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A B S T R A C T

We derive a novel formulation for the interaction potential between deformable fibers due to
short-range fields arising from intermolecular forces. The formulation improves the existing
section–section interaction potential law for in-plane beams by considering an offset between
interacting cross sections. The new law is asymptotically consistent, which is particularly
beneficial for computationally demanding scenarios involving short-range interactions like van
der Waals and steric forces. The formulation is implemented within a framework of rotation-free
Bernoulli–Euler beams utilizing the isogeometric paradigm. The improved accuracy of the novel
law is confirmed through thorough numerical studies. We apply the developed formulation
to investigate the complex behavior observed during peeling and pull-off of elastic fibers
interacting via the Lennard–Jones potential.

1. Introduction

Many observable phenomena are governed by the interactions of physical fields that give rise to the forces between material
bodies. Motivated by the desire to model and study the underlying mechanisms defining the form and function of biological and
biomimetic materials and structures, the present research deals with the interactions between molecular assemblies that resemble the
shape of fibers. Some examples of biological fiber-like macromolecules are proteins such as filamentous actin [1] and collagen [2],
nucleic acids such as DNA and RNA [3], cellulose [4], and hyphae [5]. Furthermore, the development of new materials and
technologies is often motivated by nature. The technology for the production of composites based on glass fibers [6], silicon
nanotubes [7], carbon nanotubes [8], and mycelium [5] is constantly developing. Among the many general types of interactions
between fibers, important examples are adhesion, peeling, and pull-off. The understanding of these is central to many important
applications in coating, bonding, and adhesion technology. One of the main challenges in these applications is the large stress that
can occur in a very narrow zone at the peeling front.

Modeling of interactions between fibers is challenging due to the interplay of many forces and the involved time and length scales
at the nano- and micro-level. Since experimental and theoretical methods are limited in scope, computational methods have become
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Fig. 1. Model of intermolecular interaction. (a) Interaction of two molecules via interaction potential. (b) Coarse-graining of interaction between molecular
assemblies.

the main – and often only – reliable tool for the analysis of interactions at small scales. Two commonly utilized computational models
for the interaction of material bodies are phenomenological (continuum) and physical (molecular) models. The continuum approach
considers the interaction between bodies as mechanical contact by requiring their impenetrability [9].

Although suitable for the contact of macroscopic bodies, the continuum approach is not directly applicable to the interactions
at nano- and micro-scales where potential-based molecular interaction models are usually preferable [10]. For example, the
electrostatic and van der Waals (vdW) interaction potentials give rise to forces that are fundamental for the processes at these
small scales. A schematic sketch of a potential-based interaction between two molecules is shown in Fig. 1a. For the assemblies of
molecules, a common assumption is that the interaction potentials of all interacting pairs sum up, see Fig. 1b (left). The computation
of interactions by the molecular approach is often based on either Monte Carlo (statistical) or molecular dynamics (application of
the laws of motion on each molecule) simulations. A shortcoming of the Monte Carlo approach is that the actual movement of
molecules cannot be traced, while molecular dynamics is computationally expensive [10].

A compromise between the continuum and molecular modeling of interactions at small scales is the coarse-grained approach. This
model utilizes the physics of molecular interactions with the elegance and numerical efficiency of a continuum formulation, which
is achieved by the coarse-graining and homogenization of the molecular model, see Fig. 1b. The main difficulty when modeling
potential-based interactions is that its solution yields an integral with respect to (w.r.t.) the volumes of all interacting bodies.

The first coarse-grained computational model for potential-based interactions between deformable 3D bodies has been developed
in [11] by using a generalization of the Derjaguin approximation. The approach has later been successfully extended to the nonlinear
setting in [12–14]. The idea is to separate the interactions that occur within the body (intrasolid) and between the bodies (intersolid).
This led to the definition of the inter-surface stress tensor that can be used to convert the more involved potential-based contact
problem to a conventional boundary value problem. A potential that characterizes surface interactions between two bodies is
formulated as a function of a gap vector. The idea is further utilized for the development of an unbiased approach for the interaction
of 3D bodies that unifies various contact models [15,16]. In these references, a 6D integral is reduced to a 4D integral by transforming
body-body interactions to surface-surface ones. Additional dimensional reduction is attained in [12] by assuming that an interacting
body can be approximated as a homogeneously deforming flat half-space in the vicinity of the neighboring body.

Further reduction of interaction integral is possible when dealing with slender bodies. The interaction between beams and
rigid half-spaces represents a special case since the influence of the rigid half-space can be integrated analytically, and numerical
integration is required only w.r.t. the beam. Nonlinear planar beam–substrate adhesion was considered in [17,18] by assuming that
the adhesive forces are acting at the centroid. The extension to thickness-varying adhesion was formulated [19] and applied to study
thin film peeling [20] and adhesive shape optimization [21,22].

The first general model for the 2D interactions between two fiber-like macromolecules using the finite element method
is given in [23]. The formulation is extended to study the structural polymorphism, phase transitions, and rheology of 3D
biopolymer networks [24–26]. The first potential-based formulation for the interactions between deformable spatial beams has
been developed [27–29]. In these works the authors introduce the concept of a section–section interaction potential based on a
priory evaluation of the interaction potential between two cross sections. The analytical integration of a point-pair interaction law
over areas of two cross sections allows the reduction of the 6D integral to a 2D one. Due to the inconsistent asymptotic scaling of
their implementation of the section–section interaction potential for short-range interactions, a section-beam approach is developed
by the same group of authors [30,31], effectively reducing the 6D integral to 1D, which allows to recover the consistent asymptotic
scaling behavior while reducing computational costs.

The computational modeling of potential-based interactions between curved deformable fibers is challenging and time consum-
ing. The present contribution aims to derive a coarse-grained computational model that is more accurate than the existing ones. It
enables the extension of this efficient concept to applications such as the adhesion, peeling, snapping, and buckling of fibers due to
intermolecular forces.

The contribution of the paper is twofold: First, we are pointing out that, for planar beams, the inconsistency of the existing
section–section interaction potential law [27] can be attributed to an offset between cross-sectional planes. To tackle this issue,
2
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we derive a new improved section–section interaction potential law and prove that it provides an accurate scaling for short-range
interactions. Second, the implementation issues of this new law are thoroughly investigated, and a new formulation providing a
good balance between accuracy and efficiency is proposed. Numerical experiments confirm our theoretical findings and give detailed
insight into the interaction of deformable fibers due to the Lennard-Jones potential.

The remainder of the paper is structured as follows. Origins and types of interaction potentials, along with appropriate
ssumptions are discussed in the next section. Section 3 briefly presents the utilized beam model. It is followed by the main Section 4
here the new section–section interaction potential law is derived and verified. The weak form of equilibrium is considered in
ection 5, which is followed by thorough numerical considerations and appropriate conclusions.

. Intermolecular interactions between bodies

Before discussing details of the computational formulation, a brief overview of the origin and types of intermolecular interactions
s given. It is accompanied by appropriate definitions and assumptions.

.1. Intermolecular vs. intramolecular

The present research examines intermolecular interactions between assemblies of molecules, which are treated as solid bodies in
our study. It is important to differentiate these interactions from intramolecular ones, such as various chemical bonds. Intermolecular
interactions primarily arise from the electromagnetic force field. One of the most apparent intermolecular interactions is the
electrostatic force that is observed in everyday life between charged bodies. These interactions are defined at the elementary level
as interactions between particles, represented as atoms or molecules.

2.2. Interaction potential between assemblies of particles

To formally define an interaction potential, let us observe two particles that are at infinite separation, and therefore do not
interact. An interaction potential 𝛷̂(𝑟) is the amount of energy required to move these particles to the finite distance 𝑟. It is often
modeled as an inverse power law w.r.t. the distance 𝑟,

𝛷̂𝑚 (𝑟) = 𝑘𝑚 𝑟
−𝑚, (1)

here 𝑘𝑚 is a physical constant [10]. The gradient of 𝛷̂𝑚 w.r.t. the position gives a pair of forces that act on the two particles, and
ave the same magnitudes but opposite directions.

Due to the reciprocal dependence on the distance, there is a fundamental difference between the interaction potentials w.r.t. the
xponent 𝑚. Let us assume that the interaction potential between two assemblies of particles, which we will consider as 3D bodies,
s obtained by the summation of Eq. (1) over all point-pairs of interacting bodies. Without losing generality, let us consider the
pecial case of interaction between two spherical bodies for which the analytical solutions are available. It can be shown that, for
> 3, the potential between the two bodies is a function of the gap between their surfaces, since the closest point-pairs dominate

he interaction. On the other hand, for 𝑚 ≤ 3, the influence of all the point-pairs is of a similar order and the interaction is a function
f the distance between the spheres’ centers [27]. For this reason, we refer to the potentials with 𝑚 ≤ 3 as long-range potentials and
hose with 𝑚 > 3 as short-range potentials. This classification allows us to tailor our formulations to a problem at hand. For example,
he electrostatic and the gravitational fields belong to the long-range potentials. The focus of the present research is on short-range
ields, such as vdW and steric potentials. Although not the subject of this paper, the final aim is to define interaction laws that are
alid for all ranges.

.3. Lennard-Jones potential

While the existence of electrostatic fields requires charged bodies, vdW and steric interactions exist for practically all bodies,
aking them one of the most common forces in nature. Actually, the origin of vdW forces is essentially electrostatic, arising from

he fluctuating dipole field that occurs in basically every molecule. It can be shown that the vdW potential is well-approximated
y the inverse-sixth power law. Although vdW interactions are generally nonadditive, it has been proven that pairwise summation
llows good approximation if the Hamaker constant is appropriately selected [10,27]. The vdW force between two equal molecules
n a medium is always attractive, while it can be repulsive for other cases.

For the modeling of adhesion due to vdW forces, it is necessary to include repulsive effects in the model. When atoms or molecules
ome into proximity, a strong repulsive force develops as a result of overlapping electron clouds. We observe this effect as contact
rom a macroscopic point of view. The repulsive force follows from the steric potential that is commonly modeled as an inverse
ower law with a high exponent. By adopting an exponent of 𝑚 = 12 for the steric potential and adding it to the vdW potential we
btain the well-known Lennard-Jones law

𝛷̂𝐿𝐽 (𝑟) = 𝛷̂6(𝑟) + 𝛷̂12(𝑟) = 𝑘6 𝑟
−6 + 𝑘12 𝑟−12. (2)

t large separations, the Lennard-Jones law yields very small attraction. As the separation decreases, the attraction increases, and
ventually transforms into repulsion. The important characteristics of the Lennard-Jones potential are (i) the equilibrium distance
3
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and (ii) the maximal adhesive force, commonly referred to as the pull-off force. These values fundamentally influence the peeling
phenomenon considered in Section 6.

The spatial distribution of interacting particles inside the body can vary. For our analysis, it is important that both vdW and
steric interactions are distributed over the whole volume of the interacting bodies. For example, this is not the case with electrostatic
fields where the interaction particles are located on the body surface.

2.4. Assumptions and restrictions

It is necessary to introduce additional restrictions to develop a feasible computational formulation. Analogous to [27], we will
assume that:

• There is no redistribution of particles or charges inside the bodies, that is, we are dealing with dielectric or nonconducting
materials. Also, there is no flow of particles inside or outside of the considered bodies. This assumption guarantees that an
interacting property (such as mass, electric charge, etc.) of elementary volumes does not change during deformation.

• To allow a pre-integration of a potential, it is necessary to assume constant density distributions of particles and physical
constants over cross-sectional areas.

• The total interaction between assemblies of particles is the mere sum of individual pair-interactions. This allows us to apply
a coarse-graining procedure and focus on interactions between two bodies only. Later, we can generalize the formulation by
simply adding other interacting bodies.

• Elastic fibers with constant circular cross sections are solely considered.
• For short-range interactions, the smallest separation between the fibers’ surfaces (gap) is much smaller than the characteristic

radius 𝑅 of interacting fibers

gap ≪ 𝑅. (3)

2.5. Coarse-grained interaction potential between two bodies

Let us consider the interaction between two assemblies of molecules 𝑎 and 𝑏 that occupy volumes 𝑉𝑎 and 𝑉𝑏, and have particle
densities 𝛽𝑎 and 𝛽𝑏 at initial configuration. The distance between two interacting particles, with positions 𝒂𝑖 and 𝒃𝑗 , is 𝑟𝑖𝑗 = ‖𝒂𝑖−𝒃𝑗‖,
and the total interaction is assumed as the sum of all point-pair contributions,

𝛷𝑚 =
∑

𝑖∈𝑎

∑

𝑗∈𝑏
𝛷̂𝑚

(

𝑟𝑖𝑗
)

. (4)

By applying the coarse-graining procedure [12], this interaction between assemblies of molecules can be approximated as a volume
integral over both bodies,

𝛷𝑚 ≈ ∫𝑉 ∗
𝑎
∫𝑉 ∗

𝑏

𝛽∗𝑎 (𝒂) 𝛽
∗
𝑏 (𝒃) 𝛷̂𝑚 (𝑟) d𝑉 ∗

𝑎 d𝑉 ∗
𝑏 = ∫𝑉 ∗

𝑎
∫𝑉 ∗

𝑏

𝛽∗𝑎 𝛽
∗
𝑏 𝑘𝑚 𝑟

−𝑚 d𝑉 ∗
𝑎 d𝑉 ∗

𝑏 (5)

where 𝑉 ∗
𝑖 are current volumes while 𝛽∗𝑖 are current particle volume densities. The quantity 𝛽∗𝑎𝛽

∗
𝑏 𝑘𝑚𝑟

−𝑚 d𝑉 ∗
𝑎 d𝑉 ∗

𝑏 can be considered as
potential between two differential volumes at the current configuration. Since the interacting property of an elementary volume
oes not change during deformation, we have 𝛽𝑖 d𝑉 = 𝛽∗𝑖 d𝑉

∗
𝑖 . This fact allows us to calculate an interaction potential at the current

onfiguration by integrating over the reference volume 𝑉𝑖, using the reference particle densities 𝛽𝑖, i.e.

