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Abstract. The motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical 
model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement 
of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both 
two and three-dimensional approaches. It is the first time studying all necessary measures that increase the accuracy of the 
obtained results. These parameters are essential to perform a completely nonlinear analysis and consider the effects of the Earth’s 
rotation around its axis. Unlike most modeling of nonlinear partial differential equations in applied mechanics that only considers 
nonlinear effects in a particular direction, the general nonlinear terms are considered in the present study, which increases the 
accuracy of the amount of displacement of the Earth's inner layers. Also, the fully nonlinear and dynamic differential equations are 
solved by a semi-analytical polynomial method which is an innovative and efficient method. Determining the amount of critical 
pressure at the fault location that will cause phenomena such as earthquakes is one of the useful results that can be obtained from 
the mathematical modeling in this research. 

Keywords: Planet Earth, Tectonics plates, Nonlinear dynamic analysis, Semi-analytical polynomial method. 

1. Introduction 

Scientists think the Earth formed about the same time as the Sun and other planets about 4.6 billion years ago when the solar 
system and the giant gas orbiting cloud and dust, known as the Solar Nebula, came together. When the nebula collapsed due to 
gravity, it spun faster and became a flat disk. The majority of material due to gravitational force formed a huge spherical shape 
which is called the Sun. Other particles inside the disk collided and clung together to form larger objects, including the Earth. 
Scientists assume the Earth started as a waterless mass of rock. But in recent years, new analyzes of minerals trapped in ancient 
microscopic crystals show that liquid water existed on Earth, during the first 500 million years. The radioactive material in the rock 
and the increase in pressure in the depths of the Earth create enough heat to melt the planet's interior, causing some chemicals to 
come to the surface, and form water, while others turn into atmospheric gases. 

Nowadays, it is found that oceans and the Earth's crust might have formed about 200 million years after the initial forming of 
the planet. As the Earth revolves around the Sun, it also rotates on an imaginary line called the axis, which runs from the North 
Pole to the South Pole. The Earth needs 23.934 hours to rotate on its axis and 365.26 days to orbit the Sun. The axis of rotation of the 
Earth is tilted relative to the plane of the zodiac (corresponding to the eclipse), which is an imaginary surface of the planet's orbit 
around the Sun. Earth's orbit is not a complete circle but is similar to the orbits of other planets, oval. Our planet is slightly closer 
to the Sun in early January and slightly away from the Sun in July, although these changes have very little effect on the warming 
and cooling of the Earth's axis. 

Earth's core is approximately measured as 4400 miles (7081.11 km). Also, it is slightly larger than 50% of entire the Earth's 
diameter. The farthest core is 1400 miles (2253.08 km) in a molten state, while the inner core is solid. It is about four-fifths the size 
of Earth and is about 1600 miles (2574.95 km) in diameter. The core is responsible for the planet Earth's magnetic field which helps 
deflect harmful charged particles fired from the Sun. The Earth's mantle is settled above the core, and its thickness is about 1800 
miles (2896.82 km). The mantle is not completely rigid and can flow slowly. The Earth's crust floats on the mantle like a piece of 
wood. The gentle movement of a rock in the mantle moves the continents back and forth, causing earthquakes, volcanoes, and 
mountain ranges. At the top of the mantle, the Earth has two types of crusts. The land of the continents is composed mostly of 
granite and other light silicate minerals, while the ocean floor is composed mostly of a dark, dense volcanic rock called basalt. The 
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crust is on average about 25 miles (40.23 km) thick, although in some areas it can be thin and thick. The oceanic crust is usually 
only about 5 miles (8.05 km) thick. As we get closer to the Earth's core, the temperature gets warmer. At the bottom of the crust, the 
temperature rises to about 982.22C and rises to about 1C below the crust. Geologist assumes that the temperature of the Earth's 
outer core is around 3000 to 4300C, and also the inner core temperature is considered 7000C. This value is more than the Sun's 
outer surface temperature. The internal pressure of the Earth is relatively easy to estimate. The pressure of each point, below the 
sphere, is determined according to the thickness, and density of the upper rocks. As it is mentioned, the density of different layers 
can be obtained based on seismic wave data. This makes it possible to calculate the pressure as a function of depth. The pressure 
in the center of the Earth reaches more than 3.5 million times the atmospheric pressure on the Earth's surface. The temperature in 
the Earth's crust rises by about 30C per kilometer deep. Of course, for deeper parts, this increase is slower. For example, at a depth 
of 2800 km, the temperature should have reached 8400C, at which point the rocks can no longer be solid or even liquid. Therefore, 
the temperature of the mantle and core should be much lower than these values. 

Navabi and Barati [1] modeled the magnetic field of Earth. They claimed that their study can help space missions. Some research 
has been conducted to model the Earth's pressure, inner core, and Earth's crust [2-4]. Wang et al. [5] have done an experience to 
determine collisional tectonics on early Earth. Recently, studies about tectonics on Earth have been done by researchers [6-10]. It 
can be seen that there is no research in which the movements of the Earth's layers are simulated as a mathematical model or it is 
not comprehensive and may only examine a specific subject in this field. Therefore, mathematical and mechanical models that 
have studied shell structures, especially spherical ones, can be used very effectively. In the following, previous research in this 
regard is summarized. 

Pang et al. [11] investigated the free vibrational behavior of doubly-curved shells of revolution with arbitrary boundary 
conditions. They used Flügge’s thin shell theory and the Rayleigh-Ritz method in the modeling and solution. Dastjerdi et al. [12-14] 
studied the bending and dynamic analysis of plate and shell structures in macro and nano sizes. They could propose a 
comprehensive model due to the mechanical point of view in their studies. They considered two and three-dimensional analyzes 
and also, and assumed a nonlinear strain field in all of their studies to obtain more accurate results, especially for large deformation 
analysis. Zeighampour and Beni [15] analyzed conical shells utilizing the couple stress theory. Dastjerdi and Akgöz [16] modeled a 
fullerene structure using a spherical geometric shape and found its static behavior under static uniform transverse loading. 
Pietraszkiewicz [17] investigated thermo-mechanics of shells using 3D laws of continuum thermo-mechanics. Geometrically 
nonlinear analysis of shell structures is investigated by using a flat triangular shell finite element [18] with the meshless method. 
Also, Dastjerdi et al. [19] studied the dynamic analysis of spherical gyroscopes with variable thicknesses made of functionally graded 
materials. They considered two independent rotation axes due to the simulation of gyroscopic effects. The dynamic investigations 
of shell structures were examined experimentally and for optimizing purposes [20, 21]. Lavrencic and Brank [22] comprehensively 
reviewed and compared many mixed and mixed-hybrid nonlinear shell finite element formulations to indicate those that are 
closest to the optimal one. Lee and Hodges [23] analyzed the mechanical behavior of laminated composite shells. Zhang et al. [24] 
studied a computational method for dynamic analysis of flexible sandwich plates. Experimental and analytical studies have been 
done by Li et al. [25] to determine the deformation and failure of a thin spherical structure under dynamic impact loading. Sharma 
and Panda [26] proposed a numerical scheme based on the higher-order shear deformation theory in conjunctions with coupled 
finite and boundary elements to examine the vibroacoustic responses of laminated composite sandwich curved shell panels under 
a harmonic point load. Eyvazian and his colleagues [27] studied the dynamic of reinforced nanocomposite shells exposed to a 
moving load. Fadida et al. [28] studied the static as well as dynamic shear-tension behavior of additively manufactured Ti6Al4V 
containing spherical and prolate voids. Serhat et al. [29] studied the dynamic analysis of doubly curved composite panels utilizing 
lamination coefficients and the spectral-Tchebychev technique. Li et al. [30] conducted research on the dynamic characteristics of 
saturated poroelastic media via Newmark finite element methods. Viana et al. [31] examined the nonlinear dynamic behavior of 
steel frames with the plastic zone technique via the Corotational approach. Huang et al. [32] presented a damping model for 
nonlinear dynamic investigation. The nonlinear dynamic analysis of laminated doubly curved panels subjected to thermal 
surroundings was presented by Li et al. [33]. Fu et al. [34] investigated dynamic analysis of porous FGM conical shells exposed to 
parametric excitation in thermal surroundings based on FSDT via generalized differential quadrature. Zhang et al. [35] studied the 
nonlinear dynamic characteristics of large-scale single-layer lattice domes. Also, some other dynamic analyses [36-42] were 
conducted recently. Monge et al. [43] studied the static and deformation behavior of doubly curved laminated composite shells 
under different types of loading conditions. Mellouli et al. [44] surveyed the free vibration response of FG carbon nanotube-
reinforced shell structures on the basis of a modified Mindlin-Reissner theory and meshfree radial point interpolation method. 
Zhao et al. [45] perused dynamical analysis of hyperelastic spherical shells subjected to dynamic loads with structural damping. 
The analytical solution of stress distribution of FG hollow cylinder/spherical pressure vessel was presented and compared with the 
numerical and classical solutions by Xie et al. [46]. Yi et al. [47] investigated large amplitude and nonlinear natural frequencies of 
functionally graded small-scale shells with pores inside the composite. Also, some other mechanical analyses of related topics can 
be found in [48-59]. 

