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Abstract 
Purpose – This paper presents a new One Variable First-order Shear Deformation Theory (OVFSDT) using nonlocal 
elasticity concepts for buckling of graphene sheets.   
Design/methodology/approach – The FSDT had errors in its assumptions due to assuming constant shear stress 
distribution along thickness of the plate, even though by using shear correction factor (SCF) it has been slightly corrected, the 
errors have been remained due to the fact that the exact value of SCF has not already been accurately identified. By utilizing 
two-variable first-order shear deformation theories these errors decreased further by removing the SCF. In order to 
consider nanoscale effects on the plate, the Eringen’s nonlocal elasticity theory was adopted. The critical buckling loads were 
computed by Navier’s approach. The obtained numerical results were then compared with previous studied results 
using molecular dynamics simulations and other plate theories for validation which also showed the accuracy and simplicity of 
the proposed theory. Findings – In comparing the biaxial buckling results of the proposed theory with the two-variable shear 
deformation theories and exact results, it revealed that the two-variable plate theories were not appropriate for the 
investigation of asymmetrical analyses.    
Originality/value – A formulation for FSDT was innovated by reconsidering its errors in order to improve the FSDT 
for investigation of mechanical behavior of nanoplates. 
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Paper type Research paper 

1. Introduction

Graphene sheets have closely-knit carbon atoms that they can work 

like super-fine atomic nets and also are as an exciting replacement 

for existing materials that have been pushed to their physical 

limits. It could revolutionize other areas of technology constrained 

by conventional materials. For example, it could spawn lighter and 

stronger airplanes (by replacing composite materials or metal 

alloys in many structural parts), cost-competitive and more 

efficient solar panels (replacing silicon again), more energy-

efficient power transmission equipment (in place of 

superconductors), and supercapacitors with thinner plates that can 

be charged in seconds and store more energy in a smaller space 

than has ever previously been possible (replacing ordinary, 

chemical batteries entirely) (Warner et al., 2012; Pati et al. 2011). 

Buckling in plates is one of the most important phenomena in solid 

mechanics. Thus, theoretical buckling analysis of nanoscale plates 

has been extensively investigated by researchers around the world 

to get insight into the mechanical behavior and help characterize 
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the material properties and also in many cases, to overcome the 

difficulties encountered in experimental testing and 

characterization. In order to study of nanoscale’s mechanical 

behavior, there were some size-dependent theories such as 

modified couple stress theory (Akgöz and Civalek, 2012), strain 

gradient theory (Hosseini-Hashemi et al., 2017) and Eringen’s 

nonlocal elasticity theory (Golmakani and Rezatalab, 2015). All 

the mentioned theories could be used for studying the mechanical 

behavior of nanomaterials. In addition, it is clear that the nonlocal 

elasticity theory for buckling of nanoplates has been investigated 

more than other theories for the buckling phenomena (uniaxial, 

biaxial, shear, thermal and electrical and also a combination of 

them) (Golmakani and Rezatalab, 2015; Radić and Jeremić, 2016; 

Ebrahimi and Barati, 2016; Mohammadi et al., 2014). The 

Eringen’s nonlocal elasticity theory has been considered as one of 

the most useful tools in treating phenomena, whose origins lie in 

the regimes smaller than the classical continuum models. This 

theory takes into account of the remote action forces between 

atoms (Gopalakrishnan and Narendar, 2013; Shahsavari and 

Janghorban, 2017). In classical local elasticity theories, the stress 

at a material point depends only on the strain at that point, 

whereas, in nonlocal elasticity theory, the stress at a material point 

is a function of the strains at all points on the body; therefore using 

this assumption the behavior of the nanoplates would be modeled 

more accurately (Shahsavari and Janghorban, 2017; Jung and Han, 

2014; Romano and Barretta, 2017; Shahsavari et al., 2017). 

Generally, the theoretical research into buckling of graphene sheets 

has been continuously carried out for the past two decades [14-29]. 

Many studies on stability of graphene sheets devoted to contractual 

plate theories, but there have not been many studies on the refined 

theories. Senjanovic et al. (Senjanovic et al., 2014) studied a new 

Mindlin plate theory by investigating shear locking-free using the 

finite element method. They derived shear deflection based on 

bending deflection by splitting general displacements. In fact, the 

total deflection and the two slope angles of plate cross-sections 

were split into their constitutive parts, resulting with 

decomposition of plate flexure (bending and transverse shear) and 

in-plane shear, which is analogous to membrane behavior. Malikan 

et al. (Malikan et al., 2017) studied the buckling of double-layered 

graphene sheets under shear and thermal loads in which a model of 

the nanosheet embedded on an elastic matrix using the nonlocal 

elasticity was proposed. The first-order shear deformation theory 

for deriving stability equations and the differential quadrature 

method were used in order to solve the governing equations. 

Golmakani and Sadraee Far (Golmakani and Sadraee Far, 2017) 

investigated the buckling of double-layered nanoplates under 

biaxial loads in which the nanoplates were embedded on an elastic 

matrix using differential quadrature method in various boundary 

conditions. Malikan (Malikan, 2017a) investigated the shear 

resistance of a piezoelectric nanoplate using a modified couple 

stress theory which was based on a simple first-order shear 

deformation theory. The results showed that using this modified 

couple stress theory led to more accurate results in comparison 

with other theories. Recently, buckling of graphene sheets 

subjected to biaxial nonuniform compression using an analytical 

approach based on a four-variable plate theory was presented in 

(Malikan, 2017b). Rezaei et al. (Rezaei et al., 2017) studied a 

simple four-variable plate theory for considering the natural 

frequencies of functionally graded plates with porosities. The two 

decoupled equations were solved analytically for Lévy-type 

boundary conditions to obtain the Eigen frequencies of the plate. 