∫𝑉 ∗
𝑎
∫𝑉 ∗

𝑏

𝛽∗𝑎 𝛽
∗
𝑏 𝑘𝑚 𝑟

−𝑚 d𝑉 ∗
𝑎 d𝑉 ∗

𝑏 = ∫𝑉𝑎 ∫𝑉𝑏
𝛽𝑎 𝛽𝑏 𝑘𝑚 𝑟

−𝑚 d𝑉𝑎 d𝑉𝑏 . (6)

alculating this integral for practical time and space resolutions is extremely time-consuming and often impossible. Therefore, some
dditional simplifications and restrictions are necessary. Since the subject of our research is fibers, it is reasonable to apply the
echanical model of a beam to describe interactions between these slender bodies.

. Bernoulli–Euler beam model

This section introduces the beam model developed in [32–34], which is well-suited to represent arbitrarily curved slender bodies.
n particular, this work focuses on in-plane beams. In the subsequent notation, lowercase and uppercase boldface letters are used
or vectors and tensors or matrices, respectively. An overbar designates quantities at an equidistant line, i.e., a line with a fixed
istance to the beam’s axis, and an asterisk indicates values of the current configuration.

.1. Metric of a beam

A beam is defined as a body with one dominant dimension. It consists of a beam axis, i.e., an arbitrary smooth curve, and an
nfinite number of cross sections, i.e., plane figures that are attached at their centroids to a beam axis. Each cross section is assumed
o be rigid and perpendicular to the beam axis in all configurations, which is known as the Bernoulli–Euler (BE) hypothesis. These
4
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Fig. 2. Degeneration of a planar 3D beam into an in-plane 1D beam model. Base vectors at the centroid and at an equidistant line are depicted.

assumptions allow a degeneration of a 3D continuum beam model into an arbitrarily shaped line — the beam axis. It is convenient
to parametrize the axis with both the arc-length coordinate 𝑠 and a parametric coordinate 𝜉. As a representative example, we will
consider the interaction between two beams, 𝑥 and 𝑦. In this section, we are exemplary considering the beam 𝑥, and refer to the
beam 𝑦 at the end.

The position vector of the beam axis in Cartesian coordinates is 𝒙 = 𝑥𝛼𝒊𝛼 where 𝒊𝛼 = 𝒊𝛼 are the base vectors of the Cartesian
coordinate system, see Fig. 2. The tangent base vectors of a beam axis, w.r.t. parametric and arc-length coordinate are

𝒈1𝑥 = 𝜕𝒙
𝜕𝜉

= 𝒙,1 = 𝑥𝛼,1𝒊𝛼 ,

𝒕𝑥 = 𝜕𝒙
𝜕𝑠

= 𝒙,𝑠 = 𝒈1𝑥∕‖𝒈1𝑥‖, ‖𝒈1𝑥‖ =
√

𝒈1𝑥 ⋅ 𝒈1𝑥 =
√

𝑔11𝑥 =
√

𝑔𝑥.
(7)

Here, 𝑔𝑥 is a component of the metric that relates differentials of the arc-length and parametric coordinate as d𝑠 =
√

𝑔𝑥 d𝜉.
The other base vector, 𝒈2𝑥 = 𝒏𝑥, is perpendicular to 𝒕𝑥 and has a unit length. It is defined here through an anti-clockwise rotation

of the vector 𝒕𝑥, i.e.

𝒈2𝑥 = 𝒏𝑥 = 𝛬𝒕𝑥 with 𝛬 =
[

0 −1
1 0

]

. (8)

The metric of the beam axis is completely defined by the introduction of the Christoffel symbols,
[

𝒈1,1𝑥
𝒈2,1𝑥

]

=
[

𝛤 1
11𝑥 𝛤 2

11𝑥
𝛤 1
21𝑥 𝛤 2

21𝑥

] [

𝒈1𝑥
𝒈2𝑥

]

=
[

𝛤 1
11𝑥 𝐾̃𝑥

−𝐾𝑥 0

] [

𝒈1𝑥
𝒈2𝑥

]

, (9)

where 𝐾𝑥 and 𝐾̃𝑥 = 𝑔𝑥𝐾𝑥 are the so-called signed curvatures w.r.t. arc-length and parametric coordinates, respectively.
Since we are dealing with plane beams, all quantities are constant along the 𝜁 coordinate, as illustrated in Fig. 2. Thus, the

degeneration from a 3D to a 2D beam model is straightforward. If we define an equidistant line as a set of points with 𝜂 = 𝑐𝑜𝑛𝑠𝑡, its
position and base vectors are

𝒙̄ = 𝒙 + 𝜂 𝒈2𝑥,

𝒈̄1𝑥 = 𝒙̄,1 = 𝒈1𝑥 − 𝜂 𝐾𝑥 𝒈1𝑥 = 𝑔0𝑥 𝒈1𝑥, with 𝑔0𝑥 = 1 − 𝜂 𝐾𝑥,

𝒈̄2𝑥 = 𝒈2𝑥 = 𝒏𝑥.

(10)

In this way, the complete metric of a beam in the reference configuration is defined by the metric of the beam axis. Due to the
BE hypothesis, the shear strain vanishes and the position of the cross section is completely determined by the position of the beam
axis. Since the current configuration of both beams is obtained by adding the displacement field to the initial position, 𝒙∗ = 𝒙 + 𝒖
and 𝒚∗ = 𝒚 + 𝒗, the relations given in Eq. (10) are valid for every configuration. This fact gives rise to so-called rotation-free beam
theories [35].

3.2. Strain energy

The only relevant component of the Green–Lagrange strain tensor for a BE beam is the axial strain

𝜖11𝑥 = 1
2
(

𝑔̄∗11𝑥 − 𝑔̄11𝑥
)

. (11)

By inserting Eq. (10) into Eq. (11), we obtain [34]

𝜖 = 𝑔
[(

1 − 𝜂𝐾
)

𝜖 + 𝜂𝜅
]

+ 𝜂2𝜒
( 1𝜅 −𝐾 𝜖

)

, (12)
5

11𝑥 0𝑥 𝑥 11𝑥 𝑥 𝑥 2 𝑥 𝑥 11𝑥
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where

𝜖11𝑥 = 1
2
(

𝑔∗11𝑥 − 𝑔11𝑥
)

, 𝜅𝑥 = 𝐾̃∗
𝑥 − 𝐾̃𝑥, 𝜒𝑥 = 𝐾∗

𝑥 −𝐾𝑥. (13)

𝜖11𝑥 is the axial strain of the beam axis, while 𝜅𝑥 and 𝜒𝑥 are the changes of bending curvatures of the beam axis w.r.t. the parametric
and arc-length convective coordinates, respectively. The obtained expression (12) for the axial strain at an arbitrary point shows
strong coupling between stretching and bending. The resulting formulation is often referred to as the strongly curved beam model [34].

Since strongly curved beams can develop significant shear strains, a consistent approach is to employ the axial strain given
by Eq. (12) within a shear-deformable beam theory. However, our preliminary numerical tests have shown that both BE and
shear-deformable beam models return practically indistinguishable results for the considered examples. Therefore, we have used
the BE beam model in this paper since it requires only displacement DOFs, which makes it significantly more efficient than the
shear-deformable beam model. On the other hand, the implementation of the strongly curved model defined by Eq. (12) provides
improved accuracy (if strongly curved configurations occur), while it does not affect efficiency.

By utilizing the hyperelastic St. Venant–Kirchhoff material model, the second Piola–Kirchhoff stress component is

𝑆̄11
𝑥 = 𝐸𝑔̄11𝑥 𝑔̄

11
𝑥 𝜖11𝑥 , (14)

where 𝐸 is the Young’s modulus of elasticity. Now, we can define the strain energy of beam 𝑥 as

𝛷int𝑥 = 1
2 ∫𝑉𝑥

𝑆̄11
𝑥 𝜖11𝑥 d𝑉𝑥 . (15)

In this way, the main ingredients required for the implementation of the nonlinear strongly curved BE beam model are defined. For
further details on the variation, spatial discretization and linearization of the equilibrium equation see [34].

4. Section–section interaction potential laws

In this section we consider the concept of section–section interaction potentials as introduced in [27,28]. In these papers, the
important difference between long- and short-range fields is emphasized, cf. Section 2.2. Long-range potentials are much easier to
deal with due to the small value of the exponent, 𝑚 ≤ 3, in comparison to short-range ones, 𝑚 > 3, which are the focus of this
work. To improve the accuracy of the existing approach, we propose a new section–section interaction potential law and verify its
accuracy via analytical and numerical calculations.

In order to relax notation, we will remove asterisks in the remainder of the paper since all quantities will be defined at an
arbitrary configuration, while the integration is done w.r.t. the initial configuration.

4.1. Reduction from 6D to 2D

Starting from Eq. (6), we aim to reduce the complexity of solving two nested 3D integrals in order to find an interaction potential
between beams 𝑥 and 𝑦. As aforementioned, we assume rigid cross sections and constant density distributions over cross-sectional
areas. Since d𝑉 = d𝐴 d𝑠, we can simplify the double volume integral into

𝛷𝑚 = ∫𝐿𝑥 ∫𝐿𝑦 ∫𝐴𝑥 ∫𝐴𝑦
𝛽𝑥 𝛽𝑦 𝛷̂𝑚 d𝐴𝑥 d𝐴𝑦 d𝑠𝑥 d𝑠𝑦 = ∫𝐿𝑥 ∫𝐿𝑦

𝜙𝑚,ss d𝑠𝑥 d𝑠𝑦 ,

𝜙𝑚,ss = 𝛽𝑥 𝛽𝑦 ∫𝐴𝑥 ∫𝐴𝑦
𝛷̂𝑚 d𝐴𝑥 d𝐴𝑦 = 𝛽𝑥 𝛽𝑦𝑘𝑚𝐼𝛷𝑚 (𝑟) ,

𝐼𝛷𝑚 (𝑟) = ∫𝐴𝑥 ∫𝐴𝑦
𝑟−𝑚 d𝐴𝑥 d𝐴𝑦 ,

(16)

where 𝜙𝑚,ss represents an interaction potential between two cross sections, while 𝜙𝑚,ss d𝑠𝑥 d𝑠𝑦 is an interaction potential between
wo differential line segments. Essentially, if 𝜙𝑚,ss is integrated analytically, the 6D integral is reduced to 2D and a significant gain
n computational efficiency is obtained. This approach is pioneered in [27] and the integral 𝜙𝑚,ss is named section–section interaction

potential. However, the preintegration of 𝑟−𝑚 over the areas of two cross sections is far from trivial, and it is the main subject of this
paper.

4.2. Improved section–section interaction potential

For two circular disks that belong to the same plane, the integral 𝐼𝛷𝑚 in Eq. (16) was derived by Langbein [36] and then used
by Grill et al. [27] as a section–section interaction potential law. We will refer to this law as the LSSIP in the following. Although
the case of in-plane circular disks is one of the simplest, the integration is again neither trivial nor exact. Additional insight into
this integration approach is shown in Appendix A, while the main expressions of the LSSIP are given in Appendix B for the sake of
completeness.

The LSSIP returns a reasonably accurate approximation for circular cross sections that lie in the same plane. Unfortunately,
small change in an offset between the cross-sectional planes changes the interacting forces significantly due to the strong gradients
6

of short-range potentials. We aim to improve the existing LSSIP by making it explicitly dependent on the cross-sectional offset.
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Fig. 3. Interaction of two in-plane beams. (a) Schematic global point-of-view. (b) Enlarged area of two interacting parts of the beams, with colored interacting
cross sections. (c) Graphical projections of interacting cross sections, 𝑥𝑠 and 𝑦𝑠, into the plane 𝛾𝑥 with the normal 𝒕𝑥.