After a literature survey, it appears that no study has yet been carried out to provide a comprehensive mechanical and 
mathematical model to simulate the movements of the Earth's layers that are subjected to internal pressures. The study of the 
behavior of the Earth's layers is often the result of experimental works, which are very costly and sometimes impossible due to the 
very high temperatures and pressures in the Earth's inner layers. Therefore, in this study, the planet Earth is theoretically and 
mathematically modeled by the geometric shape of a sphere, in which different inner layers have different thicknesses. Two-
dimensional and three-dimensional shell theories are employed and the governing partial differential equations of the model are 
derived. Attempts are made to consider most of the prevailing conditions, such as the Earth's rotation around its axis (which rotates 
one full revolution every 24 hours) and the pressure gradient in the internal layers. Semi-analytical polynomial method (SAPM) is 
applied to solve the resulting dynamic equations. The important point in this modeling is completely nonlinear analysis in all the 
main three independent directions of the problem. In other words, in addition to the radial direction, there are nonlinear parameters 
in both latitude and longitude to have the highest possible accuracy in the results. This research can provide relevant information 
on the deformation of the Earth's layers under internal pressures to researchers working in this field. Also, the presented nonlinear 
governing differential equations are comprehensive equations that are able to give desirable results by changing any parameters. 

2. Structure of the Earth's Layers 

Figure 1 shows the schematic view of the planet Earth considering its sub-layers. The Earth has two bevels in the North and 
South Poles, which are created due to the rotation of the Earth (revolution of the Earth around its central axis). The axis of rotation 
of the Earth is angular with respect to its orbit around the sun (axial tilt about 23.4). As mentioned earlier, this aspect causes the 
seasons to occur due to differences in the angle of sunlight to the Earth. It is also observed that due to this axial tilt, the seasons in 
the Northern hemisphere are opposite to the Southern. For example, if it is summer in the Northern hemisphere, the inhabitants 
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of the Southern hemisphere will experience winter. As a result, in the equator regions due to the constant angle of sunlight during 
the year, the seasons will not be changed significantly and the temperature difference is small. Also, the five inner layers of the 
Earth are shown and determined in Figure 1. The average radius of the Earth is shown as ��  which equals 6371 kilometers 
(approximately). 

It is observed that the outermost layer of the Earth is its crust, which is made of minerals and there is life in this layer. The 
mantle itself consists of two sub-layers, the upper mantle, and the lower mantle, and is the largest layer of the Earth. This layer is 
made of very soft and dense semi-solid rocks that are mostly composed of iron and magnesium. The layers of the Earth's crust are 
constantly moving. The movements of tectonics plates cause continental drift, according to which the lithosphere which itself 
consists of 7 or 8 main plates is constantly moving, and due to the collision of these plates’ phenomena such as earthquakes, 
subsequent tectonic folding, the formation of mountains and geological depression will occur. The 7 main plate tectonics can be 
categorized as follows: 1- Pacific plate 2- North American plate 3- South American plate 4- Australian plate 5- African plate 6- Indian 
plate 7- Antarctic plate 

The Earth's outer core is made of molten metals, iron, and nickel as well as sulfur. This layer controls the Earth's magnetic field. 
The inner core, which is under considerable pressure is solid and made of iron. The temperature of the inner core is about 6000C, 
which is very high and about the temperature of the sun’s surface. The pressure in this area is about 310 GPa. 

The shape of the Earth has always changed over time. For example, about 270 million years ago, there was a supercontinent 
called Pangea, which included all existing continents. Over time, this vast continent has disintegrated due to tectonics and formed 
new continents. 

The oceanic and continental crusts form the Earth's crust. The oceanic crust is heavier than the continental crust and sinks 
very slowly beneath the continental crust. The graph of pressure (�� in GPa, �, and �� in km) due to the depth from the surface of 
the Earth (h) can be seen in Figure 2. The main equation of internal pressure on the planet Earth will be derived as follow [60, 61]: 

⎩{{⎨
{{⎧
(�) = 11200(1 − 0.76(1 − ���)2) = 11200 − 8512(1 − ���)2

�(�) = 43 ��
(�)(�� − �)  (1) 

�� = 10−3 (∫ 
(�)�(�)"� �
0

) (2) 

In the above equations, 
(�), �(�), and � are the density, gravitational acceleration, and the universal gravitational constant 
respectively (� = 6.6740831×10-11 m3/kgS2, � = 3.1415926535). 

 
 

Fig. 1. Schematic view of the planet Earth and its five distinctive 
layers. 

Fig. 2. Variations of the internal Earth pressure (�� in GPa) 
versus the amount of depth (h). 

 

  

Fig. 3. Geographic view of the planet Earth and the applied 
spherical coordinates system. 

Fig. 4. Schematic representation of the Earth’s layers and element 
stresses. 
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3. Mathematical Modeling of the Earth 

A schematic representation of the Earth’s layers and element stresses in a spherical coordinates system is illustrated in Figures 
3 and 4. As mentioned in the previous section, the Earth can be simulated by a sphere with a radius of 6371 km. The Earth also 
rotates around an axis that extends from the North Pole to the South. The rotational speed of the Earth (&�) can be estimated once 
every 23 hours, 56 minutes, and 4 seconds and this rotational speed is constant. Therefore, it does not change significantly over 
time, in other words, '()'* = + ̇ = 0. The location of a person on the surface of the Earth can be determined according to Figure 3 based 
on the two angles + and - (in practice these two angles are longitude and latitude). 