Zenkour et al. (Zenkour et al., 2017) recently proposed a two 

variable simplified higher-order theory for free vibration behavior 

of laminated plates. A closed-form solution via Navier’s technique 

limits the applicability of solution technique to simply-supported 

rectangular laminated plates. The presented plate theory has been 

considered as an accurate and simple theory that treated the free 

vibration analysis of moderately thick isotropic, orthotropic and 

laminated composite plates. Vibration and buckling of orthotropic 

double-layered graphene sheets under hygrothermal loading with 

different boundary conditions have been analyzed by Radic and 

Jeremic (Radić and Jeremić, 2017).  Li et al. (Li et al., 2017) 

proposed a spectral element model for thermal effects on vibration 

and buckling of laminated beams based on a trigonometric shear 

deformation theory. Singh and Singh (Singh and Singh, 2017) 

investigated new higher-order shear deformation theories for free 

vibration and buckling analysis of laminated and braided 

composite plates. Two new displacement models Trigonometric 

Deformation Theory (TDT) and Trigonometric-Hyperbolic 

Deformation Theory (THDT) were proposed and implemented for 

free vibration and buckling analysis of laminated and 3D braided 

composite plates to ensure the efficacy of the analysis. The 

buckling responses of TDT and THDT were compared with other 

higher-order theories and showed the applicability of the models 

for predicting the stability resistance more efficiently for laminated 

as well as 3D braided composite plates. Navayi Neya et al. (Navayi 

Neya et al., 2017) analyzed a benchmark solution for buckling of 

thick rectangular transversely isotropic plates under biaxial load, in 

which the displacement potential function for deriving governing 

equations and an analytical solution were presented. Their results 

showed that the presence of a compressive load along the second 

axis decreased the buckling load in the plates, and in general, 

buckling mode, and vice versa. Gupta et al. (Gupta et al., 2017) 

studied effects of the thermal environment on free vibration and 

buckling of partially cracked isotropic and functionally graded 

microplates based on a nonclassical Kirchhoff’s plate theory. 

Results obtained from modified couple stress theory were 

compared with those obtained from classical plate theory for 

presence and absence of thermal environment. The results for 

fundamental frequency obtained from modified couple stress 

theory were higher for both presence and absence of thermal 

environment showing the significance of internal material length 

scale parameter for very thin plates. Thermal buckling and post-

buckling analysis of functionally graded beams based on a general 

higher-order shear deformation theory have been evaluated by Ren 

et al. (Ren et al., 2017). The results showed that the thermal post-

buckling equilibrium paths for FGM beams were stable; also, the 

critical buckling temperature and the thermal post-buckling 

strength for Euler-Bernoulli beam model was higher. An analytical 

solution for buckling of Mindlin plates subjected to arbitrary 

boundary conditions has been proposed by Ruocco et al. (Ruocco 

et al., 2017). The model was based on the extended Kantorovich 
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method and performed a decoupling of variables with respect to 

two orthogonal coordinate directions. Shahsavari et al. (Shahsavari 

et al., 2018b) reported different nonlocal strain gradient theories 

for shear buckling of single-layer graphene sheets in hygrothermal 

environment resting on an elastic foundation. Khaniki et al. 

(Khaniki et al., 2017) investigated buckling analysis of nonuniform 

nonlocal strain gradient beams by using generalized differential 

quadrature method. The results revealed that when increasing the 

strain gradient term the required in-plane load for reaching the 

critical buckling reaction increased; however, while increasing the 

nonlocal term the required in-plane load decreased. 

In general, sheets classified into three groups: thin plates (with 

small and large deflections), moderately thick and thick plates 

(Ugural, 1981; Timoshenko and Woinowsky-Kreiger, 1959). The 

approximate theories of thin plates become unreliable for the case 

of plates that have considerable moderately thicknesses, especially 

for the case of highly concentrated loads. In such cases, the 

moderately thick-plate theory should be applied. This theory 

considers the problem of plates as a two-dimensional of elasticity. 

It deems that there is lack of studies on the buckling analysis of 

graphene sheets by a one variable shear deformation theory of 

elasticity. This means that there has been so far only one stability 

equation in terms of the displacement’s field for obtaining critical 

buckling load in such plates. Therefore, an investigation on 

obtaining stability equations expressed in terms of displacements 

and rotations, using a combination of FSDT and nonlocal elasticity 

theories is important in order to accurately gain mechanical 

behavior of nanoplates. This paper presents a novel formulation for 

buckling of rectangular single-layered graphene sheet which is 

resting on Winkler-Pasternak foundation. Governing equations 

were derived based on a new first-order shear deformation theory 

and Eringen’s nonlocal elasticity theory considering von Kármán 

strain field. The stability equation was derived in terms of 

displacements and rotations. In order to achieve numerical results, 

Navier’s solution was taken into account. In order to assess the 

performances of the proposed theory, the critical buckling loads 

computed from the proposed theory are compared with those 

obtained by other theories. Also, a parametric study is performed 

to demonstrate the behavior of nanoplates on elastic foundations 

with variable plate dimensions and boundary conditions. Since no 

simplifying assumption was made in deriving the differential 

governing equations or in applying the boundary conditions, the 

method could be applicable for both thin and moderately thick 

plates. 