Let us consider two interacting beams, 𝑥 and 𝑦, and observe their two cross sections 𝑥𝑠 and 𝑦𝑠, see Fig. 3. The positions of the
sections are 𝒙 and 𝒚, and their distance is 𝒅 = 𝒙 − 𝒚. The cross sections are close to each other, ‖𝒅‖ − 𝑅𝑥 − 𝑅𝑦 ≪ 𝑅𝑥, 𝑅𝑦, but they
do not belong to the same plane. In order to find an analytical expression for the interaction potential, we will first assume that the
interacting cross sections are parallel

𝒏𝑥 ∥ 𝒏𝑦. (17)

Although inaccurate in general, this is a sound approximation for short-range interactions between in-plane beams, especially when
the interaction is dominated by smooth internal parts of beams. Evidently, the assumption is erroneous for interaction cases where
at least one beam’s end is included, due to the possible arbitrary orientation between the interacting cross sections.

Let us designate the cross-sectional plane of the section 𝑥𝑠 by 𝛾𝑥. Assumption (17) implies that the graphical projection of
cross section 𝑦𝑠 onto plane 𝛾𝑥 is a circle with radius 𝑅𝑦. This fact is a key ingredient that will allow us to utilize and extend the
integration approach from [36]. Next, we need to adopt a reference local coordinate system (LCS). We have several choices here. By
choosing the LCS of one beam as the reference LCS, we introduce a bias that is well-known from standard master–slave approaches
in computational contact mechanics. This bias can be eliminated by implementing specific procedures, such as the two-half-pass
approach [15]. An alternative is to choose an averaged LCS as the reference LCS, see Section 5.5.

To simplify the derivation of the new law, we will first pursue a straightforward approach here, by choosing the LCS of beam 𝑥
as the reference LCS,

(

𝒕ref ,𝒏ref
)

=
(

𝒕𝑥,𝒏𝑥
)

. The offset 𝑞1 and the gap 𝑞2 between the interacting cross sections are defined as

𝑞1 = 𝒅 ⋅ 𝒕ref , 𝑞2 = |

|

𝒅 ⋅ 𝒏ref || − 𝑅𝑥 − 𝑅𝑦 = 𝑞2 − 𝑅𝑥 − 𝑅𝑦. (18)

The offset 𝑞1 is the projection of the distance vector to 𝒕ref = 𝒕𝑥 and takes both negative and positive values. The gap 𝑞2 is the
projection of the distance vector to 𝒏ref = 𝒏𝒙, 𝑞2, reduced by the radii of interacting cross sections, and takes only positive values. The
gap 𝑞2 actually represents the distance between graphical projections of both cross sections in the plane 𝛾𝑥. With these definitions,
the distance between arbitrary point-pairs of interacting cross sections becomes 𝑟 =

(

𝑝2 + 𝑞21
)1∕2, and the integral to calculate is

𝐼𝛷𝑚 = 𝑟−𝑚 d𝐴𝑦 d𝐴𝑥 =
(

𝑝2 + 𝑞21
)−𝑚∕2 d𝐴𝑦 d𝐴𝑥 . (19)
7

∫𝐴𝑥 ∫𝐴𝑦 ∫𝐴𝑥 ∫𝐴𝑦
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To evaluate this integral, we need to choose a coordinate system. If we start from Cartesian coordinates with the origin at the center
of cross section 𝑥𝑠, the integral is

𝐼𝛷𝑚 = ∫

𝑅𝑥

−𝑅𝑥
∫

√

𝑅2
𝑥−𝑥21

−
√

𝑅2
𝑥−𝑥21

∫

𝑅𝑦

−𝑅𝑦
∫

√

𝑅2
𝑦−(𝑞2−𝑦1)2

−
√

𝑅2
𝑦−(𝑞2−𝑦1)2

𝑟−𝑚 d𝑦3 d𝑦1 d𝑥3 d𝑥1 . (20)

Since this form does not have an evident analytical solution, we seek a more suitable coordinate system. Let us take the coordinate
transformation from the Cartesian coordinates to the coordinates (𝑡, 𝑝, 𝜓, 𝜑) proposed in [36], see Fig. 3c, so that

𝐼𝛷𝑚 = ∫

𝑞2+𝑅𝑥+2𝑅𝑦

𝑞2+𝑅𝑥
∫

𝑡+𝑅𝑥

𝑡−𝑅𝑥
∫

𝜓̄

−𝜓̄ ∫

𝜑̄

−𝜑̄
𝑟−𝑚𝑡 𝑝 d𝜑 d𝜓 d𝑝 d𝑡 with

𝜓̄ = arccos
𝑡2 + 𝑞22 − 𝑅

2
𝑦

2𝑡𝑞2
and 𝜑̄ = arccos

𝑡2 + 𝑝2 − 𝑅2
𝑥

2𝑡𝑝
,

(21)

here the Jacobian determinant of this coordinate transformation is 𝑡𝑝, while the limits 𝜑̄ and 𝜓̄ follow from the cosine theorem.
or more details on this parametrization and limits of integration, see Appendix A. Since the integrand is not an explicit function
f coordinates 𝜑 and 𝜓 , the two innermost integrals can be easily solved, and the 4D integral thus reduces to 2D, i.e.

𝐼𝛷𝑚 = 4∫

𝑞2+𝑅𝑥+2𝑅𝑦

𝑞2+𝑅𝑥
∫

𝑡+𝑅𝑥

𝑡−𝑅𝑥
𝑟−𝑚𝑡 𝑝 𝜑̄ 𝜓̄ d𝑝 d𝑡 . (22)

lthough the integral is reduced to two variables, 𝑡 and 𝑝, it does not have an analytical solution since the functions 𝜑̄ and 𝜓̄ are
quite complicated. To find an analytical expression, the assumption of small separations, Eq. (3), is employed in [36]. Concretely,
by adopting 𝑞2 ≪ 𝑅𝑥, 𝑅𝑦, we obtain

𝑡2 + 𝑝2 − 𝑅2
𝑥

2𝑡𝑝
≈
𝑡 − 𝑅𝑥
𝑝

,

𝑡𝜓̄ ≈
[ 2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

(

𝑡 − 𝑅𝑥 − 𝑞2
)

]1∕2

,
(23)

see Appendix A for details. With these approximations and by introducing the reduced variables 𝑝̂ = 𝑝∕𝑞2 and 𝑡 =
(

𝑡 − 𝑅𝑥
)

∕𝑞2, the
integral transforms to

𝐼𝛷𝑚 = 4

√

2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦 ∫

𝑞2+2𝑅𝑦
𝑞2

1 ∫

𝑡+𝑅𝑥
𝑞2

𝑡

[

(

𝑝̂ 𝑞2
)2 + 𝑞21

]−𝑚∕2
𝑝̂ 𝑞7∕22 arccos 𝑡

𝑝̂

√

𝑡 − 1 d𝑝̂ d𝑡 . (24)

Additionally, the assumption of small separations, Eq. (3), allows us to approximate the upper limits of this integral with infinity,
i.e.

(

𝑡 + 𝑅𝑥
)

∕𝑞2 ≈ ∞ and
(

𝑞2 + 2𝑅𝑦
)

∕𝑞2 ≈ ∞. Now, the integral becomes

𝐼𝛷𝑚 = 4

√

2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝑞7∕22 ∫

∞

1 ∫

∞

𝑡

[

(

𝑝̂𝑞2
)2 + 𝑞21

]−𝑚∕2
𝑝̂ arccos 𝑡

𝑝̂

√

𝑡 − 1 d𝑝̂ d𝑡 . (25)

his form of the integral has the analytical solution

𝐼𝛷𝑚 = 2
5
2−𝑚𝜋

3
2

√

𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝛤
(

𝑚 − 7
2

)

𝛤 (𝑚∕2)2
𝑞
−𝑚+ 7

2
2 2𝐹1

[

2𝑚 − 7
4

, 2𝑚 − 5
4

; 𝑚
2
; −

(

𝑞2
𝑞1

)2
]

, (26)

where 𝛤 (𝑧) = ∫ ∞
0 𝑝𝑧−1𝑒−𝑤 d𝑤 is the gamma function, 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) is the Gaussian hypergeometric function

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) =
∞
∑

𝑘=0

(𝑎)𝑘 (𝑏)𝑘
(𝑐)𝑘

𝑧𝑘

𝑘!
, (27)

while (𝑎)𝑘 is the Pochhammer symbol

(𝑎)𝑘 =
𝛤 (𝑎 + 𝑘)
𝛤 (𝑘)

. (28)

To summarize, the closed-form expression (26) for integral 𝐼𝛷𝑚 allows us to represent an interaction potential between two cross
ections as

𝜙𝑚,ss = 𝛽𝑥 𝛽𝑦 ∫𝐴𝑥 ∫𝐴𝑦
𝑘𝑚 𝑟

−𝑚 d𝐴𝑦 d𝐴𝑥 = 𝑐𝑚,ss𝑞
−𝑚+ 7

2
2 𝐹

(

𝑞1, 𝑞2, 𝑚
)

, 𝑚 > 7
2
, with

𝑐𝑚,ss = 𝑘𝑚 𝛽𝑥 𝛽𝑦 2
5
2−𝑚𝜋

3
2

√

𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝛤
(

𝑚 − 7
2

)

𝛤 (𝑚∕2)2
,

𝐹
(

𝑞1, 𝑞2, 𝑚
)

= 2𝐹1

[

2𝑚 − 7
4

, 2𝑚 − 5
4

; 𝑚
2
; −

(

𝑞2
𝑞1

)2
]

, and

| |

(29)
8

𝑞1 = 𝒅 ⋅ 𝒕ref , 𝑞2 = 𝑞2 − 𝑅𝑥 − 𝑅𝑦, 𝑞2 = |

𝒅 ⋅ 𝒏ref |, d = 𝒙 − 𝒚 .

http://mostwiedzy.pl


Computer Methods in Applied Mechanics and Engineering 429 (2024) 117143A. Borković et al.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 4. Comparison of the section–section Lennard-Jones interaction potential. (a) The results obtained with numerical integration and ISSIP for four values of
offset 𝑞1 vs. gap 𝑞2. (b) 𝐿2-norm of the relative errors of LSSIP and ISSIP w.r.t. numerical integration vs. offset 𝑞1.

We will refer to this new law (29) as the improved section–section interaction potential (ISSIP). It represents a generalization of the
LSSIP [27] that follows if we let 𝑞1 → 0, i.e.

𝜙𝑚,ss
𝑞1=0= 𝑐𝑚,ss𝑞

−𝑚+ 7
2

2 𝐹
(

0, 𝑞2, 𝑚
)

= 𝑐𝑚,ss𝑞
−𝑚+ 7

2
2 . (30)

The constant 𝑐𝑚,ss was introduced and correctly derived in [27]. Our expression is the same, just in a different form w.r.t. the gamma
functions. Finally, the interaction potential between beams 𝑥 and 𝑦 follows as

𝛷𝑚 = ∫𝐿𝑥 ∫𝐿𝑦
𝜙𝑚,ss d𝑠𝑦 d𝑠𝑥 = ∫

1

0 ∫

1

0
𝜙𝑚,ss

√

𝑔𝑦
√

𝑔𝑥 d𝜉𝑦 d𝜉𝑥 . (31)

4.3. Verification of the new law by considering the interaction between two parallel rigid cylinders

Here, we consider the fundamental case of short-range interaction between two parallel rigid cylinders. Due to the simple setting,
this example has a well-known analytical solution. Yet, the existing LSSIP fails to predict the interaction potential in this case. The
inaccuracy is attributed to the orientation between interacting cross sections, see [27,28], which is significant for spatial beams. For
in-plane beams, the error is mainly caused by the offset between cross-sectional planes, as we argue in the following.

Let us consider two parallel rigid cylinders of infinite length, 𝑥 and 𝑦, that interact via some short-range interaction potential.
If we integrate the novel ISSIP over the cylinder 𝑦, from negative to positive infinity, we obtain the interaction potential between
one section of cylinder 𝑥 and the whole cylinder 𝑦, i.e.

𝜙𝑚,ss,∥cyl = ∫

∞

−∞
𝜙𝑚,ss d𝑠𝑦 . (32)

For parallel cylinders, d𝑠𝑦 = d𝑞1, and the resulting potential is

𝜙𝑚,ss,∥cyl = ∫

∞

−∞
𝜙𝑚,ss d𝑠𝑦 = 𝑘𝑚 𝛽𝑥 𝛽𝑦 2

3
2 𝜋

3
2

√

𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝛤
(

𝑚 − 9
2

)

𝛤 (𝑚 − 1)
𝑞
−𝑚+ 9

2
2 , 𝑚 > 9

2
. (33)

The obtained expression for the case of parallel cylinders is the same as in [30]. Importantly, the scaling factor of (−𝑚 + 9∕2) w.r.t. the
gap 𝑞2 between the cylinders agrees with the analytical predictions. Note that the authors in [30] had to derive a section-beam
interaction potential law in order to find this proper scaling factor, while our solution follows from the integration of the ISSIP.

Finally, the potential between two cylinders can be found by integrating Eq. (33) over the cylinder 𝑥, but this would result in
an infinite value. Therefore, an interaction potential per unit length of cylinder 𝑥 is usually used. For the fundamental vdW case of
𝑚 = 6, we obtain a scaling factor of −3∕2, which is the well-known analytical prediction [36]. This result confirms that the derived
ISSIP provides correct scaling for short-ranged intermolecular interactions between planar beams.