The difference in the height on the Earth's surface is ignored, in other words, the Earth's surface is assumed to be smooth. The 
assumption is not far from the truth because if the altitude at the ocean level is based on zero, the difference between the maximum 
height (Mount Everest) and the deepest trench in the oceans (Challenger deep in Mariana trench) will be about 20 km, which is 
compared to the average radius of the Earth is about 0.3% and can be neglected. The base pressure for the calculations is the 
pressure applied below the surface of the Earth's crust at a depth of 75 km, which will cause tectonics movements of the layers. 
Also, the applied pressure and movement of the ground plates cause wrinkles on the ground surface. Therefore, according to Figures 
3 and 4, ��  is applied pressure uniformly throughout the Earth's crust to its lower surface. Also, to increase the accuracy of 
simulating the two pressures �. and �/ in the two directions + and - under the crust are considered (which causes transverse 
and longitudinal displacement of the layers). To better understand the effect of the applied loads, the intended element on the 
surface of the sphere is magnified. The relationships between the Spherical coordinate system and the Cartesian coordinate system 
can be formulated as follows [62]: 

⎩{⎨
{⎧0 = � sin- cos +6 = � sin - sin +7 = � cos-  (3) 

According to the above equations, the changes in the Spherical coordinate system based on the variables in the Cartesian 
coordinate system will be written as the following equations: 

⎩{{
{⎨
{{{
⎧( 88�) = sin - cos + ( 880) + sin - sin + ( 886) + cos-( 887)

( 88-) = 1� cos- cos + ( 880) + 1� cos- sin + ( 886) − 1� sin- ( 887)
( 88+) = 1� sin- sin + ( 880) + 1� sin- cos + ( 886)

 (4) 

Therefore, the gradient vector of changes in the spherical coordinate system (:Spherical ) is introduced based on the above 
equations as follows (� is the sphere radius) [62]: 

:⃗⃗⃗⃗⃗⃗Spherical = [ 88� F�̂    1� 88-F/̂    1�sin- 88+ F.̂] (5) 

If the displacement vector of a hypothetical point on the surface of the sphere is assumed to be I⃗ = I�F�̂ + I.F.̂ + I/F/̂, the 
strain components can be obtained in the spherical coordinate system with respect to the fundamental equation of the strain 
tensor as follow [62]: 

K ⃡ = 12 [:I⃗ + :I⃗N + :I⃗ ⋅ :I⃗N ] (6) 

The above equation can be applied in any coordinate system. Also, �⃡ is the strain tensor, : is the gradient in the assumed 
coordinate system and I⃗  is the displacement vector. Q  symbol refers to the matrix transpose. According to the mathematical 
Equation (6) and the definition of the dyadic multiplication of the components of the assumed coordinate system (which here are 
the components of the spherical coordinate system F�̂, F.̂ and F/̂, the components of the strain tensor can be obtained (the tensor 
is a symmetric 3×3 matrix). SNℎ and ∆Q  are the thermal expansion coefficient and temperature difference, respectively [62]: 

       :I⃗ = [ ''� F�̂ 1W ''/ F/̂ 1W sin/ ''. F.̂] ⎣⎢
⎡I�F�̂I/F/̂I.F.̂ ⎦⎥

⎤ =
⎣⎢
⎢⎡

'ab'� 'ac'� 'ad'�
1W ('ab'/ − I/) 1W ('ac'/ + I�) 1W 'ad'/

1W ( 1sin/ 'ab'. − I.) 1W ( 1sin/ 'ac'. − cot- I.) 1W (I� + cot- I/ + 1sin/ 'ad'. )⎦⎥
⎥⎤ (7) 

       :I⃗N =
⎣⎢
⎢⎡

'ab'� 1W ('ab'/ − I/) 1W ( 1sin/ 'ab'. − I.)
'ac'� 1W ('ac'/ + I�) 1W ( 1sin/ 'ac'. − cot- I.)
'ad'� 1W 'ad'/ 1W (I� + cot-I/ + 1sin / 'ad'. )⎦⎥

⎥⎤ (8) 

       Kh⃡i = [K�� K�/ K�.K/� K// K/.K.� K./ K..
] − (SNℎlQ)[1 0 00 1 00 0 1] (9) 

       K�� = ('ab'� ) + 12 (('ab'� )2+('ac'� )2 + ('ad'� )2) − (SNℎlQ) (10) 

       2K�/ = 2K/� = 'ac'� + 1W ('ab'/ − I/) + 1W (('ab'� )('ab'/ − I/) + ('ac'� )('ac'/ + I�) + ('ad'� )('ad'/ )) (11) 
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      2K�. = 2K.� = 'ad'� + 1W ( 1sin/ 'ab'. − I.) + 1W (('ab'� )( 1sin/ 'ab'. − I.) + ('ac'� )( 1sin/ 'ac'. − cot- I.) + ('ad'� )(I� + cot- I/ + 1sin/ 'ad'. )) (12) 

       K// = 1W ('ac'/ + I�) + 12W2 (('ab'/ − I/)2 + ('ac'/ + I�)2 + ('ad'/ )2) − (SNℎlQ) (13) 

       2K/. = 2K./ = 1W ('ad'/ + 1sin/ 'ac'. − cot- I.) + 1W2 (('ab'/ − I/)( 1sin/ 'ab'. − I.) + ('ac'/ + I�) ( 1sin/ 'ac'. − cot- I.) +
('ad'/ )(I� + cot- I/ + 1sin/ 'ad'. )) 

(14) 

      K.. = 1W (I� + cot- I/ + 1sin/ 'ad'. ) + 12W2 (( 1sin/ 'ab'. − I.)2 + 1W ( 1sin/ 'ac'. − cot- I.)2 + (I� + cot- I/ + 1sin/ 'ad'. )2) − (SNℎlQ) (15) 

A noteworthy point in the strain components is the nonlinear terms. In the nonlinear modeling of plates and shells, the von 
Kármán strain field is often used, in which the nonlinear effects of displacements in the direction of the applied load to the structure 
are considered, and the effect of other nonlinear parameters are omitted. However, in this study, due to the special importance of 
the results in the other directions (except the loading direction) that cause the movement of the inner layers and tectonic plates of 
the Earth, the effects of nonlinear terms in the mentioned directions (here + and -) have not been neglected. As in most studies, 
which consider the load on the structure only in one direction and perpendicular to the structure, in this research there is a load in 
all three main directions �, +, and -. Therefore, it is expected that due to non-linear parameters in all major directions (�, +, and -), the results of mathematical simulation have high and appropriate accuracy. 

The obtained strain field (K)⃡ is in a general form. In other words, the functions I� , I., and I/ are independent functions 
consisting of three variables �, +, and -. One of the strengths of the strain field introduced in this research is the generality and 
definition of strain in a general form. Therefore, any desired function can be considered for displacement functions I�, I., and I/. 
The choice of displacement functions will determine the type of theory as well as the number of final obtained equations. Various 
theories have been proposed by mechanical scientists in this regard, which in general can be divided into two categories: 1. Theories 
that ignore strain changes in the thickness of the structure (K*ℎhrstuvv = 0). 2. Theories that do not assume the amount of strain in 
the direction of thickness to be zero (K*ℎhrstuvv ≠ 0) and take these changes into account in the calculations. 