2. Governing equations 

When studying mechanical behavior of nanoplates including 

buckling, thin plates are usually examined, and the plates should be 

deployed on an elastic foundation so that the extreme stability 

conditions are included in the study. In an elastic foundation, both 

in-plane and transverse resistances could be expressed through 

shear parameter and stiffness modulus. In addition, a graphene 

polymer material could be defined as an elastic matrix in static 

analyses. In this paper, a single-layer graphene sheet (SLGs) 

resting on an elastic foundation was modeled as a plate embedded 

in an elastic matrix (Shahsavari et al., 2018a; Shahsavari et al., 

2018c; Karami et al., 2018; Malikan and Sadraee Far, 2018). 

Consider a first-order shear orthotropic rectangular plate of length 

Lx, width Ly and uniform thickness h, with its middle surface in a 

Cartesian coordinate system as shown in Figures 1, 2 and 3. 

The development of nanotechnologies extends the field of 

application of the classical or non-classical theories of plates 

towards the new thin-walled structures (Altenbach and Eremeyev, 

2015). Recently, many theories for nanosize plates have been 

considered and consequently various new theories have been 

formulated. The classical plate theory (CPT) is inconsistent for thin 

plates in the sense that elements are assumed to remain 

perpendicular to the mid-plane, yet equilibrium requires that stress 

components σxz, σyz still arise (which would cause these elements to 

deform). The theory of moderately thick plates is more consistent, 

but it still makes the assumption that the stress component σz=0. 

Note that both are approximations of the three-dimensional 

elasticity theory (Kelly, 2013). Furthermore, the accurate results 

for moderately thick plates can be obtained by taking into account 

the effect of transverse shear deformation and the according theory 

used is called First-order Shear Deformation Theory (FSDT) or 

Mindlin’s theory. According to FSDT, the following displacement 

field can be expressed as follows (Malikan and Sadraee Far, 2018): 

   , , ,U x y z z x y                                                               (1a) 

   , , ,V x y z z x y                                                               (1b) 

   , , ,W x y z w x y                                                                 (1c) 

 

Figure 1 Schematic presentation of graphene sheet on an 

elastic matrix in right-hand coordinate system 

where w is the transverse deflection. For the consideration of the 

transverse shear deformation, the components of the rotation can 

be written in terms of two functions  and  (Malikan et al., 

2017). In vector analysis, the standard procedure of expressing the 

rotation vector as the sum of the gradient of the scalar   and the 

curl of a vector with the z-component  was used. In the theory, 

the shear stress in the thickness direction was given a constant 

value, which in fact could not be true (Malikan, 2017a). For 

solving the problem, a shear correction factor (SCF) had to be 

used, which for various materials could not be exactly defined; 

therefore a value of 0.833 being often used for various conditions 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


            A novel one variable first-order shear deformation theory                                                          World Journal of Engineering 

                       Mohammad Malikan, Van Bac Nguyen 

in previous studies might not be accurate. This is because the value 

was derived for an isotropic rectangular laminated macro plate 

only (Madabhusi-Raman and Davalos, 1996) and has not been 

determined for micro and nanoplates. Therefore, by deriving a 

simple First-order Shear Deformation Theory (SFSDT), the SCF 

was removed from governing equations, and the problem has been 

solved by splitting (w) into the bending component (wb) and the 

shear component (ws) (Malikan, 2017a; Malikan, 2017b; Malikan, 

2018a; Malikan, 2018b; Karami and Janghorban, 2016; Karami et 

al., 2017a; Karami et al., 2017b; Thai and Choi, 2013; Shimpi, 

2002): 

 ( )  ( )w w bending w shear                                                       (2) 

Also, the rotation variable in the SFSDT is expressed in terms of 

the bending component only (Malikan, 2018a): 

b

b

w

x

w
 

y













 
    

   
   

  

                                                                      (3a-b) 

Substituting Eqs. (2, 3) into Eq. (1), the SFSDT displacement field 

could be written as follows (Malikan, 2018a): 

 

 

 
   

, ,
,

,

,

,

,

,

b

b

b s

w
z

x

w
z

y
W x y z

w x

U x  y  z

V x  y  z

y w x y

 
    

   
    

   
   

 
 

                               (4a-c) 

The deflection was split into two parameters including shear and 

bending deflections (Shimpi, 2002). This first study shows that an 

isotropic square plate was considered for the assumption and as it 

is vivid, ws originated from the shear deflection. In fact, for 

asymmetrical models
xz yz  , thus, using a unique variant (ws) 

for showing the deflection which resulted from shear stresses in x-z 

and y-z planes could not be comprehensive for plates with 

unpredictable behavior and could be conceptual for isotropic 

square plates and beams only (Figure 2).  

 

Figure 2 Shear deformation theories presentation (ws is 

related to second neutral axis develops from transverse 

shear stresses taken in FSDT assumptions) 
 

Two states of strain were assumed: 

1- The shear strain was derived from the deflection ws. 

2- The deflection ws was obtained from the shear strain. 

For the first state, w = wb + ws has been used. However, it should 

be noted that the second state is the realistic case. Therefore, 

ws1 = wsx, ws2 = wsy and ws1  ws2 because xz  yz     

w = wb + ws1 (or ws2) 

If xz > yz then ws occurred due to xz thus w = wb + ws1            (5a) 

If yz > xz then ws occurred due to yz thus w = wb + ws2           (5b) 

These assumptions are applicable for orthotropic, anisotropic, 

isotropic rectangular plates under asymmetrical loads. 

If yz = xz then w = wb + ws                                                         (6) 

This assumption is applicable for isotropic square plates under 

symmetrical loads and beams.                                
 