4.4. Verification of the new law by comparing section–section potentials

Let us consider two parallel straight beams and observe one section of the first beam and its Lennard-Jones interaction potential
with different sections of the second beam. Three approaches are considered: The first is a straightforward numerical integration of
9
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the interaction potential between sections, without any further approximations. The other two are the LSSIP and our ISSIP. Densities
are set as 𝛽𝑥 = 𝛽𝑦 = 1, while the radii are 𝑅𝑥 = 𝑅𝑦 = 𝑅 = 0.02. The material constants are 𝑘6 = −10−7 and 𝑘12 = 5 × 10−25. The
numerical integration is done using Eq. (22) since the numerical integration w.r.t. Cartesian or polar coordinates fails for small
gaps [27]. The results obtained with numerical integration and the ISSIP for four values of the offset 𝑞1 are displayed in Fig. 4a
as a function of the gap 𝑞2. All graphs of the proposed ISSIP are in good agreement with the numerical integration ones. Small
differences evidently exist, but are acceptable as a necessary trade-off between accuracy and efficiency. As anticipated, the LSSIP
returns erroneous results for all offsets 𝑞1 ≠ 0 and its graphs are excluded from Fig. 4a for clarity. The 𝐿2 norm of the relative error
returned by LSSIP and ISSIP w.r.t. the numerical integration are plotted in Fig. 4b as a function of the offset 𝑞1. For the offset 𝑞1 = 0,
he LSSIP and ISSIP return the same results, and the relative error is of the order 10−2. For all the other values of offset, the error
roduced by the ISSIP is of the similar order, while the error of the LSSIP blows up.

All in all, analytical integration of the section–section potential requires assumptions that reduce accuracy. Nevertheless, this
nalysis shows that the new ISSIP law returns very good accuracy, considering the complexity of the problem.

. Variation of the improved section–section interaction potential

In this section we consider the main ingredient required for obtaining the equilibrium equations of interacting beams — the
ariation of the interaction potential. Since the ISSIP is the function of the distance vector components w.r.t. a reference LCS, the
radients of the potential w.r.t. to both the position and the tangent vectors must be found. Two formulations w.r.t. the choice of
eference LCS are considered, and the introduction of the interaction moment is discussed.

.1. Weak form of equilibrium

The total potential energy here consists of the strain energy 𝛷int , the potential of external forces 𝛷ext , and the interaction potential
𝛷IP. The equilibrium of a system is guaranteed by the minimum of total potential energy,

𝛿𝛷tot = 𝛿𝛷int + 𝛿𝛷ext + 𝛿𝛷IP = 0, (34)

where the variation of interaction potential follows from Eq. (16),

𝛿𝛷IP = ∫𝐿𝑥 ∫𝐿𝑦
𝛿𝜙𝑚,ss d𝑠𝑥 d𝑠𝑦 . (35)

The variation of strain energy and external potential can be readily found in the literature [34] and is skipped here for brevity,
since the focus is on the variation of interaction term 𝛷IP.

5.2. Gradient of the interaction potential

The new ISSIP (29) explicitly depends on the gap between cross sections, 𝑞2, and the offset between cross-sectional planes, 𝑞1,
i.e.

𝜙𝑚,ss = 𝑐𝑚,ss𝑞
−𝑚+ 7

2
2 𝐹

(

𝑞1, 𝑞2, 𝑚
)

= 𝑐𝑚,ss𝜙
(

𝑞1, 𝑞2
)

,

𝜙
(

𝑞1, 𝑞2
)

= 𝑞
−𝑚+ 7

2
2 2𝐹1

[

2𝑚 − 7
4

, 2𝑚 − 5
4

; 𝑚
2
; −

(

𝑞1
𝑞2

)2
]

.
(36)

To simplify the following derivation, we set the constant 𝑐𝑚,ss to unity such that we can write the ISSIP function as 𝜙𝑚,ss = 𝜙
(

𝑞1, 𝑞2
)

=
𝜙. The variation of the interaction potential requires gradients of 𝜙 w.r.t. the configuration of both beams, i.e.

𝛿𝜙 = ∇𝑥 𝜙𝛿𝑥 + ∇𝑦 𝜙𝛿𝑦. (37)

The gradient of the bivariate ISSIP law w.r.t. both beams is

∇𝑗𝜙 =
𝜕𝜙
𝜕𝑞1

∇𝑗𝑞1 +
𝜕𝜙
𝜕𝑞2

∇𝑗𝑞2 = 𝜙,1∇𝑗𝑞1 + 𝜙,2∇𝑗𝑞2, 𝑗 = 𝑥, 𝑦, (38)

where

𝜙,1 = −
(2𝑚 − 7) (2𝑚 − 5)

4𝑚
𝑞3∕2−𝑚2 𝑞1 2𝐹1

[

2𝑚 − 3
4

, 2𝑚 − 1
4

; 2 + 𝑚
2

; −
(

𝑞1
𝑞2

)2
]

,

𝜙,2 =
( 7
2
− 𝑚

)

𝑞5∕2−𝑚2 2𝐹1

[

2𝑚 − 7
4

, 2𝑚 − 5
4

; 𝑚
2
; −

(

𝑞1
𝑞2

)2
]

+
(2𝑚 − 7) (2𝑚 − 5)

4𝑚
𝑞1∕2−𝑚2 𝑞21 2𝐹1

[

2𝑚 − 3
4

, 2𝑚 − 1
4

; 2 + 𝑚
2

; −
(

𝑞1
𝑞2

)2
]

= 7 − 2𝑚𝜙 −
𝑞1 𝜙,1.

(39)
10

2𝑞2 𝑞2
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These expressions are utilized in their full form throughout the paper.
Since the offset 𝑞1 and gap 𝑞2 are functions of the distance vector components w.r.t. a reference LCS

(

𝒕ref ,𝒏ref
)

, their gradients
are

∇𝑗𝑞𝛼 = ∇𝒋𝑞𝛼 + ∇𝒋,1
𝑞𝛼 . (40)

Here, ∇𝒋 is the gradient w.r.t. the position of the beam 𝑗 axis, while ∇𝒋,1
is the gradient w.r.t. to the tangential basis vectors 𝒙,1 = 𝒈1𝑥

and 𝒚,1 = 𝒈1𝑦. In general, the gradients of gap and offset are intricate quantities, see, e.g., Eq. (D.3). Implementation of their full
form and consistent linearization strongly affect the efficiency. In order to find the balance between accuracy and efficiency, we
consider two approaches w.r.t. to the choice of reference LCS and discuss possible simplifications.

First, we define a formulation that is based on the LCS of beam 𝑥 in Section 5.3. We refer to it as the straightforward formulation
since the same reference LCS is used in Section 4.2 for the derivation of the ISSIP,

(

𝒕ref ,𝒏ref
)

=
(

𝒕𝑥,𝒏𝑥
)

. Although it lacks robustness,
this approach is convenient as a first step towards an optimal formulation because it returns simple equilibrium equations and
allows an elegant insight into the interaction moments, see Section 5.4. Second, in Section 5.5 we propose a formulation based on
the averaged LCS that turns out to be both robust and accurate, but at the cost of increased complexity. For this formulation, we
consider simplifications related to the interaction moment, tangential part of the interaction force, and linearization.

5.3. Straightforward implementation

A straightforward approach is obtained by adopting the LCS of beam 𝑥 as the reference LCS,
(

𝒕ref ,𝒏ref
)

=
(

𝒕𝑥,𝒏𝑥
)

. In this case,
the variations of the interaction potential w.r.t. beams 𝑥 and 𝑦 are

𝛿𝑥𝜙 = 𝒇 ⋅ 𝛿𝒖 + 𝒇̂ ⋅ 𝛿𝒖,1,

𝛿𝑦𝜙 = −𝒇 ⋅ 𝛿𝒗,
(41)

where
𝒇 =

(

𝜙,1𝒕𝑥 + 𝜙,2𝑠𝛼𝒏𝑥
)

,

𝒇̂ =
𝑠𝛼
√

𝑔𝑥

(

𝜙,1𝑞2 − 𝜙,2𝑞1
)

𝒏𝑥,
(42)

nd 𝑠𝛼 = sgn
(

𝒏𝑥 ⋅ 𝒅
)

. A detailed derivation of these expressions is given in Appendix C.
The variation of the potential w.r.t. beam 𝑦 differs from the one w.r.t. beam 𝑥 by the term involving 𝒇̂ , because we have assumed

that the potential is not a function of the LCS of beam 𝑦. This term represents the variation of the potential due to the interaction
force couple that acts on both beams, i.e.

𝛿𝑥𝜙𝑀 = 𝑴𝑥 ⋅ 𝛿𝝋𝑥 = − (𝒅 × 𝒇 ) ⋅

(

1
√

𝑔𝑥
𝒏𝑥 ⋅ 𝛿𝒖,1

)

𝒃

= −
(

𝑞1𝜙,2𝑠𝛼 − 𝑠𝛼𝑞2𝜙,1
)

𝒃 ⋅

(

1
√

𝑔𝑥
𝒏𝑥 ⋅ 𝛿𝒖,1

)

𝒃 = 𝒇̂ ⋅ 𝛿𝒖,1.

(43)

The minus sign appears because the term follows from the work of the interaction moment on beam 𝑥 due to the force that acts on
beam 𝑦.

The straightforward approach is simple, consistent with the assumptions of ISSIP, and its linearization returns a symmetric
tangent stiffness. However, there are two issues due to the bias w.r.t. the chosen reference LCS: First, consider the case of interaction
between two symmetric curved beam segments. Due to geometrical symmetry, the interaction forces should be symmetric as well.
However, since not all of the interacting cross sections are parallel, this biased reference LCS gives asymmetric interaction forces and
equilibrium is lost. Second, we have an interaction moment that acts only on one cross section and further violates the symmetry
of interaction and the equilibrium. These issues are not significant, and the numerical implementation based on the straightforward
formulation returns reasonably accurate results. However, such a formulation lacks robustness, and we will improve it in Section 5.5
by adopting an averaged LCS as the reference LCS.

Remark. The quantity 𝒇 in Eq. (42) is a distributed interaction force per unit length of one beam, due to the influence of the other
beam. Therefore, its dimension is force per length squared. Similarly, the quantity 𝒅×𝒇 in Eq. (43) represents a distributed interaction
moment with a dimension of moment per length squared (or force per length). For brevity, we will refer to these quantities as the
interaction force and the interaction moment, respectively.

.4. Interaction moment

An analytical derivation of the interaction moment through a procedure such as the one given in Section 4.2 is quite difficult,
f not impossible. One approach to alleviate the bias in Eq. (41) is to distribute the total force couple 𝒅 × 𝒇 over both interacting
ross sections, by adopting

𝛿𝑥𝜙 = 𝒇 ⋅ 𝛿𝒖 +𝑤𝑥𝒇̂ ⋅ 𝛿𝒖,1,
̂ (44)
11

𝛿𝑦𝜙 = −𝒇 ⋅ 𝛿𝒗 +𝑤𝑦𝒇 ⋅ 𝛿𝒗,1,
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Fig. 5. Replacement of section–section interaction forces by equivalent resultant forces at the centroids. (a) Approximate resultant forces for short-range
interactions (𝑞2 , 𝑞1 ≪ 𝑅𝑥 , 𝑅𝑦). (b) Equivalent approximate resultant forces at the centroids.

where 𝑤𝑥 and 𝑤𝑦 are moment distribution weights that can be determined by the approximation shown in Fig. 5. First, we assume
that the interaction force resultants act at the closest points of interacting cross sections, Fig. 5a. The resultant couples and their
relationship are

𝒎𝑥 = 𝑅𝑥𝒏𝑥 × 𝒇 ∧ 𝒎𝑦 = −𝑅𝑦𝒏𝑦 × 𝒇 ⟹ ‖𝒎𝑥‖ =
𝑅𝑥
𝑅𝑦

‖𝒎𝑦‖, (45)

and it follows that their values are proportional to the cross-sectional radii. From the equilibrium in Fig. 5b, these two couples must
equal the total force couple

𝒎𝑥 +𝒎𝑦 = 𝒅 × 𝒇𝑥 = −𝒅 × 𝒇 𝑦, (46)

and Eqs. (45) and (46) thus give us distribution weights as

𝑤𝑥 +𝑤𝑦 = 1 and 𝑤𝑥 = 𝑅𝑥∕
(

𝑅𝑥 + 𝑅𝑦
)

. (47)

The proposed procedure provides a good approximation of the interaction moments between two cross sections for short-rang
interactions.

5.5. Formulation based on averaged local coordinate system

Even by disregarding the interaction moment, the bias of the straightforward approach remains. The problem arises if the ISSIP
is defined w.r.t. the LCS of one beam. Such a choice of the reference LCS leads to the loss of equilibrium since the assumption of
parallel interacting cross sections is violated in general, see Section 5.3.

To alleviate this issue, we have considered several remedies and the formulation based on an averaged LCS turns out to be the
most robust. The averaged LCS

(

𝒕̂𝑥𝑦, 𝒏̂𝑥𝑦
)

is found by adding and normalizing the basis vectors of both beams, i.e.