In general, the first category theories are used for structures with a thickness considerably less than the other sizes of the 
structure. For example, in the spherical structure, the ratio of the radius R to the thickness h is important, and usually, if this ratio 
is R/h > 10, the use of the first category theories provides good results with insignificant errors. However, if the R/h ratio is less than 
10, the amount of strain in the thickness direction is significant, and ignoring it causes serious errors in the results, and therefore 
the second category theories should be used. It should be noted that the so-called theories in which K*ℎhrstuvv ≠ 0, are called three-
dimensional theories. They are divided into two categories of exact 3D theories and quasi-3D theories. Formulating and solving the 
obtained equations based on the second category theories is much more difficult and complex than the first one. Therefore, it is 
necessary to determine the R/h value of the problem in what interval it is in, and if this ratio has a large value, one can use the first 
category theories to avoid complex and difficult calculations that are very time-consuming and sometimes unsolvable (since the 
obtained equations are also completely nonlinear). 

In this study, the thickness of the Earth's structure is considered around its crust, which is 75 km. Given that the average radius 
of the Earth is R = 6371 km, so the ratio R/h is bigger than 10. As a result, the first category theories can be used with complete 
confidence. 

The strain field used in this study to obtain the governing equations is based on the first-order shear deformation theory (FSDT). 
For the hypotheses considered in this study, the FSDT displacement field provides good results. The basic equations of FSDT theory 
for three displacements I�, I., and I/ will be introduced as the following equations (w refers to the time variable) [16]: 

⎩{⎨
{⎧I/(�, -, +, w) = x0(-, +, w) + �.y1(-, +, w)I.(�, -, +, w) = z0(-, +, w) + �. y2(-, +, w)I�(�, -, +, w) = {0(-, +, w)  (16) 

Because the internal pressure of the Earth is assumed to be constant in the two assumed directions �, and - (internal pressure 
in the +-direction is neglected), and also because the geometry of the problem is considered to be a complete sphere, the changes 
in the +-direction are constant and also because of the axial symmetry then I. will be zero. Boundary conditions at the North and 
South Poles are considered around the axis of the rotation. - at the North and South Poles will be assumed to be very small. For 
example, -1= 5, -2= 175 are considered and it is assumed that in these two angles there are clamped boundary conditions around 
the rotation axis. According to the given explanations, the equations of the displacement field will be rewritten as the following 
equations: 

⎩{⎨
{⎧I/(�, -, w) = x0(-, w) + �.y1(-, w)I.(�, -, w) = 0I�(�, -, w) = {0(-, w)  (17) 

It is observed that the number of variables of Ih, | = �, and - functions will change from three �, -, and w variables to two - 
and t variables. Because of presenting the time into functions (considering the revolution of the Earth around its rotation axes), a 
completely dynamic analysis is obtained. Consequently, the simulation will be as much as possible compatible with reality. 

Now, by applying Equation (17) to the introduced strain field (Eqs. (10)-(15)), the nonlinear strain tensor components can be 
rewritten as the following relations: 

K�� = 12 (y1)2 − (SNℎlQ) (18) 

2K�/ = 2K/� = y1 + 1� (8{08- − x0 − �y1) + y1� (8x08- + � 8y18- + {0) (19) 
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2K�. = 2K.� = 0 (20) 

K// = 1W ('}0'/ + � '�1'/ + {0) + 12W2 (('�0'/ − x0 − �y1)2 + ('}0'/ + � '�1'/ + {0)2) − (SNℎlQ)                                                 
(21) 

2K/. = 2K./ = 0 (22) 

K.. = 1� ({0 + cot- (x0 + �y1)) + 12�2 ({0 + cot- (x0 + �y1))2 − (SNℎlQ) (23) 

4. Principle of Stationary Potential Energy 

The principle of stationary potential energy has been used to obtain the governing equations due to the internal pressure under 
the Earth's crust that rotates around the axis of rotation. The main equation of this principle is the following equation, which 
consists of changes in strain energy �I�, changes in kinetic energy �Is, and changes in work done by external forces (here due to 
the internal pressure of the Earth on its crust which is ��) which are shown with �I� and also the energy of centrifugal forces on 
the analysis �Ir. The summation of the mentioned energy variations (��) must be equal to zero [19]: 

�� = �I� + �Is + �I� + �Ir = 0 (24) 

�I� = ∫ (∭(����K�� + �//�K// + �..�K.. + 2��/�K�/)�2 sin -"�"-"+
�

)"w*
0

 (25) 

�Is = −�2∫ (∭
 ((8I�8w )2 + (8I/8w )2)
�

"� )*
0

"w (26) 

�I� = ∫ (−∬(��(�{0) + �/(�x0 + ��y1)) "�
�

)"w*
0

              ("� = �2 sin - "-"+) (27) 

�Ir = −∫ (∭
(���{0 + �/�x0 + �/��y1)"�
�

)"w*
0

 (28) 

In Equation (28), �� and �/ are the radial and lateral accelerations respectively. According to the spherical coordinate system, 

the mentioned accelerations are formulated as the following equations. The rotational speed of the Earth is + ̇ = '.'* = &� and is 

considered to be constant. Consequently, the angular acceleration of the Earth is set to zero (+ ̈ = '2.'*2 = 0) [19, 62]: 

{�� = �&�2 sin2 -�/ = −�&�2 sin- cos- (29) 

After substituting strain components into Equation (25) and expansion of Equations (26) and (28), the below equations are 
reformulated. It is noted that 
 is the average density of the material [19, 62]: 

�Is = −∫ (∭ 
 (('ac'* '�ac'* ) + ('ab'* '�ab'* ))� "� )*
0 "w = −∫ (∭ 
 (('}0'* + � '�1'* )('�}0'* + � '��1'* )�

*
0 +('�0'* '��0'* )) "� )"w =

−∫ (∬ (�1('}0'* '�}0'* ) + �2('}0'* '��1'* + '�1'* '�}0'* )�
*

0 + �3('�1'* '��1'* ) + �1 ('�0'* '��0'* ))�2 sin- "-"+)"w    (�1, �2, �3) = ∫ 
(1, �, �2)"�ℎ2−ℎ2   
(30) 

�I� = ∫ (∫ ∫ ∫ ⎝⎜
⎛���(y1�y1) + ��/ (�y1 + 1W ('��0'/ − �x0 − ��y1) + 1W ((�y1 '}0'/ + y1 '�}0'/ ) + �(�y1 '�1'/ + y1 '��1'/ ) +ℎ2−ℎ2

/2/1
.2.1

*
0

(�y1{0 + y1�{0))) + �// (1W (('�}0'/ + � '��1'/ + �{0) + 1W (('��0'/ )('�0'/ ) + x0�x0 + �2y1�y1 − �x0('�0'/ ) − x0('��0'/ ) −
� (�y1('�0'/ ) + y1('��0'/ )) + �(�x0y1 + x0�y1) + ('�}0'/ )('}0'/ ) + �2('��1'/ )('�1'/ ) + {0�{0 + � (('�}0'/ )('�1'/ ) + ('}0'/ )('��1'/ )) +

(�{0('}0'/ ) + {0('�}0'/ )) + � (�{0('�1'/ ) + {0('��1'/ ))))) + �.. (1W ((�{0 + ��w- (�x0 + ��y1)) + 1W ({0�{0 + ��w2 - x0�x0 +
�2 ��w2 - y1�y1 + ��w- (�{0x0 + {0�x0) + �(�{0y1 + {0�y1) + � ��w - (�x0y1 + x0�y1))))⎠⎟

⎞�2 sin -"�"-"+)"w  

(31) 

