The remaining methods have a decision time of one or even two orders of 

magnitude greater than the proposed CNN. This is an extremely important parameter for the 

use of the detection and classification of vessel movement anomalies in real-time or near real-

time. 

In terms of interpretability, the proposed CNN is still an attractive solution. The only 

ones that are very easy to interpret are decision tree and linear SVM due to their extreme 

simplicity and linearity. CNNs are easy to interpret if heatmaps of layer activations are 

analyzed, similar to the discussion in section 9. All of the other methods, including the 

previously mentioned quadratic SVM, are hard to interpret. 

Summarizing, the proposed CNN is characterized by the best classification accuracy, 

with one of the lowest decision times and relatively easy interpretability after heatmap 

analysis. The only other method that gives at least similar classification accuracy is quadratic 

SVM. Therefore, only these two methods were considered for comparison analysis. To enable 

a precise comparison of the proposed CNN with another algorithm outside of this paper, we 

present the ROC curves in Figure 14 and the confusion matrices in Tables IX and X. 
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Fig.14. ROC curves for the proposed CNN and SVM with quadratic kernel function. 

The ratio between true positive and the false positive, for a particular class, is plotted 

by the Receiver Operating Characteristic (ROC). The ROC curve for a perfect and faultless 

classifier is placed at right angle to the upper left edge of the graph. A line drawn at an angle 

of 45 degrees represents the worst case i.e. just a random guess. The overall classifier’s 

quality is measured by the area under the ROC curve. The larger the area under the curve, the 

better the classification performance. As seen in Figure 14, the proposed CNN has better 

classification performance than the quadratic SVM, because the ROC curve for the proposed 

CNN is closer to the top left corner of the plot and has a larger area under the curve for every 

class. 

Tab.IX. Confusion matrix for the proposed CNN. 

Overall 

accuracy 

= 0.8546 

Predicted class True 

positive 

rate 

False 

negative 

rate 
class 0 class 1 class 2 class 3 

T
ru e 

cl
as s class 0

0.9280 

(4640) 

0.0282 

(141) 

0.0404 

(202) 

0.0034 

(17) 
0.9280 0.0720 
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class 1 
0.0164 

(82) 

0.6820 

(3410) 

0.2370 

(1185) 

0.0646 

(323) 
0.6820 0.3180 

class 2 
0.0078 

(39) 

0.1270 

(635) 

0.8478 

(4239) 

0.0174 

(87) 
0.8478 0.1522 

class 3 
0.0000 

(0) 

0.0200 

(100) 

0.0192 

(96) 

0.9608 

(4804) 
0.9608 0.0392 

Tab.X. Confusion matrix for the SVM with quadratic kernel function. 

Overall 

accuracy 

= 0.7156 

Predicted class True 

positive 

rate 

False 

negative 

rate 
class 0 class 1 class 2 class 3 

T
ru

e 
cl

as
s 

class 0 
0.7878 

(3939) 

0.0856 

(428) 

0.1034 

(517) 

0.0232 

(116) 
0.7878 0.2122 

class 1 
0.0236 

(118) 

0.4682 

(2341) 

0.2796 

(1398) 

0.2286 

(1143) 
0.4682 0.5318 

class 2 
0.0114 

(57) 

0.0724 

(362) 

0.8294 

(4147) 

0.0868 

(434) 
0.8294 0.1706 

class 3 
0.0004 

(2) 

0.1124 

(562) 

0.1104 

(552) 

0.7768 

(3884) 
0.7768 0.2232 

The confusion matrix of a particular classifier allows for a display of the overall 

performance of the classifier for each class. It is also possible to easily identify the areas for 

which the classifier performed defectively. The rows and columns of the matrix represent the 

true class and the prediction class, respectively. Matrix cells contain prediction rates in the 

form of fractions and the number of classified instances in parentheses. The correspondence 

of the true class and the predicted class is represented by the diagonal cells. The two 

additional columns on the right contain the true positive rate and the false negative rate for 

each true class. As seen in Table IX and X, the proposed CNN has better classification 

performance than the quadratic SVM due to the higher true positive rates and lower false 

negative rates. 

The results presented in this section proved that the considered classification is not a 

linear problem. Classes presented as images, as in Figure 4, may appear to be linearly 

separable, but they are not. Mainly due to the fact that in order to distinguish between class 1 

and class 2, it is not enough to analyze the position of the vessel in relation to the forbidden 

area, but also the direction of its movement. In this way, the change of the output is not 

proportional to the change of the input. In addition, on the basis of consultations with the 

Maritime Unit of the Polish Border Guard, we plan to expand the anomaly list in the future by 

introducing even more nonlinearity. Examples of new vessel movement anomalies for future 

research are: possible collisions between ships, transit in narrow control sectors reflecting a 

two-way fairway, an anchored ship has moved too far from the anchor point, floating buoy, 

exceeding the speed limit, object separation into two objects, merging two objects into one, 

ships meeting, ships meeting in a restricted area, monitoring the number of objects, and much 

more. Given the above, the further development of any linear classifier would be a dead end. 
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Simultaneously, we find convolutional neural networks to be an ideal tool for our further 

research. 

9. Layers’ Activations

Deep learning techniques, in particular convolutional neural networks, are 

characterized by very high predictive power, but are not easily interpretable by humans. 