𝒕̂𝑥𝑦 =
𝒕𝑥𝑦
√

𝑡𝑥𝑦
, 𝒕𝑥𝑦 = 𝒕𝑥 + 𝒕𝑦, 𝑡𝑥𝑦 = 𝒕𝑥𝑦 ⋅ 𝒕𝑥𝑦,

𝒏̂𝑥𝑦 = 𝜦𝒕̂𝑥𝑦 =
𝒏𝑥𝑦
√

𝑛𝑥𝑦
, 𝒏𝑥𝑦 = 𝒏𝑥 + 𝒏𝑦, 𝑛𝑥𝑦 = 𝒏𝑥𝑦 ⋅ 𝒏𝑥𝑦.

(48)

In the following, the new averaged LCS is adopted as the reference LCS
(

𝒕ref ,𝒏ref
)

=
(

𝒕̂𝑥𝑦, 𝒏̂𝑥𝑦
)

. Note that, for the case of 𝒕𝑥 ⋅ 𝒕𝑦 < 0,
we should rotate the LCS of one beam by the angle 𝜋.

Let us find the offset 𝑞1 and gap 𝑞2 by projecting the distance vector to the axes of the new reference LCS. This gives

𝑞1 = 𝒅 ⋅ 𝒕̂𝑥𝑦,

𝑞2 = 𝑞2 − 𝑅1 − 𝑅2, 𝑞2 =
|

|

|

𝒅 ⋅ 𝒏̂𝑥𝑦
|

|

|

= 𝑠𝛼
(

𝒅 ⋅ 𝒏̂𝑥𝑦
)

, 𝑠𝛼 = sgn
(

𝒅 ⋅ 𝒏̂𝑥𝑦
)

.
(49)

The gradients of the gap and offset w.r.t. positions of both beams are

∇𝒙𝑞1 = ∇𝒙
(

𝒅 ⋅ 𝒕̂𝑥𝑦
)

= 𝒕̂𝑥𝑦 = −∇𝒚𝑞1,

∇𝒙𝑞2 = ∇𝒙
|

|

|

𝒅 ⋅ 𝒏̂𝑥𝑦
|

|

|

= 𝑠𝛼 𝒏̂𝑥𝑦 = −∇𝒚𝑞2.
(50)

With these definitions at hand, the variations of interaction potential between two cross sections, neglecting the moment, are

𝛿𝑥𝜙 = 𝒇𝑥 ⋅ 𝛿𝒖 = 𝒇 ⋅ 𝛿𝒖,
(51)
12

𝛿𝑦𝜙 = 𝒇 𝑦 ⋅ 𝛿𝒗 = −𝒇 ⋅ 𝛿𝒗,
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where

𝒇 = 𝜙,1 𝒕̂𝑥𝑦 + 𝜙,2𝑠𝛼 𝒏̂𝑥𝑦 = 𝑓1 𝒕̂𝑥𝑦 + 𝑓2𝒏̂𝑥𝑦. (52)

Now, we can define the total interaction forces on both beams as

𝑷 𝑥 = −𝑷 𝑦 = ∫𝐿𝑥 ∫𝐿𝑦
𝒇 d𝑠𝑥 d𝑠𝑦 = ∫𝜉𝑥 ∫𝜉𝑦

𝒇
√

𝑔𝑥
√

𝑔𝑦 d𝜉𝑥 d𝜉𝑦 . (53)

Regarding the influence of interaction moments, we can define force couples and reformulate the variations of the potential as
n Sections 5.3 and 5.4 to obtain

𝛿𝑥𝜙 = 𝒇 ⋅ 𝛿𝒖 +𝑤𝑥𝒇̂𝑥 ⋅ 𝛿𝒖,1,

𝛿𝑦𝜙 = −𝒇 ⋅ 𝛿𝒗 +𝑤𝑦𝒇̂ 𝑦 ⋅ 𝛿𝒗,1,
(54)

here

𝒇𝑥 =
𝑠𝛼
√

𝑔𝑥

(

𝜙,1𝑞2 − 𝜙,2𝑞1
)

𝒏𝑥,

𝒇 𝑦 =
𝑠𝛼
√

𝑔𝑦

(

𝜙,1𝑞2 − 𝜙,2𝑞1
)

𝒏𝑦.
(55)

The most important benefit of the formulation based on the averaged LCS is the preservation of symmetry and equilibrium, which
improves the robustness of the formulation and meliorates the consistency of results. The main drawback is the reduced efficiency,
primarily due to the complicated linearization. To tackle this issue, we have considered simplifications regarding the interacting
moment and the components of the interaction force. Regarding the interaction moment, we will compare the formulations given
by Eqs. (51) and (54) in Section 6.4. The possibility of neglecting the tangential component of the interaction force in Eq. (52) is
discussed in Section 6.3.

We have carefully considered the available options, and it turns out that the formulation based on the averaged LCS without the
interacting moments and with the tangential component of the interaction force provides the best balance between accuracy and
efficiency. If not explicitly stated otherwise, all the results in the following section are obtained with this approach.

6. Numerical example

In order to verify and benchmark the proposed ISSIP, we thoroughly investigate the example of peeling and pull-off of two
slender elastic fibers. The example was introduced in [28] and modeled with the LSSIP. The same authors have later developed
an asymptotically consistent section-beam interaction potential (SBIP) [30,31] that promises much better accuracy for short-range
interactions than LSSIP. The example is defined without referring to specific units, so any consistent set of units is appropriate.

6.1. Problem setup

The problem setup is given in Fig. 6. Two elastic fibers, modeled as simply supported straight beams, interact via the Lennard-
Jones (LJ) potential. For convergence in nonlinear static analysis, it is advantageous to start from a configuration close to
equilibrium. The equilibrium distance, i.e. gap, between two rigid cylinders is derived in [28] as 𝑞2,eq = 0.00017𝐿, which can be
obtained from Eq. (33). In this example, the supports are initially placed a bit below this equilibrium distance, 𝑢̄init = 0.00016𝐿 =
0.0008, so that there is a repulsion near the supports in the initial configuration. Then, the fibers are separated by prescribed non-
homogeneous boundary conditions 𝑢̄BC to the right fiber. The separation between the supports of the beams is 𝑢̄ = 𝑢̄init+𝑢̄BC = 𝐿𝑡 = 5𝑡
at each load step, where the load proportionality factor (LPF) or quasi-time takes the values 𝑡 ∈ [0.00016, 1].

As in [28,30,31], the horizontal reaction force is followed during the simulation. Actually, in these works, the sum of reaction
forces on one beam is followed. Our numerical experiments show that these reactions in fact differ, but the relative difference is
of the order 10−5. This minor lack of symmetry is probably due to spatial discretization, numerical integration and/or round-off
errors.

6.2. Implementation details

An isogeometric approach is utilized for the spatial discretization [35]. To be precise, quartic B-spline elements (𝑝 = 4) with 𝐶3

interelement continuity are employed. A model with 161 control points is adopted in all simulations, see Section 6.6 for the spatial
convergence analysis.

Due to the strong gradient of the LJ potential, the integration of the interaction part of the stiffness and force requires a dense
distribution of integration points. We will designate the total number of integration points with 𝑛GP. The integration of the interaction
forces and stiffnesses is performed by dividing the finite elements into a set of integration segments. After thorough investigations,
we have concluded that the mid-point rule allows the most robust simulations. Therefore, this rule is employed in all our analyses
and a value of 3200 integration points per unit length is adopted. For a discussion on integration issues see Section 6.7. On the
other hand, the standard strain energy and external potential contributions are integrated with Gaussian quadrature using 𝑝 + 1
13

integration points per element.
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Fig. 6. Peeling and pull-off of two elastic fibers. Problem setup.

An important feature of formulations that deal with short-range interaction fields is a cutoff distance. Here, we have employed the
function Nearest[] implemented in Mathematica [37] to find point-pairs that are inside the cutoff radius. If not specified otherwise,
the cutoff distance of 𝑐 = 2.5𝑅 = 0.05 is used, see Section 6.5.

Regarding the nonlinear solver, we have implemented the mixed integration point method to improve the convergence of the
Newton–Raphson solution, [38]. The method uses linear increments of the stress for the geometric part of the stiffness matrix and
often results in improved convergence. The linearization of the 𝛿𝜙 term is given in Appendix D, while the testing procedure for
the accuracy of the tangent stiffness is presented in Appendix E. We utilize an adaptive load–stepping scheme that adjusts load
increments based on the number of Newton–Raphson iterations in the previous load step.

For static analysis, it is difficult to obtain the final separated configuration just after pull-off since the two configurations are quite
far from each other [28,30,31]. Here, the final separated configuration is successfully calculated by removing the interaction part
from the stiffness at the final increment, which allowed the solver to find the new equilibrium. This snap-off is actually a dynamical
phenomenon and not crucial for the present quasi-static analysis. However, it is instructive to include this point of the equilibrium
path for the comparison of results. Therefore, all presented results include the unstressed configuration just after pull-off.

For small separations, the interaction potential has a very steep gradient that can lead to a badly conditioned tangent stiffness.
To address this issue, a regularization of the repulsive part of the interaction potential law is often implemented in the literature
to improve convergence for the cases of strong repulsion [39]. For example, without regularization, the authors in [28] had to
significantly restrict the size of iterative displacement in order to avoid the crossing of beams and failure at a load step. The
implementation of such a strict iterative displacement limit has led to a simulation requiring 1600 increments with an average
of 45 iterations. By implementing a regularization, the authors have reported a significant improvement [28]. It is worth noting
that we did not run into similar problems in our simulations, presumably since the beams are not in a state of very large repulsion. If
no restriction on iterative displacement is applied, the average number of increments is around 80, with approximately 8 iterations
per increment. Therefore, although it is recommended for general cases, no regularization of the ISSIP law is applied here.

The incremental solution of the Newton–Raphson procedure is accepted when the error norm w.r.t. the internal and external
forces is satisfied. The value of 10−5 is employed as the threshold since further refinement did not make any perceptible difference.

As an initial step for the presented study, we have implemented the LSSIP in our in-house code, see Appendix B for basic details.
The results obtained with this code are briefly shown in Section 6.4 for verification purposes.

6.3. Simulation results

Let us start this overview of numerical results with the positions of both fibers. Simulation snapshots at five specific increments
are shown in Fig. 7. The first stage of the simulation is characterized by the peeling of the fibers which stops at about 𝑡 ≈ 0.188. In
14
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Fig. 7. Peeling and pull-off of two fibers. Snapshots of five characteristic configurations. The blue grid is used for visualization purposes only. The animation
is available in the online dataset, cf. Supplementary data.

Fig. 8. Normal component 𝑓2 of the interaction force plotted on the left beam. Four characteristic configurations are shown. The animation is available in the
online dataset, cf. Supplementary data.

the next stage, the fibers remain connected at a small central area and start to bend significantly due to the pull. Finally, at 𝑡 ≈ 0.575,
the internal forces overwhelm the vdW attraction, and the fibers snap-off.

It has already been emphasized that the modeling of peeling between two adhesive fibers based on the LJ potential is a very
challenging task due to the high gradients of the attractive vdW and repulsive steric forces. This is evident from the graphical
representation of the interaction forces in Fig. 8, where the distribution of the normal component of the interaction force, denoted
𝑓2, on the left beam is shown for four configurations. Although seemingly counterintuitive, both attraction and repulsion exist during
peeling due to the bending stiffness of the fibers. At the end of the peeling process (𝑡 ≈ 0.188), a large peak in the repulsive force is
observed. Afterward, the remaining LJ force converts into attraction until pull-off. It is interesting to note that the maximum value
of the attractive force before pull-off is not in the middle of the beam. Instead, there are two maxima left and right of the middle,
which will be shown in more detail in Section 6.5.
15
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Fig. 9. Tangential component of the interaction force, 𝑓1, on the left beam. Four characteristic configurations are plotted. The animation is available in the
online dataset, cf. Supplementary data.

In order to check equilibrium at the first load step, we have integrated the horizontal component of the interaction force and
compared it with the sum of the horizontal reaction forces. The relative difference of 0.0018% is found and attributed to the
numerical integration error. Our simulations show that doubling the number of integration points halves this difference.

The tangential component of the interaction force, denoted 𝑓1, is approximately two orders of magnitude smaller than the normal
component and it is shown in Fig. 9. There is a significant peak of the tangential component during the initial debonding that is
omitted here for brevity, but it is visible in the animation, cf. Supplementary data. It is not evident from these figures, but tangential
components are oriented towards the center of the beam, which causes a compressive axial stress resultant in both beams.

The present formulation includes both tangential, 𝑓1, and normal, 𝑓2, components of the interaction force. Due to the orders of
magnitudes involved, it is arguable if a reduced formulation that disregards the tangential component 𝑓1 of the interaction force
is a good choice. It is certainly more efficient since the force vector and tangent stiffness are simplified. Our initial investigations
show that both approaches return quite similar results, but the formulation that neglects the component 𝑓1 is not as robust as the
complete one.