 
Figure 3 Shear strains in plates 

The shear deflection ws resulted from shear stresses in x-z and y-z 

planes when Eq. 5 was used, as shown in Figure 3. However, it 

could not be specified that the value of ws in the response was still 

related to x-z or y-z axis planes. Although the ws could be a unique 

value for plates which led to close results in comparison with other 

theories, it was not clear which from axis the value was obtained. 

The error would be significant when anisotropic and orthotropic 

plates were considered due to the fact that the response outcomes 

were considered only by stiffness matrix without variants. To 

justify these assumptions, let consider other studies in which shear 

deflection was used as a unique value as shown in Eq. 7-10. 

A) According to (Shimpi, 2002): 

 
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                                                                                                  (7a-c) 

B) According to (Shimpi et al., 2007): 

 

 

 

 

 
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 

  
   

    
   

   
 
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(8a-c) 

C) According to (Shimpi et al., 2007): 

 
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(9a-c) 

D) According to (Timoshenko and Woinowsky-Kreiger, 

1959): 

 
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(10a-c) 

The comparison of various nondimensional parameters for simply-

supported isotropic square plates under sinusoidal transverse loads 

were shown in Table I whilst the comparison of various 

nondimensional parameters for simply-supported isotropic square 

plates under uniformly distributed transverse loads were illustrated 

in Table II. 

Table I Comparison of various nondimensional parameters 

of simply-supported isotropic square plate (Ly/Lx=1, 

h/Lx=0.1) under sinusoidal transverse load: ŵ=wE/hq0, at 

x=Lx/2, y=Ly/2, E2=E1=E, G12=G13=G23=G=E/2(1+ υ), υ=0.3. 

RPT 

(Shimpi, 

2002) 

Exact 

(Shimpi, 

2002) 

CPT 

(Shimpi, 

2002) 

NFSDT-I and II 

(Shimpi et al., 

2007) 

296.0568 294.2375 280.2613 296.0674 

Table II Comparison of various nondimensional parameters 

of simply-supported isotropic square plate (Ly/Lx=1) under 

uniformly distributed transverse load: ŵ=wG/hq0, at x=Lx/2, 

y=Ly/2, E2=E1=E, G12=G13=G23=G=E/2(1+ υ), υ=0.3. 

h/Lx 

Reissner* 

(Srinivas, 

1970) 

Exact 3D 

(Srinivas, 

1970) 

CPT 

(Srinivas, 

1970) 

NFSDT-I and 

II (Shimpi et 

al., 2007) 

0.05 2760.00 2761.3 2729.9 2765.27 

0.1 178.13 178.45 170.62 179.46 

0.14 48.247 48.40 44.414 48.92 

* The formulation is accessible in (REISSNER, 1945). Reissner 

plate theory was derived from the variational principle of the 

complementary strain energy with the assumption of a linear 

bending stress distribution and a parabolic shear stress distribution. 

The formulation of the Reissner plate theory will inevitably lead to 

the displacement variation being not necessarily linear along the 

plate thickness and also the deformation of the plate thickness 

(Wang et al., 2001). 

Table II clearly demonstrated that the RPT and NFSDT-I had some 

difference to the exact results when sinusoidal transverse loads 

were asymmetrical. The comparison of the parameters for simply-

supported an isotropic square plate under uniformly load strongly 

in Table II indicated the shortcoming of RPT and NFSDT-I in 

comparison with those for asymmetrical analysis in Table I. In 

addition, it clearly showed that the difference between the results 

of h/Lx=0.1 in Table I is more than those in Table II. Table III 

illustrated another comparison for various nondimensional 

parameters of simply-supported orthotropic square plates under 

uniformly transverse loading. 

Table III Comparison of various nondimensional parameters 

of simply-supported orthotropic square plate (Ly/Lx=1) 

under uniformly distributed transverse load: ŵ=wQ11/hq0, at 

x=Lx/2, y=Ly/2, E2/E1=0.5225, G12=E1=0.29281, 

G13=E1=0.17809, G23=E1=0.29713, υ12=0.44046, υ23=0.23124. 

h/Lx 

Reissner 

(Srinivas 

and Rao, 

1970) 

Exact 3D 

(Srinivas 

and Rao, 

1970) 

CPT 

(Srinivas 

and Rao, 

1970) 

NFSDT-I and II 

(Srinivas and 

Rao, 1970) 

0.05 10442 10443 10246 10413.4 

0.1 688.37 688.57 640.39 681.75 

0.14 191.02 191.07 166.7 187.77 

The large differences between the results of NFSDT-I and exact 

theories shown in Table III in comparison with those in Tables I-II 

were observed and that confirms the significant error of ws for 

orthotropic, and generally for asymmetric materials. Although the 

NFSDT-I value was more accurate than CPT’s, it still showed 

some difference between the NFSDT-I and exact results and also 

in comparison with Reissner’s; this could justify the error existing 

when using ws in developing equations. Lastly, if orthotropic 

rectangular plates under sinusoidal loading were considered, the 

error would be the largest. 

According to the results shown in Tables I - III, the use of w = wb 

+ ws was accompanied with the error in the response of the 

analysis of asymmetrical plates. Furthermore, considering Eq. 5 for 

deriving displacement field could have difficulties and resulting in 

complicated mathematical relationships. Therefore, a simple 

formulation could be developed by removing the direct effect of ws 

and refining further the SFSDT (NFSDT-I) as shown in the 

following equations: 
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 

 

 
 

,
, '

,

,

,

,

,

b

b

b

w
z

x

w
z

y

U x  y  z

V x  y

W x y z
w x y W

  z

 
    

   
    

   
   

 
 

                                       (11a-c) 

In which W' is an indirect impact of shear deflection which will be 

determined. 