�Ir = ∫ (∬�1(−�&�2 sin2 -�{0 + �&�2 sin- ��¢ - �x0)�2 sin -"-"+
�

)"w*
0

 (32) 

In the case of �I�, it can be reformulated by integrating into the �-direction which is the direction of the radius and thickness 
of the structure (similar to �Is and �Ir). The average thickness of the Earth's crust is assumed as h. Also, the definition of stress 
and moment resultants £��, £//, £.., £�/, ¤//, ¤.., ¤�/, and mathematical resultants ¥// and ¥.. are presented according to 
the below equations [19, 62]: 
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�I� = ∫ (∫ ∫ (£��y1�y1 + £�/�y1 + 1W (£�/ '��0'/ − £�/�x0 − ¤�/�y1) + 1W ((£�/ '}0'/ �y1 + £�/y1 '�}0'/ ) +/2/1
.2.1

*
0

(¤�/ '�1'/ �y1 + ¤�/y1 '��1'/ ) + (£�/{0�y1 + £�/y1�{0)) + 1W (£// '�}0'/ + ¤// '��1'/ + £//�{0 + 1W (£//('�0'/ )('��0'/ ) + £//x0�x0 +
¥//y1�y1 − £//('�0'/ )�x0 − £//x0('��0'/ ) − ¤//('�0'/ )�y1 + ¤//y1('��0'/ ) + ¤//y1�x0 + ¤//x0�y1 + £//('}0'/ )('�}0'/ ) +

¥//('�1'/ )('��1'/ ) + £//{0�{0 + ¤//('�1'/ )('�}0'/ ) + ¤//('}0'/ )('��1'/ ) + £//('}0'/ )�{0 + £//{0('�}0'/ ) + ¤//('�1'/ )�{0 +
¤//{0('��1'/ ))) + 1W ((£..�{0 + (£..�x0 + ¤..�y1) ��w -) + 1W (£..{0�{0 + £..x0 ��w2 - �x0 + ¥..y1 ��w2 - �y1 +

(£..x0�{0 + £..{0�x0) ��w - + ¤..y1�{0 + ¤..{0�y1 + (¤..y1�x0 + ¤..x0�y1) ��w -)))�2 sin- "-"+)"w  

(33) 

⎩{{
{⎨
{{{
⎧(£��,£�/,£//,£..) = ∫ (���, ��/, �//, �..)"�ℎ2−ℎ2

(¤��,¤�/,¤//,¤..) = ∫ (���, ��/, �//, �..)�"�ℎ2−ℎ2
(¥//, ¥..) = ∫ (�//, �..)�2"�ℎ2−ℎ2

  (34) 

Finally, by substituting the obtained results into Equation (24), the dynamic governing equations will be obtained. In Hooke’s 
law, �⃡hi = ¦: Kh⃡i the matrix ¦  is the stiffness matrix of the material. The material properties in the Earth's crust are assumed 
uniformly in all orientations (isotropic material). The dimension of the matrix ¦ is 4×4 in which ¨ and © are Young's modulus 
and Poisson's ratio of the Earth's crust respectively [19, 62]: 

⎣⎢
⎡����//�..��/ ⎦⎥

⎤ = ¨(1 − ©2) ⎣⎢
⎢⎡

1 © © 0© 1 © 0© © 1 00 0 0 (1 − ©)⎦⎥
⎥⎤

⎣⎢
⎡K��K//K..K�/ ⎦⎥

⎤
 (35) 

Material characteristics for the Earth's layers can be studied and considered due to previous research [63-65]. Finally, by adding 
the equivalent values of �x0, �{0, and �y1 (in Equation (24)), dynamic governing equations of the planet Earth will be extracted. 
Obtained dynamic equations are completely nonlinear in both directions � and -. The mathematical modeling simulates the 
deformation and tectonic motions of the Earth's layers due to its internal pressures in the longitudinal (I/ ) and radial (I� ) 
orientations: 

�x0: −(cot-£�/y1 + ('ªbc'/ )y1 + £�/('�1'/ )) + 1W (£//x0 + ¤//y1) − 1W (£//('�0'/ ) − cot- £//('}0'/ ) − ('ªcc'/ )('}0'/ ) −
£// ('2}0'2/ )) − 1W (cot- ¤//('�1'/ ) + ('«cc'/ ) ('�1'/ ) + ¤// ('2�1'2/ )) − 1W (cot- £//{0 + ('ªcc'/ ){0 + £//('�0'/ )) +

1W cot2 - (£..x0 + ¤..y1) + 1W (cot-£..{0 − �£�/) − (('ªcc'/ ) + cot- (£// − £..)) − ��/ + �1�2&�2 sin- cos- +
� (�1 '2}0'*2 + �2 '2�1'*2 ) = 0  

(36) 

�{0:� sin - £�/y1 − ''/ (sin- £//('�0'/ )) + ''/ (sin- £//x0) + ''/ (sin - ¤//y1) + sin- £//{0 + sin- £..{0 + cot- sin- £..x0 +
cot- sin- ¤..y1 − ''/ (� sin- £�/) + � sin- £// + � sin- £.. − ���2 sin- + sin- £//('}0'/ ) + sin- ¤//('�1'/ ) − �1�3&�2 sin3 - +

�2 sin -(�1 '2�0'*2 ) = 0  

(37) 

�y1:� sin -£�/{0 + � sin- £�/('}0'/ ) + � sin- ¤�/('�1'/ ) − ''/ (� sin- ¤�/y1) + sin- ¥//y1 + sin- ¤//x0 − sin- ¤//('�0'/ ) −
''/ (sin -¥//('�1'/ )) − ''/ (sin- ¤//('}0'/ )) − ''/ (sin- ¤//{0) + cot2 - sin- ¥..y1 + cot2 - sin- ¤..x0 + cot- sin -¤..{0 −

� sin -¤�/ + �2 sin -£�/ − ''/ (� sin- ¤//) + � sin- cot- ¤.. + �/(ℎ2)�2 sin- + �2 sin -(�2 '2}0'*2 + �3 '2�1'*2 ) = 0  

(38) 

5. Quasi Three-dimensional Theories 

5.1. Simplified quasi-three-dimensional theory (SQT) 

It has already been stated that if the ratio of the radius of the Earth to its thickness is less than a value (R/h < 10), theories that 
do not consider strain in the direction of thickness can no longer be used. The use of exact three-dimensional theories also has its 
own difficulties. Thus, quasi-three-dimensional theories can be used for this purpose. In this research, a simplified quasi-three-
dimensional theory presented by the authors of the research has been used to mechanically model a spherical structure that is 
actually a shell structure. In this theory, (SQT) [66] only by adding an unknown function to the displacement field, three-dimensional 
results can be obtained. The displacement field in this theory will be as the following equations (for a complete spherical structure 
that changes are only in the direction of -): 

⎩{⎨
{⎧I/(�, -, w) = x0(-, w) + ¬(�). y1(-, w)I.(�, -, w) = 0I�(�, -, w) = {0(-, w) + �(�).{1(-, w) (39) 

Now, by considering the introduced strain field (Equation (39)) in the strain energy changes (Equation (25)), the strain field can 
be obtained as the preceding described process. Finally, quasi-three-dimensional dynamic equations based on SQT with the 
resulting components of stress and moment resultants can be obtained based on �x0, �y1, �{0 and �{1 variations as the following 
equations (the nonlinear terms in strain field are neglected): 
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�Is = −∫ (∭ 
 (('ac'* '�ac'* ) + ('ab'* '�ab'* ))� "� )*
0 "w = −∫ (∭ 
 (('}0'* + ¬(�) '�1'* )('�}0'* + ¬(�) '��1'* )�

*
0 +('�0'* + �(�) '�1'* )('��0'* +

�(�) '��1'* ))"� )"w = −∫ (∫ ∫ ((�1('}0'* '�}0'* ) + �2('}0'* '��1'* + '�1'* '�}0'* ) + �3('�1'* '��1'* ) + �1('�0'* '��0'* ) + �4('�0'* '��1'* + '�1'* '��0'* ) +.2.1
/2/1

*
0

�5('�1'* '��1'* )))�2 sin -"-"+) "w    (�1, �2, �3) = ∫ 
 (1, ¬(�), (¬(�))2)"�ℎ2−ℎ2 ; (�4, �5) = ∫ 
 (�(�), (�(�))2)"�ℎ2−ℎ2   

(40) 

�Ir = ∫ (∬(−�&�2 sin2 - (�{0 + �(�)�{1) + �&�2 sin - cos- (�x0 + ¬(�)�y1))�2 sin- "-"+
�

)"w*
0

 (41) 

The governing equations based on the SQT analysis: 

�x0: £�/ + (8£//8- ) + ��w- (£// − £..) + ��/ − �1�2&�2 sin- cos- + � (�1 82x08w2 + �2 82y18w2 ) = 0 (42) 

�y1:�°�/ − ¥�/ − (8¥//8- ) + ��w - (¥.. − ¥//) + ��/ (¬(�)|�=−ℎ2) − �2�2&�2 sin- cos- + � (�2 82x08w2 + �3 82y18w2 ) = 0 (43) 

�{0: (8£�/8- ) + cot- £�/ − (£// + £..) + ��� + �1�2&�2 sin2 - + � (�1 82{08w2 + �4 82{18w2 ) = 0 (44) 

�{1: (8²�/8- ) + cot-²�/ − �°�� − (²// + ²..) + ��� (�(�)|�=−ℎ2) + �4�2&�2 sin2 - + � (�4 82{08w2 + �5 82{18w2 ) = 0 (45) 

⎩{{
{{{
⎨{
{{{
{⎧(£�/,£//,£..) = ∫ (��/, �//, �..)"�ℎ2

−ℎ2
(²�/,²//,²..) = ∫ (��/, �//, �..)�(�)"�ℎ2

−ℎ2
(¥�/, ¥//, ¥..) = ∫ (��/, �//, �..)¬(�)"�ℎ2

−ℎ2

  
⎩{{
{⎨
{{{
⎧°�� = ∫ ��� ("¬(�)"� )"�ℎ2

−ℎ2
°�/ = ∫ ��/ ("�(�)"� )"�ℎ2

−ℎ2

 (46) 

5.2. Polynomial quasi-three-dimensional theory (PQT) 

It is observed that the proposed quasi-three-dimensional theory (SQT) [67] considers the strain variations through the thickness 
(K�� ≠ 0 ). To aim obtaining more accurate results, another quasi-three-dimensional theory based on polynomial functions is 
presented in this research. The mathematical formulation of the strain field can be proposed as a set of a polynomial system below: 

⎩{{
⎨{
{⎧I/(�, -, w) = ∑ �hxh(-, w)ªh=0I.(�, -, w) = ∑ �hzh(-, w)ªh=0I�(�, -, w) = ∑ �h{h(-, w)ªh=0

  (47) 

The unknown functions xh(-, w) , zh(-, w)  and {h(-, w) , (| = 0 . .£ ) will be calculated after solving the governing equations. 
Whatever £  is greater, the obtained results will be more than the same as the exact three-dimensional analysis. However, the 
greater amount of £  causes more unknown functions and in consequence the number of governing equations. To avoid massive 
calculations and also obtain the appropriate results, the parameter £  has been chosen as £ = 3 for symmetric assumptions as in 
SQT analysis. So, the number of 8 unknowns and resulting governing equations will be extracted. The strain field in Equation (47) 
will be refined as follows: 

⎩{⎨
{⎧I/(�, -, w) = ∑ �hxh(-, w)3h=0I.(�, -, w) = 0

I�(�, -, w) = ∑ �h{h(-, w)3h=0
  (48) 

After a complete similar explained process in Sections 4 and 5.1, the dynamic governing equations and the resultant 
components are derived as below: 

�x0: £�/ + ('ªcc'/ ) + cot- (£// − £..) + ��/ − �1�2&�2 sin- cos- + � (�1 '2}0'*2 + �2 '2}1'*2 + �3 '2}2'*2 + �4 '2}3'*2 ) = 0  (49) 

�x1: −�£�/ + ('«cc'/ ) + ¤�/ + cot- (¤// − ¤..) + ���/(− ℎ2) − �2�2&�2 sin- cos- + � (�2 '2}0'*2 + �3 '2}1'*2 + �4 '2}2'*2 + �5 '2}3'*2 ) = 0  (50) 

�x2: −2�¤�/ + ('¶cc'/ ) + ¥�/ + cot- (¥// − ¥..) + ��/(− ℎ2)2 − �3�2&�2 sin- cos- + � (�3 '2}0'*2 + �4 '2}1'*2 + �5 '2}2'*2 + �6 '2}3'*2 ) = 0  (51) 

�x3: −3�¥�/ + ('¸cc'/ ) + ²�/ + cot- (²// − ²..) + ��/(− ℎ2)3 − �4�2&�2 sin - cos- + � (�4 '2}0'*2 + �5 '2}1'*2 + �6 '2}2'*2 + �7 '2}3'*2 ) = 0  (52) 

�{0: ('ªbc'/ ) + cot-£�/ − (£// + £..) + ��� + �1�2&�2 sin2 - + � (�1 '2�0'*2 + �2 '2�1'*2 + �3 '2�2'*2 + �4 '2�3'*2 ) = 0  (53) 
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�{1:−�£�� + ('«bc'/ ) + cot- ¤�/ − (¤// + ¤..) + ���(− ℎ2) + �2�2&�2 sin2 - + � (�2 '2�0'*2 + �3 '2�1'*2 + �4 '2�2'*2 + �5 '2�3'*2 ) = 0  (54) 

�{2:−2�¤�� + ('¶bc'/ ) + cot- ¥�/ − (¥// + ¥..) + ���(− ℎ2)2 + �3�2&�2 sin2 - + � (�3 '2�0'*2 + �4 '2�1'*2 + �5 '2�2'*2 + �6 '2�3'*2 ) = 0  (55) 

�{3:−3�¥�� + ('¸bc'/ ) + cot-²�/ − (²// + ²..) + ���(− ℎ2)3 + �4�2&�2 sin2 - + � (�4 '2�0'*2 + �5 '2�1'*2 + �6 '2�2'*2 + �7 '2�3'*2 ) = 0  (56) 

⎩{{
{{⎨
{{{
{⎧(£��,£�/,£//,£..) = ∫ (���, ��/, �//, �..)"�ℎ2−ℎ2

(¤��,¤�/,¤//,¤..) = ∫ (���, ��/, �//, �..)�"�ℎ2−ℎ2
(¥��, ¥�/, ¥//, ¥..) = ∫ (���, ��/, �//, �..)�2"�ℎ2−ℎ2
(²��,²�/,²//,²..) = ∫ (���, ��/, �//, �..)�3"�ℎ2−ℎ2

  (57) 

(�1, �2, �3, �4, �5, �6, �7) = ∫ 
(1, �, �2, �3, �4, �5, �6)"�ℎ2−ℎ2   (58) 

There are so many available solution methods to solve the derived governing equations. Due to simple formulations and also 
obtaining appropriate and accurate results, SAPM is used by the authors in this research. Formulations and discussions about this 
method have been explained in detail in previous papers [12-14]. Consequently, explanations for solving the process of governing 
equations have been omitted because of avoiding duplications, and instead, it is tried to focus on more important issues in the next 
part (numerical analysis and discussion). 