Finally, the distributions of the stress resultant and stress couple are investigated. Although these quantities are well-researched
in the context of isogeometric BE theory [34], it is worth taking a closer look at their distributions for the case of LJ interaction
forces. The distributions of the stress couples at four configurations are shown in Fig. 10. Evidently, during the peeling stage, the
inner part of the fibers is straight and no moment occurs. As the peeling develops and transits to pull, the whole beam bends. It
is quite interesting that, due to the strong adhesion, the maximum curvature does not occur in the middle of the beam until the
final pull-off. Finally, distributions of stress resultant (i.e. axial force) at four instances are displayed in Fig. 11. The stress resultant
is compressive at the inner part of the beam due to the interaction forces, while it is tensile in the outer part, due to the reaction
forces. It should be noted that the stress resultant is not zero in the middle of the beam at pull-off, but small compression exists.
However, the stress resultant due to the interaction forces is approximately two orders of magnitude smaller than the one due to
the reaction forces (note different scales in Fig. 11).

6.4. Verification

In this subsection, the novel ISSIP is verified by comparison with results reported in the literature. For this, the reaction forces
obtained with existing LSSIP, SBIP, and novel ISSIP are compared in Fig. 12a. There are three major observations here: First, the
LSSIP results obtained in [28] and in the present research agree. A small difference exists at the initial configuration, which can be
attributed to different spatial discretizations and integration techniques. Second, the results returned by the new ISSIP and the SBIP
from [30,31] are practically the same. Small differences at initial and final configurations are present, but it can be argued that
they are negligible for the modeled problem. Third, the difference between the existing LSSIP on one side, and the SBIP and ISSIP
on the other side in Fig. 12 is evident. The initial values, maximum values, and pull-off points significantly differ as a consequence
of the very coarse approximation used for LSSIP.

These results verify the accuracy of the novel ISSIP and confirm that it can be used reliably to model the peeling and pull-off of
elastic fibers due to short-ranged interaction forces.
16
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Fig. 10. Distributions of the resultant stress couple for four characteristic configurations. The animation is available in the online dataset, cf. Supplementary
data.

Fig. 11. Distributions of the stress resultant for four characteristic configurations. The animation is available in the online dataset, cf. Supplementary data.

To close the subsection, let us compare the two variants of ISSIP, the one that implements interaction moments Eq. (54) and
the one without it Eq. (51). The results in Fig. 13 are practically the same and the use of the simplified formulation without the
moments is justified. We can argue that the influence of the interaction moments is not significant since their effects mainly cancel
each other. However, for a deeper insight, it would be valuable to investigate the effect of interaction moment more thoroughly.
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Fig. 12. Comparison of reaction forces vs. LPF for different formulations. (a) Complete paths for all formulations. (b) Initial part of the equilibrium path for all
formulations. (c) Initial part of the equilibrium path for the LSSIP implemented in [28] and in the presented research, see Appendix B. (d) Initial part of the
equilibrium path for SBIP [31] and the present ISSIP.

Fig. 13. Comparison of the reaction force obtained with two implementations of ISSIP: with and without the moment.

6.5. Cutoff distance

The influence of the cutoff distance on the simulation results is investigated in this subsection. The cutoff distance represents
an adopted radius around one interacting particle, beyond which the interaction with other particles is neglected. Since the cutoff
distance significantly affects both accuracy and computational time, it is necessary to find a balance between these two counteracting
requirements. For example, the initial peeling phase is computationally most expensive due to a large number of interacting sections.
For the adopted mesh, the relative computational times per iteration are calculated for different values of cutoff during the first
few load steps. The results are displayed in Fig. 14a where a linear increase of the computational time w.r.t. the cutoff distance is
evident.

Remark. It is possible to speed up the computations by omitting the interaction in parts of the beams. For example, we could consider
a simulation where 5–10% of the beams’ ends are not interacting. This would allow us to avoid a sharp peak in the reaction force
which is the most computationally expensive and still obtain correct values at pull-off.

Let us consider the integration of our developed ISSIP force law. Since the law explicitly depends on the offset 𝑞1 and gap 𝑞2,
we can integrate section–section forces over one beam with arbitrary geometry, and find the force between a cross section and that
beam. For simplicity, we will consider the normal component of the interaction force between a cross section and a straight beam.

The physical and geometric properties are the same as in Fig. 6. First, we integrate the interaction force from negative to
positive infinity w.r.t. 𝑞1 analytically and mark this solution as exact. A similar integration is already done in Eq. (33) to find
the interaction potential between a cross section and a beam. Next, we are varying the cutoff distance which gives us finite limits
of integration w.r.t. 𝑞1. These limits are then utilized to calculate a set of approximately integrated interaction forces. The errors
of such approximations for six values of the gap 𝑞 are shown in Fig. 14b. As expected, increasing the cutoff distance reduces the
18
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Fig. 14. (a) Relative computational time vs. cutoff distance. (b) Relative error of the normal component of the interaction force between a cross-section and a
straight beam vs. the normalized cutoff radius. Five characteristic values of gap 𝑞2 are considered.

Fig. 15. Reaction force vs. LPF for four values of the cutoff distance.

error, and we can make an informed decision on the adopted cutoff distance. It is also evident that the accuracy is much better
for a very small gap (e.g., 𝑞2 = 0.0004) due to the extremely short range of steric forces. For our present simulations of peeling
and pull-off, gaps in the range of 𝑞2 ∈ (0.0008, 0.001) are most significant and the error is then practically invariant w.r.t. the cutoff
distance. Increasing the gap to 𝑞2 = 0.002 leads to a significant error increase due to the small gradient of the interaction force for
this separation.

In our simulations, the cutoff distance of 𝑐 = 2.5𝑅 = 0.05 is readily adopted. This value gives a relative error near 0.04% which
represents a reasonable trade-off between accuracy and efficiency. Additionally, we have run similar simulation for the interaction
between a single cross section and a circular beam, and the influence of the cutoff distance is quite similar. However, these results
represent a coarse approximation and they are omitted in the paper for brevity.

Let us now turn to a macroscopic point of view, and check the influence of the cutoff distance on the reaction force. The results for
four values of the cutoff distance are shown in Fig. 15. The largest difference occurs at the point of pull-off because the separations
between beams are then at their maximum. The relative errors at pull-off for 𝑐 = 0.045, 𝑐 = 0.05 and 𝑐 = 0.06 w.r.t. 𝑐 = 0.07
are 0.82%, 0.21%, and 0.04%, respectively. Again, the adopted value of 𝑐 = 0.05 allows a good approximation of the considered
problem.

Finally, the normal component of the interaction force in the middle of the beam is considered. The same four cutoff values are
considered and the results are shown in Fig. 16a. A similar relation between the results for different cutoffs as for the reaction force
is observed. An interaction force at a section of one beam is the result of the interaction between that section and the whole other
beam. The distribution of the interaction force 𝑓2 on a beam that results from the interaction with the middle of the other beam is
shown in Fig. 16b. The source of error due to the cutoff distance becomes apparent by looking at the enlargement. Furthermore,
the distribution of the normal force component at the instance of pull-off was already shown in Fig. 8. The fact that the maximum
value of the force 𝑓 does not occur in the middle of the beam is now seen more clearly.
19
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Fig. 16. Influence of different cutoff distances on the interaction force component 𝑓2. (a) 𝑓2 in the middle of the beam vs. time. (b) Distribution of 𝑓2 at pull-off.

Fig. 17. Spatial convergence study w.r.t. number of DOFs.

To summarize, finding a balance between accuracy and efficiency due to the cutoff distance is crucial for the present simulation.
The ISSIP allows us to estimate the cutoff distance in advance. The error increases with the separation between interacting beams,
and the adopted value of 𝑐 = 2.5𝑅 represents a good balance between accuracy and efficiency.

6.6. Convergence

Here, we perform convergence studies of the proposed formulation. First, let us consider the influence that the spatial
discretization has on the structural response. A reference solution is computed using 𝑛DOF = 1206 and the total number of integration
points is kept fixed 𝑛GP = 16000. The convergences of the 𝐿2 norm of the relative error for position, stress resultant, and stress couple
at the instance of pull-off are shown in Fig. 17. Since we are using quartic B-splines with the strongly curved BE model, see Eq. (12),
the theoretical asymptotic convergence rates are 5 for the position and 3 for the stress resultant and stress couple. The obtained
rates are in the range of these predictions while the accuracy is highest for the position and lowest for the stress resultant. Note
that the stress resultant is affected by both axial strain and bending curvature [34], and therefore very sensitive to mesh density.

Let us now consider the stress resultant at pull-off. Fig. 18 shows the distribution of the stress resultant for four levels of spatial
discretization. As seen, the mesh with 𝑛DOF = 102 is too coarse and the results are unacceptable. Regarding the three denser meshes,
they give quite similar results. However, by taking a closer look at the middle and at the end of the beam, it is evident that the
mesh with 𝑛DOF = 202 differs from the other two. This study confirms that the adopted quartic mesh with 161 control points and
𝐶3-continuity (i.e., 𝑛DOF = 322) returns reasonably accurate results.

Next, let us observe the convergence of the normal force component 𝑓2 w.r.t. the number of integration points. The reference
solution is obtained with 𝑛GP = 32000 and the results for the three initial load steps are shown in Fig. 19a. The convergence rates
are similar for all three load steps, but the accuracies differ. The relatively low accuracy of the first two increments is caused by the
20
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Fig. 18. Distribution of stress resultant for four spatial discretizations.

Fig. 19. (a) Convergence of the interaction force component 𝑓2 for three different load steps vs. the number of integration points. (b) Distribution of the
interaction force 𝑓2 for three numbers of integration points at 𝑡 = 0.00017.

initial distance between supports that is below the equilibrium distance between beams. For these two load steps, the cross sections
near the supports are in the repulsive regime of the LJ potential, which negatively impacts the accuracy due to the steep gradient
there. Distributions of interaction force component 𝑓2 for three values of 𝑛GP are displayed in Fig. 19b. The mentioned gradient is
clearly depicted. Furthermore, it is seen that the adopted number of integration points 𝑛GP = 16000 gives a very good solution.

6.7. Integration of interaction forces

The interaction force functions and their derivatives are difficult to integrate due to the oscillation of results w.r.t. the number
of integration points. After thorough numerical studies, we concluded that the mid-point rule is the most appropriate for the present
analysis. In this subsection, we will elaborate on this issue.

Let us consider an integration of the function 𝜙,2 given with Eq. (39). If we use the input data from Fig. 6 and fix the gap at
𝑞2 = 0.0009, 𝜙,2 becomes a univariate function of 𝑞1 and its plot is given in Fig. 20a for the interval 𝑞1 ∈ [−0.03, 0.03]. This interval
approximates a realistic interval of integration for our studies with the adopted cutoff 𝑐 = 2.5𝑅 = 0.05. This function is integrated
using the Gauss integration rule with five different orders 𝑛 and the total number of integration points is varied. The relative error of
such numerical integration w.r.t. the exact analytical solution is plotted in Fig. 20b. Note that the oscillations of the graphs increase
with the integration order. We attribute this behavior to the high values of the derivatives of the integrand which directly affect
the error estimate.

The present analysis suggests that the mid-point rule (𝑛 = 1) is an optimal choice for the problem at hand. It is the most
robust, gives small oscillations, and provides reasonable good accuracy for the ranges of integration points that are feasible for our
calculations. Based on these considerations, we have chosen to model our beams with 3200 points per unit length, which returns
an error of 0.0034%, see Fig. 20b. For the adopted finite element mesh, this corresponds to 100 integration points per element.

It should be emphasized that this error of integration also depends on the value of the gap 𝑞2. As the gap decreases, the derivatives
of the observed function are increasing. This is shown in Fig. 21a where the function 𝜙 (𝑞 , 𝑞 ) is plotted over a very narrow domain
21
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Fig. 20. (a) Function 𝜙,2 on the interval 𝑞1 ∈ [−0.03, 0.03] for fixed 𝑞2 = 0.0009. (b) Relative error of integration of function 𝜙,2 on the interval [−0.03, 0.03] for
fixed 𝑞2 = 0.0009 using five different integration orders 𝑛. The point (3200, 0.000034) marks the adopted number of integration points and its error.

Fig. 21. (a) 3D plot of function 𝜙,2 over domain 𝑞1 ∈ [−0.003, 0.003] and 𝑞2 ∈ [0.0008, 0.001]. (b) Error of integration of function 𝜙,2 using the mid-point rule
with 3200 integration points per unit length vs. 𝑞2.

to clearly depict the described behavior. The error of integration as a function of gap 𝑞2 is shown in Fig. 21b. Both absolute and
relative errors are plotted in order to clarify that the relative error measure increases near the equilibrium due to the division with
near-zero values. The absolute error is consistent and it is evident that the error is reciprocal to the increase of gap 𝑞2.

This analysis shows that we can reduce the number of integration points for large separations. On the other hand, the cutoff
distance should be increased for large separations, see Fig. 14. This raises the question of how to gain an advantage in accuracy and
efficiency for large separations. A promising approach is to implement an efficient adaptive integration method. We have conducted
some preliminary work on this issue and it will be considered for future studies.