The best conception way in order to examine the influences of the 

shear deflection should be examining the bending deflection (wb) 

when it was equal in both x-z and y-z planes. In fact, it was the 

deflection of the second neutral axis (according to Figure 2, we 

have seen two neutral axes; first about deflection of classical plate 

theory (CPT) and second related to SFSDT). Therefore, it could be 

used for finding the value of ws. Here, by using nonlinear strains of 

Lagrangian and substituting them into Eq. 4, the strain field of 

SFSDT was obtained as follows: 
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       
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          (12a-e) 

By substituting Eq. 12 into Hook′s law, the stress field can be 

calculated as follows: 

 

xx xx

yy yy

yz yzijk

xz xz

xy xy

Q

 

 

 

 

 

   
   
   
   

     
   
   
   
   

                                                        (13a-e) 

In which Qijk is the stiffness matrix for the material. The SFSDT 

stress resultants were obtained in the following forms (Malikan, 

2018a): 

 
/2

/2
( , , ) , ,

h

x y xy x y xy
h

N N N dz  


                                  (14a) 

 
/2

/2
( , , ) , ,

h

x y xy x y xy
h

M M M zdz  


                              (14b) 

   
/2

/2
, ,

h

x y xz yz
h

Q Q dz 


                                                 (14c) 

Then, by substituting Eq. 13 into Eq. 14 the stress resultants are 

now achieved as (Malikan, 2018a): 
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                   (15a-h) 

In which constants Aij, Dij (i, j = 1, 2, and 6) and H44 were given by 

(Malikan et al., 2017): 

44 12 12 13 23 (suppossed: )H G h G G G    

1 12 2
11 22 12 66 12

12 21 12 21

,  ,  
1 1

E E
Q Q Q Q G



   
   

 
 

   22

2

, 1, 1,2,6

h

ij ij ijh
A D z  Q dz     i


                               (16a-f) 

where E1 and E2 are Young′s modules, ν12 and ν21 denote Poisson’s 

ratios, G12 exhibits the shear modulus and h is the thickness of the 

orthotropic plate. Dij and Aij are the bending and tensioning 

stiffness matrixes (Malikan et al., 2017). 

Here, the fourth equation of FSDT’s governing equations (Malikan 

and Sadraee Far, 2018) was adopted since it was simple to 

calculate ws (based on wb): 

0 
xyx

x

MM
Q

x y


  

 
                                                          (17) 

Now by substituting Eq. 15 into Eq. 17: 

 
3 3

11 12 66 443 2
0 b b sw w w

D D D H
xx x y

  
   

  
                      (18) 

By integrating from Eq. 18 with respect to x, simplifying and also 

ignoring the integral constant, the shear deflection could be 

obtained as follows: 
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2 2

2 2
' b bw w

W A B
x y

 
 

 
                                                            (19) 

In which, terms A and B are expressed as follows: 

12 6611

44 44

,   
D DD

A B
H H


                                                     (20a-b) 

Afterwards, the OVFSDT could be achieved in the following 

equations: 
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                                                                                                (21a-c) 

By using the OVFSDT field which was mentioned in Eq. 21, the 

impact of the shear deflection was embedded in displacement field 

based on the bending deflection rather than using the SCF or ws 

variant. In the next stage, by using Lagrangian strains and 

implementing the von Kármán strains, the OVFSDT strains were 

expressed as follows: 
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              (22a-e) 

To obtain the total potential energy (V) of the nanoplate, strain 

energy (S) was included in the potential energy of external loads 

(Ω) as follows (Malikan, 2018a): 

V=S+Ω                                                                                        (23) 

where the strain energy in nonlocal form was obtained as follows: 

, ,NL
ij ij

v

S   dV   ,  i j x y                                            (24) 

where subscript NL and L were used to indicate nonlocal 

parameters. The potential energy of external loads could be defined 

as follows (Farajpour et al., 2013): 

  2 2

0 0

y xL L

G w vdWi k wj k wj wj q i q wdxdy

 ,  i=1,2,3,...,n ,  j=1

          

                                                                                                   (25a) 
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 

    
 

                                                                                                   (25b) 

Where kw and kG denote the Winkler coefficient and Pasternak 

shear modulus respectively, and the van der Waals interaction 

bond acting on the kth layers is qvdW (k). In addition, q is the 

transverse force on the single-layered graphene sheet in bending 

analysis (Malikan et al., 2017). Using the principle of minimum 

potential energy ( 0S    ), the stability equation (based on the 

one unknown variable in the nonlocal form in displacement field) 

was obtained for calculating critical buckling load as follows: 
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In which w0 is the transverse deflection of the plate, Nx
NL and Ny

NL 

are the nonlocal in-plane stress resultants. 