6. Numerical Results 

Given that the pressure in the inner layers of the Earth increases with increasing depth in the layers from the Earth's surface, 
the effects of this increase in depth on the deformation created at different depths can be calculated. First, the common boundary 
between the inner core and the outer core is calculated, and the radial deformations { as well as the deformations created in the 
latitude (I/) direction will be calculated. The depth from the ground to the inner core boundary is about 5155 km. Therefore, the 
desired thickness h to analyze the spherical structure of the Earth will be assumed to be equal to the same depth mentioned. In 
advance, as can be expected, the changes in the radial direction (�) should be significant. In other words, due to the fact that the 
thickness of the spherical structure is considered to be very thick, it should be the maximum amount of deformation inside the 
Earth and the common boundary of the outer and inner core and gradually reduce the intensity of deformation by distance from 
the depth. In Figures 5a and b, the radial deformations of w and I/ are observed with respect to the changes of the variables in � 
and - directions. In the case of Figure 5a, it is observed that the deformation of the inner layers of the Earth in the direction of - 
for different values of angles follows an almost similar trend. This uniform behavior will be much more dramatic in the depths of 
the Earth, and with increasing depth to values close to the Earth's surface, fluctuations in the amount of { regarding the - angle 
will be observed. It can be seen that from angles close to zero and 180, which actually represent the location of the Earth's poles, 
towards the equator, the amount of radial deformation of the Earth's layers fluctuates, or in other words, at two specific angles in 
the northern and southern hemispheres, the value of { is highest. By moving away from these two regions, the value of { will 
reach its lowest value at the equator. As mentioned earlier, changes in { along the radius (�) experience large fluctuations, and if 
a non-three-dimensional analysis was used, significant errors would be made that would make it impossible to use the results. 
Changes in I/ deformation do not follow a regular pattern. The remarkable thing is the maximum and minimum amount of I/ 
that is created on the surface of the Earth. In the northern and southern hemispheres, these maximum values are equal and 
symmetrical to each other. As can be seen in the equator, the I/ deformations have the lowest possible value (in terms of absolute 
magnitude). Of course, it can be concluded that there are many areas in which the value of I/ equals zero. 

 
 

(a) (b) 

Fig. 5. Movement of the Earth’s layers under pressure applied on common boundary between inner and outer core for (a) radial { (b) shear I/ 
displacement. 
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(a) (b) 

Fig. 6. Movement of the Earth’s layers under pressure applied on common boundary between the outer core and lower mantle for (a) radial { (b) 
shear I/ displacement. 

 

 

(a) (b) 

Fig. 7. Movement of the Earth’s layers under pressure applied on common boundary between the lower mantle and upper mantle for (a) radial { (b) 
shear I/ displacement. 

In Figures 5a and 5b, the assumed and analyzed layer considered the common boundary between the inner and outer core. Now, 
the boundary between the outer core and the lower mantle is assumed. Obviously, the pressure on this boundary will be less than 
the pressure on the surface of the inner core. Figures 6a and 6b (similar to the conditions in Figures 5a and 5b) show the effect of 
pressures on the boundary between the outer core and the lower mantle on the deformation of the layers above the lower mantle 
to the ground. Here the changes { will be more uniform than before (Figure 5a). But since the pressure on the layer above the inner 
core is assumed, the slope of the changes along the radius axis (�) will be less than in Figure 5a. However, there are still significant 
changes in the radius direction. In other words, at the interface between the outer core and the lower mantle, the maximum value 
of { is approximately 3.75 km. But this value is about 1.5 km (2.5 times less) on the outer surface of the Earth's crust. The changes 
mentioned in Figure 5a show approximately a 9-fold reduction from the interface boundary between the inner and outer core to 
the outer surface of the Earth's crust. Unlike Figure 5a, there is no fluctuation of the results in � and - directions, and there will 
be a maximum value of { in the equator. The results for I/ values can be compared with the results obtained in Figure 5b, and 
by evaluating the results, it can be seen that the trend of changes is similar. But the important difference is that most of the changes 
in the amount of I/ are in the inner layer and not in the surface layer of the Earth. Therefore, the closer we get to the upper layers 
and closer to the adjacent surface to the atmosphere, the greater the amount of displacement and deformation. The I/ 
displacement diagram provides researchers with very important information about the amount of latitude displacement of the 
Earth's inner plates. The obtained results can be used and studied in predicting the movements of the inner layers of the Earth, 
especially before the occurrence of earthquakes. Comparing the results obtained in Figures 6a and b, it can be seen that there is 
more relative complexity in the analysis of I/ displacements than in {. One of the prominent and important features of this 
research is the mathematical modeling of the movement of the Earth's layers at different depths in both � and - directions. Of 
course, it should be noted that all these models are non-linear and completely dynamic in order to be most compatible with reality. 

In the last step, the results of the deformation of { and I/ for the pressure created at the interface between the lower mantle 
and the upper mantle will be examined. Figures 7a and 7b are drawn for this purpose. As can be seen, because the simulated 
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structure of the Earth is no longer in the range of a thick structure, the changes { along the � (radius) are negligible. Also, in a 
wide range of -  angles, the value of {  will be constant and its value will be maximum. However, the mentioned result 
(approximate constant of the results { in the radial direction �) is not correct for the I/ values and it is observed that in the areas 
close to the poles the changes of the I/ in the radial direction are significant. But moving away from the Arctic and Antarctic 
regions, the I/ changes with respect to the Earth's radius axis are almost uniform. Also, in the tropics, the I/ value is almost zero. 
According to Figures 5 to 7, a good understanding of the mobility of the Earth's inner layers in different directions can be obtained. 
If a trend as animation is obtained from Figures 5 to 7, the rate of change can be seen in the form of dynamic 3D charts. A general 
result that can be obtained relatively from three shapes 1 to 3 is the small amount of movement of the Earth's layers in the latitude 
direction near the equator. Also, in contrast to the I/ transverse displacement, the value of the radial displacement { in the 
tropics is significant and will have a maximum value. It can be modeled that the radial displacements { cause the vertical 
earthquakes and the I/ transverse displacements will cause the transverse earthquakes. This research, as mentioned before, it 
has been tried to be as similar as possible to the proposed model with the theoretical foundations of the problem. Of course, the 
discussion of details will be very complex, and not all the factors influencing the model can be considered because the factors will 
be very large. The presentation of a three-dimensional mathematical model in this research can largely simulate the effects of 
displacement of layers in the ground in general. In order to understand the superiority of the presented three-dimensional model 
in this study compared to other models, the results of a two-dimensional model are also presented. So far, however, not even a two-
dimensional mathematical model has been proposed to simulate the movements of the Earth's inner layers. 