Interpreting a nonlinear classifier is important to gain trust into the prediction and to identify 

potential data selection mistakes. This Section describes an experiment that aims to explain 

and visualize how the proposed networks work. In this experiment, the activations of selected 

layers are shown to investigate the learned features by comparing activated locations in the 

convolutional layers and the corresponding locations in the input images. This is a direct 

analogy to magnetic resonance imaging of the activity of the human brain in which different 

regions also activate for different stimulations. If the pixels on the heatmap are bright, it 

means that the channel in question has been activated in the given location, and the network 

considers this feature to be important. By analyzing individual heatmaps, we can see with the 

naked eye what features of the input image are recognized in individual channels of the 

convolution layers. As input images, examples of four classes of anomalies from variant C 

dataset were used, which are presented in Figure 4 in Section 4. As the examined CNN, the 

network with the best classification results for variant C dataset was used, which was 

described in Section 6 and 7. 

Each convolutional layer is made of multiple channels, which are two-dimensional 

arrays. Typically, each channel identifies one of useful features of the input image. Figure 15 

presents the activations of the 1st convolutional layer for a data sample of anomaly class 2. 

There are 64 channels in the first convolutional layer. Each subplot in Figure 15 shows the 

normalized output of a different channel. Black/maroon pixels represent weak activations, 

white/yellow pixels represent strong activations, and orange/red are medium. The bright 

pixels in the channel's output reflect the localization in the input image for which the channel 

was activated. Figure 16 shows the output activations from the 21st (first row) and 44th 

(second row) channel of the 1st convolutional layer for different anomaly classes. By 

comparing with Figure 4, it can be noticed that the 21st channel activated on the edges, while 

the 44th channel activated on the outside of the restricted area. The first convolutional layer is 

usually for learning such simple features of the input image as color or edges. 
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Fig.15. Output activations of 1st convolutional layer for an anomaly class 2 sample. 
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Fig.16. Output activations from 21st (first row) and 44th (second row) channel of 1st 

convolutional layer for different anomaly classes. 

Deeper convolutional layers are meant to learn more sophisticated features of the input 

image. Features of deeper layers are formed by joining features of earlier layers. Figure 17 

shows the output activations of the 4th convolutional layer (after activation function) for a 

data sample of anomaly class 2. The fourth convolutional layer has 32 channels. This is the 

final convolutional layer of the network. It is followed only by the fully connected layer and 

the output classification layer. It can be seen that some channels learned to activate on vessels 

of a class 2 anomaly. As previously, there are a lot of images to analyze, thus only two 

channels were selected for detailed analysis. Figure 18 shows the output activations from the 

7th (first row) and 32nd (second row) channel of the 4th convolutional layer for different 

anomaly classes. It can be observed that the 32nd channel activated strongly only on vessels 

far from the forbidden area and did not activate on vessels near or inside the area. The 

brighter pixels appear only at the location of the vessel from anomaly class 0 in Figure 4. 

Therefore, it should be understood that the network uses this channel to recognize a class 0 

anomaly. Analogously, the 7th channel activates strongly on vessels outside the forbidden 

area. Hence, it can be considered that the network uses this channel to recognize classes other 

than class 3. 

Fig.17. Output activations of 4th convolutional layer for an anomaly class 2 sample. 
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Fig.18. Output activations from 7th (first row) and 32nd (second row) channel of 4th 

convolutional layer for different anomaly classes. 

A similar analysis can be carried out for the other channels of the convolutional layers. 

Each channel is to provide information about one or more features of a data sample. Then, the 

goal of the fully connected layer is to implement a function that will provide correct 

classification results based on the features learned in the convolutional layers. 

10. Conclusions

The paper concerns the problem of vessel movement anomaly detection for the 

services dealing with maritime and coastal traffic safety. The article describes the results of 

multistage research. In cooperation with the Maritime Regional Unit of the Polish Border 

Guard, classes of vessel movement anomalies were defined. Software for generating datasets 

that contain samples of vessel traffic routes in relation to the prohibited area in the form of a 

grayscale image was written. Three variants of the datasets for different numbers of anomaly 

classes were generated. 1458 convolutional neural networks with different structures were 

trained to find the most favorable structure for anomaly classification. The influence of 

various parameters of network structures on the overall accuracy of classification was 

examined. Based on the conclusions drawn, the best structures of convolutional neural 

networks were selected due to the overall accuracy. For the best networks, individual class 

prediction rates were examined and a problem with data sample visualization was diagnosed, 

which led to less effective division between classes 1 and 2. The final convolutional neural 

network for the vessel movement anomaly detection was proposed, for which classification 

accuracy was 0.9280 for anomaly class 0, 0.6819 for anomaly class 1, 0.8477 for anomaly 

class 2, and 0.9608 for anomaly class 3. The overall accuracy was 0.8546. The total number 

of learnable parameters in the network is 52,766,424. For comparison with other machine 

learning algorithms, ROC curves were drawn and confusion matrices were calculated. 

Activations of selected convolutional layers were studied and visualized to present how the 

network works in a friendly and understandable way. 
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Future work will concern three areas. Firstly, the set of vessel movement anomaly 

classes will be expanded to include anomalies of relative movement of two objects that would 

reflect the scenarios of a ship hijacking or a contraband transfer. Secondly, new anomaly 

classes of unusual paths will be added that reflect the scenarios of a deviating ship or a ship 

that has moved to some location and then returned to the correct course. Thirdly, the next 

convolutional neural networks will be taught using real life data rather than artificially 

generated data. 
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