The main purpose of the Eringen’s differential law was to develop 

a basic equation to model the nanostructures in a nonlocal 

continuum model (Eringen, 2002). To this end, the natural 

extensions of the two fundamental laws of physics to nonlocality 

included: (i) the energy balance law was postulated to remain in 

global form; and (ii) a material point of the body was considered to 

be ‘connected’ by all points of the body, at all past times (Eringen, 

2002). By means of these two natural generalizations of the 

corresponding local principles, the theory of nonlocal elasticity 

was formulated (Singh and Singh, 2017). Although the theory was 

based on linear elasticity and was derived for isotropic materials, it 

has been adopted in many previous studies for the orthotropic 

materials and nonlinear behaviors. The local and nonlocal stress-

displacement relations were defined as follows (Eringen, 1983; 

Eringen and Edelen, 1972; Eringen, 2002): 

   ( ) , ( )ij ijkl ij

v

X X X X dV X                                   (27) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


            A novel one variable first-order shear deformation theory                                                          World Journal of Engineering 

                       Mohammad Malikan, Van Bac Nguyen 

The above equation could be converted into the following equation 

(Eringen, 2002): 

    2 2 4 4
, , 1 11 0k lk l kku u f u                  (28) 

Eq. 29 was used rather than classical elasticity that was singularly 

perturbed. In fact, this equation was used for static problems with 

vanishing body forces (Eringen, 2002). When the Hookean stress 

(σkl) was known, Eq. 29 could be used (Malikan et al., 2017): 

 2 21 NL L
ij ij                                                                  (29)  

where NL
ij  is the nonlocal stress and 0( ) ,e a   

 00 <  2e a nm (Golmakani and Rezatalab, 2015) and 

also
2 2

2

2 2x y

 
  

 
.  

There has been no relation for the nonlocal stress resultant; 

therefore, in order to solve Eq. 26, the stress resultants in the 

equation had to be in local form by using Eq. 30 as follows 

(Malikan et al., 2017): 

 2 21 NL L
ij ijN N                                                                (30) 

By substituting Eq. 30 into Eq. 26 the nonlocal governing equation 

with local stress resultants Eq. 31 was achieved as follows: 
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                                                                                                     (31) 

Here, the quantities ,  and x yN N  are the resultants with respect to 

the applied in-plane forces (Nx=k1×N, Ny=k2×N). 

3. Solution methodology 

The following closed-form solution was obtained for the simple 

boundary condition of simply-supported plates. Therefore, the 

general solution for transverse deflection by Navier’s method in 

terms of characteristic modal functions in the following form was 

adopted (Malikan, 2017b): 

   0 0

1 1

;   sin sini t
mn

m n

SSSS w W e x y  

 

 

                      (32) 

where  sin x and  sin y are the characteristic modal functions 

treated by many researchers satisfying the all sides simply-

supported boundary condition, also ,  
m n

Lx Ly

 
   , m and n are 

the half wave numbers, respectively (Malikan, 2017b). 

4. Numerical results and discussions 

The accuracy of the numerical results originated from the 

OVFSDT had to be verified by comparing with other theories. In 

light of the proposed formulation, it was very important to know 

the difference in the results of the proposed theory and others. 

Therefore, the results obtained from the proposed theory and 

validation against those obtained from CPT, FSDT, Exact, and 

molecular dynamics simulation (MD) theories extracted from well-

known references (Golmakani and Rezatalab, 2015; Golmakani 

and Sadraee Far, 2017; Srinivas, 1970; Ansari and Sahmani, 2013) 

are presented in Tables IV-VI. It is clearly seen that the results 

with an increase in the plate’s length were becoming closer to the 

MD’s results. Generally, Table IV shows that there was an 

excellent agreement between the numerical results of the present 

theory and others’, indicating the justification for the proposed 

theory for square plates in this study. For further validation, Table 

V presented the comparison between the critical buckling loads 

obtained by the proposed theory and those of the DQ method 

(Golmakani and Sadraee Far, 2017) and molecular dynamics 

simulation (Ansari and Sahmani, 2013) for different aspect ratios 

of orthotropic single-layered graphene sheets under uniform 

biaxial compression. The results shows that the new proposed 

theory had noticeably impacted on the results for rectangular 

plates. In addition, the variation between results in Table V was 

more significant than that in Table IV. It should be noted that the 

MD method was not an exact method, and all the theories 

presented in the Tables were associated with minor errors because 

of several reasons; (Golmakani and Rezatalab, 2015; Golmakani 

and Sadraee Far, 2017) included errors due to approximations used 

in numerical solutions. On the other hand, MD has some 

challenges and approximations such as the classical approximation 

and the interaction potential of atoms (Deuflhard et al., 1999). In 

fact, the potential is already unknown for materials in many 

conditions and the proposed potentials have been compared with 

the experimental test results for being approved. Definitely the 

proposed potentials could not be exact ones. Another challenge 

(Ruslan and chack, 2010) in MD for considering a system is to 

choose an appropriate integration time step. Since this choice is 

highly system dependent, even the most sophisticated and well 

developed MD packages leave this choice to the user. In order to 

make the MD simulation efficient, the step size should be chosen 

as large as possible. However, too large a step size results in the 

instability of the numerical integration of the equations of motion. 

By presenting such an error there is a question that how long 
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should it runs? This depends on the system and the physical 

properties of interest (Michael, 2004). 

A detailed investigation between the proposed theory and other 

plate theories is shown in Table VI. Results were provided from 

the CPT, Mindlin (FSDT) and Exact theories for thin to 

moderately thick square plates. It can be seen from the Table that 

the current and Mindlin theories had some differences to the exact 

theory and these differences increased with increasing the plate 

thickness. This trend for the OVFSDT was lesser than that of the 

FSDT. Finally, the OVFSDT was also compared against the SFDT 

and FSDT in terms of the critical biaxially buckling load for 

orthotropic plates under in-plane uniform loads and the results are 

shown in Table VII. It clearly shows that the difference between 

the OVFSDT’s results and the SFSDT’s ones for orthotropic 

behavior was more than those for isotropic behavior, confirming 

the authors’ claim that the SFSDT for asymmetric materials had a 

minor error. These confirmed that the new theory proposed in this 

study was able to gain more appropriate and accurate results by 

carrying out and refining the errors, despite the fact that 

developing a complete theory was not included in the scope of this 

study. 