As mentioned, the problem would be much simpler if only changes in the - direction were considered, but the results would 
no longer be accurate enough. The inaccuracy of the results is very important when the structure under analysis is much thicker 
than other dimensions. Figures 8a and 8b show the changes in { and I/ relative to the changes in -. The considered layer in this 
analysis is the common boundary between the inner core and the outer core. There is a very clear difference between the results 
of two-dimensional analysis (Figures 8a and 8b) and three-dimensional analysis (Figures 5a and 5b). Therefore, in the mathematical 
analysis and simulation of the Earth's layers, in terms of studying the resulting deformations, three-dimensional equations must 
be used. Not using 3D equations will cause serious errors in the results. Consequently, the numerical results obtained from the two-
dimensional analysis will be invalidated. 

In this study, the pressure inside the Earth, which is a function of the depth basis (from the surface of the Earth) is not only 
considered in the direction of radius �, but also in the direction of -, it is assumed that a shear pressure at the assumed surface is 
applied. Applying pressure in the direction of -  can affect the results. In practice, there are such pressures that not much 
information is available about the actual amount of these pressures. Therefore, in the present study, the �/ value is considered as 
a percentage of the �� pressure and the results will be obtained based on it. The primary criterion for comparing the results here 
is that the �/ pressure is zero. Two values are assumed for �/ and the results of the displacements { and I/ are shown in Figures 
9 and 10. The problem conditions for the two forms mentioned are as follows: 

�/ = 0.1��  
�/ = 0.5�� (59) 

It can be seen from Figure 9a that the trend of changes { for the two modes 1 and 2 is very similar. But the maximum value for {1 is greater than {0. Of course, there is not much difference between the results (Fig. 9a). As the value of �/ increases from 0.1�� 
to 0.5��, the difference between the results of {2 and {0 increases. The noteworthy point is the obvious difference in the trend of 
changes {2 and {0 with respect to the two axes � and -. It can be seen that the changes in the - direction will be sinusoidal. 
The remarkable thing about Figures 9a and 9b are that the location of the common denominator between diagrams {1 and {0 and 
diagrams {2 and {0 will be almost the same. The higher the �/ value, the greater the change in radial displacement ({). But this 
increase is not commensurate with the increase in �/, and it seems that there is a decreasing trend between increasing �/ and 
increasing {. The change in direction of the value of {2 will occur approximately at the equator (- = �/2) and the trend of change 
in the two hemispheres is almost the same regardless of the sign {. 

 

 

 

(a) (b) 

Fig. 8. Two-dimensional analysis of Earth’s layers under pressure applied on common boundary between inner and outer core for (a) radial { (b) 
shear I/ displacements. 
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(a) (b) 

Fig. 9. Comparison between the radial layer’s movement ({) for (a) �/ = 0.1�� (b) �/ = 0.5��. 

  
(a) (b) 

Fig. 10. Comparison between the shear layer’s movement (I/) for (a) �/ = 0.1�� (b) �/ = 0.5��. 

 
The results will be very important in terms of shifting the �/ load in terms of shifting in the - direction. Because �/ is in line 

with - and will directly affect I/. It is observed that only by considering the value of �/ = 0.1��, the maximum value of I/ is 
about 4 times higher than the case where �/  is equal to zero (Fig. 10a). This increase in I/  per �/  = 0.5��  will result in an 
approximately 10-fold increase in the maximum I/ value (Fig. 10b). So even small values in �/ will greatly affect the I/ latitude 
shift, and ignoring it will cause serious errors. As the �/  value increases, the results of the I/  displacement in the � and - 
directions will change. I/ changes are not regular and are three-dimensional and irregular. Therefore, the interpretation of the 
obtained I/ diagrams has its own complexity and no specific process can be considered for it. Of course, here the effects of the 
displacement of the Earth's inner layers on the displacement of the layers at the Earth's surface are more important. In other words, 
for � = h/2, which in fact represents a depth equal to zero at the Earth's surface, the criterion will be the results of displacements 
at the Earth's surface. If the value of � = h/2 is considered in the two introduced three-dimensional diagrams, a two-dimensional 
diagram of the changes {  and I/  in terms of -  angle can be obtained, and for each value of the -  angle, which actually 
represents the distance from the Arctic is geographic (- = 0 North Pole, - = �/2 equator, and - = � Antarctica) obtain a specific 
value for radial { and I/ displacements. By analyzing the values of the obtained displacements, valuable information can be 
obtained about the motion of the inner and surface layers of the Earth. It is even possible to make the necessary predictions about 
the amount of movement of the layers in a certain area by having the amount of internal pressure. 

7. Conclusion 

Mathematical modeling of the movement of the Earth's layers under pressure is performed in the present study. The nonlinear 
dynamic governing equations of Earth (which is considered the geometry of a perfect sphere) are derived based on the two-
dimensional first-order shear deformation theory, as well as two quasi-three-dimensional theories proposed for modeling thick 
spherical structures for the first time. The extracted dynamic equations are completely nonlinear and go beyond von Kármán strain 
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field theory. In other words, nonlinear terms are considered in all directions and not for the direction of the applied load only. The 
pressure on the target layer is considered a function of the thickness of the structure, which indicates the pressure of the inner 
layers of the Earth from the free surface adjacent to the atmosphere to the considered area. The reason for this is that the obtained 
results would be more accurate. In general, the most important achievements of this research can be summarized as follows: 

 Dynamic quasi-three-dimensional nonlinear simulation of the movements of the Earth's layers in different directions in the 
form of a system of partial differential equations is carried out in this research. 

 Radial and transverse movements of the Earth’s layers under internal pressures are illustrated in the form of three-
dimensional diagrams in the latitude and radial (depth) directions. 

 The results can provide very good information to researchers and scientists who study the movements of the Earth's inner 
layers in terms of predicting the tectonic movements and the occurrence of earthquakes. 

 The effect of shear loads on the radial and latitude movements of the Earth’s layers is investigated in this research. In other 
words, according to the governing equations the load can be applied in all directions. 
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Nomenclature 


(�) 

�(�) 
� 
� 
¨ 
U⃗⃗⃗⃗⃗⃗ 
er̂, eθ̂, eφ̂ 
�, +, - 
I�, I.,I/ 
� 
£��, £//,£..,£�/ 
¤//,¤..,¤�/ 
¥//, ¥..  x0, z0, {0 y1, y2 �  
xh, zh, {h 

Density [kg/m3] 

Gravitational acceleration [m/S2] 

Universal gravitational [m3/kgS2] 

Average radius of the Earth [m] 

Strain tensor 

Displacement vector 

The components of strain tensor 

Geometrical directions 

Displacement functions 

Energy variational parameter 

Axial stress resultants 

Moment stress resultants 

Mathematical stress resultants 

Displacements of the mid-plane [m] 

Rotations of elements 

Thickness coordinate [m] 

Unknown parameters of displacements [m] 

&�  
��  �.  
�/  Q  
∇  
SNℎ 
∆Q 
h 

��, �/  I�, Is  ¨ 
© 
�hi Khi 
w 
£  

Rotational speed of the Earth [m/S] 

Pressure throughout the Earth's crust 

Pressure in line with +  

Pressure in line with - 
Matrix transpose  

Gradient 

Thermal expansion coefficient 

Temperature variation 

Thickness of Earth's crust 

Radial and lateral accelerations 

Strain and Kinetic energy 

Young's modulus [GPa] 

Poisson's ratio 

Stress 

Strain 

Time [S] 

Convergence factor 
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