6.8. Parametric study of the fiber stiffness

Our final study deals with two additional cases of peeling between fibers that are relatively (i) flexible and (ii) stiff w.r.t. the
reference one (𝐸 = 105). The aim is to simulate cases of strong adhesion/low stiffness and low adhesion/strong stiffness, as
in [20,28]. For this, we define two new models with Young’s modulus one order of magnitude greater or smaller than the reference
model, i.e. 𝐸 = 104 and 𝐸 = 106. All other parameters are kept the same as in the reference model. The reaction forces for all three
cases are visualized in Fig. 22. The obtained responses are qualitatively similar, but quantitatively very different. For the case of
low adhesion and strong stiffness (𝐸 = 106), the peak of the force just after the initiation of peeling and the value of the force at
the pull-off are the highest, while they are the lowest for the case of strong adhesion and low stiffness (𝐸 = 104). Furthermore, the
duration of both the peeling and the pull-off stages are the shortest for the case of low adhesion and the longest for the case of
strong adhesion. The results for the middle case that was the subject of previous subsections, 𝐸 = 105, are in-between these two
extrema.

Let us now consider the interaction forces. From Fig. 8, we can observe that the distribution of the normal component of the
interaction force is nearly constant during the peeling stage, while its position changes. This suggest that the interaction forces at the
peeling stage are comparable for models with different stiffness without the need to refer to some precisely defined configuration.
Therefore, we have chosen an instance when, approximately, more than one half of the fibers have peeled-off, and the results are
presented in Fig. 23. As anticipated, this configuration occurs at different time instances for all three cases. The displayed results
22
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Fig. 22. Reaction forces for three simulation cases using different Young’s moduli.

Fig. 23. Distribution of the normal component of the interaction force for three models with different Young’s modulus. The three configurations exhibit similar
ratio between peeled-off and adhering parts of the fibers.

suggest that the maximum values of the normal component of the interaction force during the peeling stage are similar for all three
cases considered. However, the gradient of the interaction force decreases as the stiffness increases.

This analysis shows that our computational model is capable of modeling various cases of peeling between elastic fibers w.r.t. the
ratio of the strength of adhesion and the fibers’ stiffness.

7. Conclusions

Short-range interactions due to intermolecular forces between in-plane fibers are studied here. A new law named improved section–
section interaction potential (ISSIP) is developed and verified. It is based on a coarse-graining procedure and existing section–section
interaction potential law (LSSIP). The LSSIP is improved by refining the relative position of interacting sections w.r.t. local coordinate
axes. Our analytical and numerical considerations show that the ISSIP provides improved accuracy in comparison with existing
approaches.

Due to an explicit dependence on the distance components w.r.t. local axes, the ISSIP allows an analytical estimation of the
error introduced by the cutoff distance. Also, the nonlinear solver behaves well, and some difficulties described in the literature are
avoided.

Section–section interaction potential (SSIP) laws are important as a step towards the development of accurate and efficient
computational models for the analysis of interactions between slender bodies at small scales. They stem from the basic ideas
of beam theories — assuming rigid cross sections and preintegrating w.r.t. the cross-sectional area. As an alternative, a section-
beam interaction potential (SBIP) approach has been recently developed in [30,31], exhibiting an asymptotically consistent scaling
23
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behavior for the distinguished interaction cases of two straight orthogonal and parallel beams. An asymptotically consistent scaling
behavior for the interaction of two straight parallel beams has also been confirmed for the proposed ISSIP approach. The question on
the method of choice strongly depends on the requirements of the specific application. On the one hand, SBIP approaches require
only a 1D integral to be solved numerically, allowing for significant gains in computational efficiency. On the other hand, SSIP
approaches allow in a straightforward manner to account for inhomogeneities, e.g., variable molecule densities, along the beam.
Moreover, SBIP approaches are suitable only for short-range interactions, while SSIP approaches can, in general, be applied to all
ranges.

Regarding the separation between interacting fibers, the developed ISSIP is tailored to small separations 𝑞2 ≪ 𝑅, where 𝑞2 is the
gap between cross sections and 𝑅 is the cross-sectional radius. On the other hand, the simple LSSIP law derived in [27] is suited for
large separations 𝑞2 ≫ 𝑅. However, the transient range 𝑞2 ≈ 𝑅 has not been successfully tackled yet with a section–section approach
and calls for further research. Another aim is to extend the ISSIP law to 3D curved beams, but this task is not straightforward due to
the arbitrary orientation between interacting sections. Future research should also consider beams with deformable cross sections,
inertia, and topology changes.
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Appendix A. Integration of a point-pair potential over two disks that belong to the same plane

In this Appendix, we will go through the integration procedure suggested in [36] and take a closer look at each step. The aim is
to integrate the point-pair interaction law 𝑝−𝑚 over two disks, 𝑥𝑠 and 𝑦𝑠, that lie in the same plane, cf. Fig. A.1. The first step is to
choose an appropriate coordinate system (CS). Starting from a Cartesian CS with unit vectors

(

𝒊1, 𝒊3
)

, we can define the positions of
two arbitrary interacting points with coordinates

(

𝑥1, 𝑥3
)

and
(

𝑦1, 𝑦3
)

. Since the Cartesian CS does not allow an analytical integration,
a new CS is utilized in [36] from a geometrical viewpoint. Our aim is to explicitly define this new CS and to introduce an appropriate
coordinate transformation.

The new CS consists of two polar CSs, the second one being relative to the first one. The first polar CS is defined with its origin
at the center point of disk 𝑥𝑠, polar axis 𝑡, and polar angle 𝜓 that is measured w.r.t. the line passing through the origins of the disks.
This CS describes the position of the point

(

𝑦1, 𝑦3
)

. The second, relative, polar CS is defined with its origin at
(

𝑦1, 𝑦3
)

, polar axis 𝑝,
and polar angle 𝜑 that is measured w.r.t. the axis 𝑡. This CS defines the relative position of

(

𝑥1, 𝑥3
)

w.r.t. the point
(

𝑦1, 𝑦3
)

.
By adopting the origin of the Cartesian CS at the center point of disk 𝑥𝑠, the coordinate transformation from the Cartesian

(

𝑥1, 𝑥3, 𝑦1, 𝑦3
)

to the new (𝑡, 𝑝, 𝜓, 𝜑) CS is

𝑦1 (𝑡, 𝑝, 𝜓, 𝜑) = 𝑡 cos𝜓,

𝑦3 (𝑡, 𝑝, 𝜓, 𝜑) = 𝑡 sin𝜓,

𝑥1 (𝑡, 𝑝, 𝜓, 𝜑) = 𝑡 cos𝜓 − 𝑝 cos (𝜓 − 𝜑) ,
(A.1)
24

𝑥3 (𝑡, 𝑝, 𝜓, 𝜑) = 𝑡 sin𝜓 − 𝑝 sin (𝜓 − 𝜑) ,
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Fig. A.1. Integration of a short-range interaction potential over two disks that lie in the same plane. Definition of the coordinate system introduced in [36].

Fig. A.2. Integration of a short-range interaction potential over two disks that lie in the same plane. For clarity, only segments of the disks are displayed. An
arc length 𝜓̄𝑡 is approximated with length 𝑓 .

where the Jacobian of the transformation is 𝑝𝑡. The main advantage of this approach is that the distance between point-pairs of
interacting disks, 𝑝, is actually one coordinate of the new CS. The coordinate transformation (A.1) yields

𝐼𝛷𝑚 = ∫

𝑅𝑥

−𝑅𝑥
∫

√

𝑅2
𝑥−𝑥21

−
√

𝑅2
𝑥−𝑥21

∫

𝑅𝑦

−𝑅𝑦
∫

√

𝑅2
𝑦−(𝑞2−𝑦1)2

−
√

𝑅2
𝑦−(𝑞2−𝑦1)2

𝑝−𝑚 d𝑦3 d𝑦1 d𝑥3 d𝑥1

= ∫

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
∫

𝑝𝑚𝑎𝑥(𝑡)

𝑝𝑚𝑖𝑛(𝑡)
∫

𝜓̂(𝑡)

−𝜓̂(𝑡) ∫

𝜑̂(𝑝,𝑡)

−𝜑̂(𝑝,𝑡)
𝑝−𝑚𝑡 𝑝 d𝜑 d𝜓 d𝑝 d𝑡 ,

(A.2)

where the limits of integration w.r.t. the new CS must be found. The limits of the polar angles are easily obtained from the cosine
theorem, i.e.

𝜓̂ = arccos
𝑡2 + 𝑞22 − 𝑅

2
𝑦

2𝑡𝑞2
and 𝜑̂ = arccos

𝑡2 + 𝑝2 − 𝑅2
𝑥

2𝑡𝑝
. (A.3)

Since the coordinate 𝑡 is independent of 𝑝, its limits are fixed and follow from Fig. A.1 as

𝑞2 + 𝑅𝑥 ≤ 𝑡 ≤ 𝑞2 + 𝑅𝑥 + 2𝑅𝑦. (A.4)

The limits of the relative coordinate 𝑝 are the functions of 𝑡

𝑡 − 𝑅𝑥 ≤ 𝑝 ≤ 𝑡 + 𝑅𝑥, (A.5)

which can be easily verified from geometrical considerations in Fig. A.1. Therefore, the final form of the integral to be solved is

𝐼𝛷𝑚 = 4∫

𝑞2+𝑅𝑥+2𝑅𝑦

𝑞2+𝑅𝑥
∫

𝑡+𝑅𝑥

𝑡−𝑅𝑥
arccos

𝑡2 + 𝑞22 − 𝑅
2
𝑦

2𝑡𝑞2
arccos

𝑡2 + 𝑝2 − 𝑅2
𝑥

2𝑡𝑝
𝑝−𝑚+1𝑡 d𝑝 d𝑡 . (A.6)

This form of integral is too complicated for an analytical integration and some approximations are required. Since we are dealing
with short-ranged interactions at small separations, the major contribution to our potential comes from the closest point-pairs and
quickly reduces with distance. Therefore, by considering only the closest interacting point-pairs, the first approximation is related
to the limit angle 𝜓̂ . The cuts of interacting disks are shown in Fig. A.2 and the idea is to approximate the arc length 𝜓̂𝑡 with the
25
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Fig. A.3. Integration of a short-range interaction potential over two disks that lie in the same plane. For clarity, only segments of the disks are displayed. The
length 𝑠 is approximated with 𝑡 − 𝑅𝑥.

length 𝑓 , which is a good approximation for the closest point-pairs. We can find 𝑓 as a function of 𝑐 from

𝑓 2 =
(

𝑅𝑥 + 𝑞2 + 𝑐
)2 −

(

𝑅𝑥 + 𝑞2 + 𝑐1
)2 = 𝑅2

𝑦 −
(

𝑅𝑦 − 𝑐1
)2

⟹ 𝑐1 =
𝑐2 + 2𝑐

(

𝑅𝑥 + 𝑞2
)

2
(

𝑅𝑥 + 𝑅𝑦 + 𝑞2
) , (A.7)

and then linearize 𝑓 2 w.r.t. 𝑐, giving

𝑓 2 =
2𝑅𝑦𝑐

(

𝑅𝑥 + 𝑞2
)

𝑅𝑥 + 𝑅𝑦 + 𝑞2
+ (𝑐2). (A.8)

Finally, by letting 𝑞2 → 0, we obtain an approximation for 𝑓 and arc-length 𝑡𝜓̄ ,

𝑓 2 ≈
2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝑐 ⟹ 𝑡𝜓̄ ≈ 𝑓 ≈

√

2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

(

𝑡 − 𝑅𝑥 − 𝑞2
)

. (A.9)

Regarding the other limit angle 𝜑̄, its approximation is more straightforward. Again, the two cuts of interacting disks are shown
in Fig. A.3. For small values of 𝑝, we can approximate the cosine of the angle 𝜑̄ by assuming 𝑠 ≈ 𝑡 − 𝑅𝑥, giving

cos 𝜑̄ =
𝑡2 + 𝑝2 − 𝑅2

𝑥
2𝑡𝑝

= cos 𝑠
𝑝
≈ cos

𝑡 − 𝑅𝑥
𝑝

. (A.10)

By inserting Eqs. (A.9) and (A.10) into Eq. (A.6), the integral is approximated as

𝐼𝛷𝑚 = 4

√

2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦 ∫

𝑞2+𝑅𝑥+2𝑅𝑦

𝑞2+𝑅𝑥
∫

𝑡+𝑅𝑥

𝑡−𝑅𝑥
𝑝−𝑚+1 arccos

𝑡 − 𝑅𝑥
𝑝

√

𝑡 − 𝑅𝑥 − 𝑞2 d𝑝 d𝑡 . (A.11)

The rest of the integration procedure is analogous to Section 4.2. We introduce reduced variables 𝑝̂ = 𝑝∕𝑞2 and 𝑡 =
(

𝑡 − 𝑅𝑥
)

∕𝑞2, and
assume

(

𝑡 + 𝑅𝑥
)

∕𝑞2 = ∞ and
(

𝑞2 + 2𝑅𝑦
)

∕𝑞2 = ∞. The final form of the approximated integral is

𝐼𝛷𝑚 = 4

√

2𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦 ∫

∞

1 ∫

∞

𝑡
𝑝̂−𝑚+1𝑞

−𝑚+ 7
2

2 arccos 𝑡
𝑝̂

√

𝑡 − 1 d𝑝̂ d𝑡 , (A.12)

and the closed-form result is

𝐼𝛷𝑚 = 2
5
2−𝑚𝜋

3
2

√

𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝛤
(

𝑚 − 7
2

)

𝛤 (𝑚∕2)2
𝑞
−𝑚+ 7

2
2 , 𝑚 > 7

2
. (A.13)

The integration approach in [27,36] is focused on a geometrical interpretation, rather than an explicit coordinate transformation.
The adopted limits of integration are not defined consistently, and they return complex values for some ratios of 𝑅𝑥 and 𝑅𝑦.
Nevertheless, by introducing the reduced variables 𝑝̂ and 𝑡, and by approximating the upper limits of integration with infinity,
the final form of the integral (A.12) is the same.