Table IV Comparison of critical biaxial buckling loads for 

single-layered graphene sheet which was simply-supported 

on all sides from differential quadrature (DQ) method 

(Golmakani and Rezatalab, 2015; Golmakani and Sadraee Far, 

2017), and molecular dynamics simulation (Ansari and 

Sahmani, 2013). (E=1TPa, υ=0.16, k1=1, k2=1, ks=5/6, 

μ=1.81nm2, SSSS). 

Critical buckling load (nN/nm) 

OVFSDT 

FSDT-

DQM 

(Golmakani 

and 

Rezatalab, 

2015) 

FSDT-

DQM 

(Golmakani 

and Sadraee 

Far, 2017) 

MD 

results 

(Ansari and 

Sahmani, 

2013) 

Lx=Ly 

(nm) 

1.0274 1.0749 1.0809 1.0837 4.99 

0.62151 0.6523 0.6519 0.6536 8.080 

0.43832 0.4356 0.4350 0.4331 10.77 

0.26122 0.2645 0.2639 0.2609 14.65 

0.17075 0.1751 0.1748 0.1714 18.51 

0.11963 0.1239 0.1237 0.1191 22.35 

0.08856 0.0917 0.0914 0.0889 26.22 

0.06918 0.0707 0.0705 0.0691 30.04 

0.05568 0.0561 0.0560 0.0554 33.85 

0.04488 0.0453 0.0451 0.0449 37.81 

 

Table V Comparison of critical buckling loads obtained by 

the proposed theory and those of DQ method (Golmakani and 

Sadraee Far, 2017) and molecular dynamics (MD) simulation 

(Ansari and Sahmani, 2013) for different aspect ratios of 

orthotropic single-layered graphene sheets under uniform 

biaxial compression. (E=1TPa, υ=0.16, k1=1, k2=1, ks=5/6, 

μ=1.81nm2, SSSS). 

 

 

Critical buckling load (nN/nm) 

OVFSDT 

FSDT-DQM 

(Golmakani and 

Sadraee Far, 

2017) 

MD results 

(Ansari and 

Sahmani, 2013) 

Lx/Ly 

0.52449 0.5115 0.5101 0.5 

0.56223 0.5715 0.5693 0.75 

0.64225 0.6622 0.6595 1.25 

0.75576 0.7773 0.7741 1.5 

1.01340 1.0222 1.0183 1.75 

1.17030 1.1349 1.1297 2 

Table VI Asymptotic x  for buckling of orthotropic plates 

under uniform in-plane force (k1=1, k2=0, ks=5/6, Aragonite 

crystals, CaCo3 (E1=159.958GPa, E2/E1=0.543103, 

G12/E1=0.159914, G13/E1=0.17809, G23/E1=0.26681) 

(BISPLINGHOFF et al., 1965), SSSS,

2

2

12 y
x

x

LP

hE




 
  

 
).  

Dimensionless critical buckling load 

OVFSDT 

(E3=0) 

CPT 

(Srinivas, 

1970) 

Mindlin* 

(Srinivas, 

1970) 

Exact 3D 

(Srinivas, 

1970) 

h/Ly 

2.9664 3.039 2.965 2.966 0.05 

2.7712 3.039 2.768 2.770 0.1 

2.2123 3.039 2.204 2.210 0.2 

* The formulation was accessible in (MINDLIN, 1951). Mindlin 

formulated his theory by first assuming a linear variation of 

displacements along the plate thickness while maintaining the 

transverse inextensibility of the plate thickness (Wang, 2001). 

Reviewing the formulation of the plate theories, it is evident that 

the normal stress σzz was ignored in the Mindlin plate theory, in 

contrast to the Reissner plate theory which took into account this 

normal stress (Wang, 2001). 

Table VII The biaxial buckling behavior of orthotropic plates 

under uniform in-plane loads  

(k1=1, k2=1, SSSS, Orthotropic graphene sheets: E1=1765GPa, 

E2=1588GPa, ν12=0.3, ν21=0.27, h=0.34nm, Lx=Ly=10.2nm 

(Malikan et al., 2017), e0a=0)  

(k1=1, k2=1, SSSS, Isotropic graphene sheets: E=1060GPa, 

ν=0.16, h=0.34nm, Lx=Ly=10.2nm (Golmakani and Rezatalab, 

2015; Golmakani and Sadraee Far, 2017; Ansari and Sahmani, 

2013; He et al., 2005), e0a=0)  

Critical buckling load (nN/nm) 

OVFSDT SFSDT 
FSDT 

(ks=5/6) 

FSDT 

(ks=7/8) 
Mat. 

1.6014 1.5534 1.2943 1.3590 Isotropic 

2.3676 2.3081 1.9231 2.0193 Orthotropic 

In the parametric investigation, the simply-supported orthotropic 

nanoplates had the following dimensions and material properties: 
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μ=1.81nm2, Lx=Ly=10.77nm, h=0.34nm, kW=1.13GPa/nm, 

kG=1.13Pa.m, E1=1765GPa, E2=1588GPa, ν12=0.3, ν21=0.27 

(Malikan et al., 2017) 

Figure 4 shows the effects of the small-scale parameter on the 

square and rectangular orthotropic plates by taking two plate 

theories. For this purpose, the width of the plate was assumed to be 

constant and the plate length was given different values. It is 

clearly seen in Figure 4 that when increasing nonlocal parameter 

values, i.e. from =1 to =4 nm2, critical buckling loads reduced 

gradually and they got closer for different length ratios. In fact, the 

impact of different lengths is decreasing with an increase in the 

nonlocal parameter. Moreover, when the value of plate length 

increased, the differences between OVFSDT and SFSDT will be 

larger. As a rule, this is a result of asymmetric plates versus square 

ones. To another conclude, it can be stated that the increase of 

nonlocal parameter can reduce the influence of shear stress errors 

for orthotropic plates. 

 

Figure 4 Effect of small-scale parameter on the critical 

buckling load by considering various aspect ratios (β=Lx/Ly) 
 

Figure 5 shows the influence of the elastic foundation on the 

biaxial critical buckling by taking into account several conditions. 

As can be observed, after embedding the nanoplate on the matrix, 

the critical buckling load was increasing when the foundation 

stiffness increased; however, this remarkable increasing trend in 

the response outcomes was not continued after kW=1 GPa/nm. In 

addition, it is observed that the elastic foundation has further 

impacted on results of OVFSDT versus SFSDT results while 0 ≤ 

kW ≤1 GPa/nm. In plotting the curves in Figure 5, the value of kG 

was picked up at 1.13 Pa.m. 

 

Figure 5 Effect of the elastic foundation versus various 

aspect ratios on the critical buckling load 

Comparison between the results of uniaxial and biaxial critical 

buckling loads are illustrated in the Figure 6. As expected, 

regarding asymmetric analysis (k1=1, k2=0), there was a further 

difference in the results of SFSDT versus OVFSDT in lower 

values of nanoscale factor. In addition, the critical buckling loads 

of uniaxial cases were significantly greater than those of biaxial 

case in same conditions, and the descending slope was also greater 

in the case of uniaxial analysis. An important consequence could 

be the closeness of the critical buckling loads for both cases when 

values of the nonlocal parameter were greater.  

 

Figure 6 Uniaxial and biaxial critical buckling loads versus 

small scale parameters 
 

Figure 7 shows the critical buckling loads of thin and moderately 

thick nanoplates for several different values of the nonlocal 

parameter (Figure 7a) and for the comparison of results in SFSDT 

versus OVFSDT (Figure 7b). It can be seen from the Figures that 
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when the nonlocal parameter increased or when the plate became 

thicker, the slope of the critical buckling load data increased more 

dramatically. It is also clear that with an increase in thickness of 

the plate, the gap between values of the nonlocal parameter for the 

same dimension ratio (h/Lx) was getting larger. In fact, the small-

scale parameter had more impact on thicker plates under stability 

conditions. By investigation of Figure 7b, it can also be seen that 

the difference of the diagrams of SFSDT and OVFSDT will 

increase by increasing thickness which leads to this significant 

outcome that the effect of a further increase in thickness of the 

plate shows a simultaneous increase in errors resulted from 

SFSDT. It also shows that further significant increase in critical 

buckling loads was observed for plates having greater dimension 

ratios. 

 

Figure 7a Influences of the ratio of thickness to length 

versus several small scale parameters on the critical 

buckling loads 

 

Figure 7b Influences of the ratio of thickness to length on 

the critical buckling loads for OVFSDT and SFSDT theories 
 

5. Conclusion 

The biaxial buckling behavior of the embedded graphene sheet on 

an elastic foundation was studied using a new One Variable First-

order Shear Deformation Theory (OVFSDT). The new OVFSDT 

theory was developed in reducing the shear deformation error in 

the buckling responses and the stability equation was determined 

by applying the nonlocal elasticity theory. The critical buckling 

load of the orthotropic nanoplates under uniaxial and biaxial 

loading was successfully computed using the Navier’s solution 

method. The effects of nanoplate′s geometry, different lengths, 

size-dependent parameter and the elastic foundation on the uniaxial 

and biaxial buckling responses of the orthotropic nanoplates were 

examined using the new proposed theory. The validation 

confirmed that the proposed theory was able to gain more 

appropriate and accurate results by carrying out and refining the 

errors in incorporating shear deformation. The proposed theory 

helped improve the FSDT for investigation of mechanical behavior 

of nanoplates resting on an elastic foundation and thus, ultimately 

helped understand the behavior of graphene sheets under stability 

conditions. In many cases, it would provide an alternative 

approach to understand and characterize the behavior and material 

properties of graphene sheets to the experimental tests that are 

expensive and time consuming. As we know, plates have been 

used widely in industry as important elements in machines. Many 

parts which have been made by plates are under stability 

conditions and it is necessary to know the buckling resistance of 

the plate to axial loads for designing of the machines parts. 

Therefore, the theoretical analysis of the nanoplate would help 

designers to predict the strength of nanosheets or to characterize 

the nanomaterials used. The theoretical analysis would also help 

formulate simplest but accurate equations for design practice. 

According to the numerical results of the present study, the 

following conclusions are notable. 

 The two-variable plate theories (SFSDT, RPT, NFSDT-I) 

could not be appropriate solutions for asymmetrical 

analysis.   

 When increasing nonlocal parameter values, critical 

buckling loads reduced gradually and they got closer to 

each other for different length ratios  

 An important consequence could be the closeness of the 

critical buckling loads in both uniaxial and biaxial cases 

when values of the nonlocal parameter became greater. 

 The small-scale parameter had more impact on the critical 

buckling load of thicker plates under stability conditions. 

 Further increase in critical buckling loads was considerable 

with an increase in thickness of the plate. 

 With increasing nonlocal parameter, results of OVFSDT 

and SFSDT with noticeable reduction have become closer 

to each other. 
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