Appendix B. Gradient of the existing section–section interaction potential

Since the existing LSSIP [27] is used during the initial research, some basic details on this approach are given in this Appendix.
The LSSIP is defined as

𝜙̄𝑚,ss = 𝛽𝑥 𝛽𝑦 ∫𝐴𝑥 ∫𝐴𝑦
𝑘𝑚 𝑟

−𝑚 d𝐴𝑦 d𝐴𝑥 = 𝑐𝑚,ss𝑞
−𝑚+ 7

2
2 ,

𝑐𝑚,ss = 𝑘𝑚 𝛽𝑥 𝛽𝑦 2
5
2−𝑚𝜋

3
2

√

𝑅𝑥𝑅𝑦
𝑅𝑥 + 𝑅𝑦

𝛤
(

𝑚 − 7
2

)

𝛤 (𝑚∕2)2
, 𝑚 > 7

2
,

(B.1)
26

𝑞2 = ‖𝒙 − 𝒚‖ − 𝑅𝑥 − 𝑅𝑦.
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The distance vector between axes, and its unit vector are

𝒅 = 𝒙 − 𝒚, 𝑑 = ‖𝒙 − 𝒚‖, 𝒅̂ =
𝒙 − 𝒚

‖𝒙 − 𝒚‖
= 𝒅
𝑑
, (B.2)

and the gradients follow as

∇𝑥𝒅̂ = ∇𝒙𝒅̂ = 1
𝑑
(

𝑰 − 𝒅̂ ⊗ 𝒅̂
)

, ∇𝑦𝒅̂ = ∇𝒚 𝒅̂ = − 1
𝑑
(

𝑰 − 𝒅̂ ⊗ 𝒅̂
)

,

∇𝑥𝒅 = ∇𝒙𝒅 = 𝑰 , ∇𝑦𝒅 = ∇𝒚𝒅 = −𝑰 .
(B.3)

The gradients of the gap w.r.t. the positions of the interacting beams are

∇𝒙𝑞2 = ∇𝒙𝑑 = ∇𝒙
(

𝒅 ⋅ 𝒅
)1∕2 = 1

2
(

𝒅 ⋅ 𝒅
)−1∕2 2 𝒅 = 𝒅̂,

∇𝒚𝑞2 = ∇𝒚𝑑 = ∇𝒚
(

𝒅 ⋅ 𝒅
)1∕2 = −1

2
(

𝒅 ⋅ 𝒅
)−1∕2 2 𝒅 = −𝒅̂.

(B.4)

he section–section interaction forces are the gradients of the LSSIP. Since the LSSIP is expressed as a function of the gap 𝑞2 only,
he section–section interaction forces are

𝒇𝑥 = 𝒇 = −∇𝒙𝜙̄𝑚,ss =
𝜕𝜙̄𝑚,ss (𝑞)

𝜕𝑞
∇𝒙𝑞2 =

(

𝑚 − 7
2

)

𝑐𝑚,ss𝑞
−𝑚+ 5

2 𝒅̂,

𝒇 𝑦 = −𝒇 = −∇𝒚 𝜙̄𝑚,ss = −
𝜕𝜙̄𝑚,ss (𝑞)

𝜕𝑞
∇𝒚𝑞2 = −

(

𝑚 − 7
2

)

𝑐𝑚,ss𝑞
−𝑚+ 5

2 𝒅̂.
(B.5)

Due to the symmetry of interacting sections w.r.t. the distance vector 𝒅, there is no resultant couple and the section–section forces
act along the unit vector 𝒅̂.

Appendix C. Detailed derivation of the straightforward approach

By adopting the LCS of beam 𝑥 as the reference LCS,
(

𝒕ref ,𝒏ref
)

=
(

𝒕𝑥,𝒏𝑥
)

, the gap and the offset are

𝑞1 = 𝒅 ⋅ 𝒕𝑥,

𝑞2 = |

|

𝒅 ⋅ 𝒏𝑥|| − 𝑅1 − 𝑅2, 𝑞2 = |

|

𝒅 ⋅ 𝒏𝒙|| = 𝑞2 + 𝑅1 + 𝑅2.
(C.1)

In order to find their gradients, the auxiliary relations

∇𝑥𝒕𝑥 = ∇𝒙,1
𝒕𝑥 = 1

√

𝑔𝑥

(

𝑰 − 𝒕𝑥 ⊗ 𝒕𝑥
)

= 1
√

𝑔𝑥
𝒏𝑥 ⊗ 𝒏𝑥,

∇𝑥𝒏𝑥 = ∇𝒙,1
𝒏𝑥 = ∇𝒙,1

(

𝜦𝒕𝑥
)

= 𝜦∇𝒙,1
𝒕𝑥 = 1

√

𝑔𝑥
𝜦
(

𝒏𝑥 ⊗ 𝒏𝑥
)

,

∇𝒙,1

√

𝑔𝑥 = 𝒕𝑥, ∇𝒙,1
1

√

𝑔𝑥
= − 1

2𝑔3∕2𝑥

2𝒈1𝑥 = − 1
𝑔𝑥

𝒕𝑥,

(C.2)

re required. With these expressions at hand, we can find the gradients of the gap and the offset

∇𝒙𝑞1 = −∇𝒚 𝑞1 = 𝒕𝑥 = ∇𝒅 𝑞1,

∇𝒙,1
𝑞1 =

𝑠𝛼
√

𝑔𝑥
𝑞2𝒏𝑥,

∇𝒚,1
𝑞1 = 𝟎,

∇𝒙𝑞2 = 𝑠𝛼𝒏𝑥 = −∇𝒚 𝑞2 = ∇𝒅 𝑞2,

∇𝒙,1
𝑞2 = −

𝑠𝛼
√

𝑔𝑥
𝑞1𝒏𝑥,

∇𝒚,1
𝑞2 = 0.

(C.3)

ow, the variation of the ISSIP w.r.t. beam 𝑥 can be written as

𝛿𝑥𝜙 = 𝜙,1
(

∇𝒙𝑞1 ⋅ 𝛿𝒖 + ∇𝒙,1
𝑞1 ⋅ 𝛿𝒖,1

)

+ 𝜙,2
(

∇𝒙𝑞2 ⋅ 𝛿𝒖 + ∇𝒙,1
𝑞2 ⋅ 𝛿𝒖,1

)

= 𝜙,1

(

𝒕𝑥 ⋅ 𝛿𝒖 +
𝑠𝛼
√

𝑔𝑥
𝑞2𝒏𝑥 ⋅ 𝛿𝒖,1

)

+ 𝜙,2𝑠𝛼

(

𝒏𝑥 ⋅ 𝛿𝒖 − 1
√

𝑔𝑥
𝑞1𝒏𝑥 ⋅ 𝛿𝒖,1

)

=
(

𝜙,1𝒕𝑥 + 𝜙,2𝑠𝛼𝒏𝑥
)

⋅ 𝛿𝒖 +
𝑠𝛼
√

𝑔𝑥

(

𝜙,1𝑞2 − 𝜙,2𝑞1
)

𝒏𝑥 ⋅ 𝛿𝒖,1 = 𝒇 ⋅ 𝛿𝒖 + 𝒇̂ ⋅ 𝛿𝒖,1.

(C.4)

ppendix D. Linearization of the variation of the interaction potential for the averaged LCS approach

The equilibrium equation (34) is highly nonlinear both due to the large deformations and the interaction potential that is
27

onfiguration-dependent. Since there is no coupling between the interacting beams in the strain energy and the external potential,
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they can be simply derived as in Ref. [34]. Let us focus on the interaction term 𝛿𝛷IP. The calculation of this term requires the
ntegration and the spatial discretization of 𝛿𝜙. This is the standard procedure of the finite element method and we will skip these
teps for brevity. Finally, the solution of the obtained nonlinear equation requires linearization. Therefore, the main steps in the
inearization process of 𝛿𝜙 in the continuum setting are presented in this Appendix.

For the averaged LCS approach we adopt
(

𝒕ref ,𝒏ref
)

=
(

𝒕̂𝑥𝑦, 𝒏̂𝑥𝑦
)

, where the basis vectors are defined in Eq. (48). The gradients
f the gap and the offset w.r.t. the positions are given in Eq. (50). For the linearization, we need to also find the gradients of the
ap and the offset w.r.t. the tangent vectors. Let us first define the gradients of magnitude 𝑡𝑥𝑦 = 𝑡𝑥𝑦 ⋅ 𝑡𝑥𝑦 and its square root by

∇𝑥𝑡𝑥𝑦 = 2∇𝑥𝒕𝑥
(

𝒕𝑥 + 𝒕𝑦
)

= 2∇𝑥𝒕𝑥 ⋅ 𝒕𝑦 = 2 1
√

𝑔𝑥

(

𝒕𝑦 −
(

𝒕𝑥 ⋅ 𝒕𝑦
)

𝒕𝑥
)

,

∇𝑥
√

𝑡𝑥𝑦 =
1

2
√

𝑡𝑥𝑦
2∇𝑥𝒕𝑥 ⋅ 𝒕𝑦 =

1
√

𝑡𝑥𝑦
∇𝑥𝒕𝑥 ⋅ 𝒕𝑦 =

1
√

𝑡𝑥𝑦

1
√

𝑔𝑥

(

𝒕𝑦 −
(

𝒕𝑥 ⋅ 𝒕𝑦
)

𝒕𝑥
)

,

∇𝑦
√

𝑡𝑥𝑦 =
1

2
√

𝑡𝑥𝑦
2∇𝑦𝒕𝑦 ⋅ 𝒕𝑥 = 1

√

𝑡𝑥𝑦
∇𝑦𝒕𝑦 ⋅ 𝒕𝑥 = 1

√

𝑡𝑥𝑦

1
√

𝑔𝑦

(

𝒕𝑥 −
(

𝒕𝑥 ⋅ 𝒕𝑦
)

𝒕𝑦
)

.

(D.1)

Now, the gradients of the basis vectors are

∇𝑥 𝒕̂𝑥𝑦 =
√

𝑡𝑥𝑦∇𝑥𝒕𝑥 − 𝒕𝑥𝑦 ⊗ ∇𝑥
√

𝑡𝑥𝑦
𝑡𝑥𝑦

=

√

𝑡𝑥𝑦∇𝑥𝒕𝑥 − 𝒕𝑥𝑦 ⊗
1

√

𝑡𝑥𝑦
∇𝑥𝒕𝑥 ⋅ 𝒕𝑦

𝑡𝑥𝑦

=

√

𝑡𝑥𝑦∇𝑥𝒕𝑥 − 𝒕̂𝑥𝑦 ⊗ 𝒕𝑦 ⋅ ∇𝑥𝒕𝑥
𝑡𝑥𝑦

= 1
𝑡𝑥𝑦

(√

𝑡𝑥𝑦𝑰 − 𝒕̂𝑥𝑦 ⊗ 𝒕𝑦
)

∇𝑥𝒕𝑥,

∇𝑦 𝒕̂𝑥𝑦 =
1
𝑡𝑥𝑦

(√

𝑡𝑥𝑦𝑰 − 𝒕̂𝑥𝑦 ⊗ 𝒕𝑥
)

∇𝑦𝒕𝑦,

∇𝑥𝒏̂𝑥𝑦 = ∇𝑥
(

𝛬𝛬𝛬𝒕̂𝑥𝑦
)

= 𝛬𝛬𝛬∇𝑥 𝒕̂𝑥𝑦,

∇𝑦𝒏̂𝑥𝑦 = ∇𝑦
(

𝛬𝛬𝛬𝒕̂𝑥𝑦
)

= 𝛬𝛬𝛬∇𝑦 𝒕̂𝑥𝑦.

(D.2)

The gap and the offset are defined in Eq. (49) and their gradients w.r.t. the tangent vectors follow as

∇𝒙,1
𝑞1 = ∇𝒙,1

(

𝒅 ⋅ 𝒕̂𝑥𝑦
)

=
(

∇𝒙,1
𝒕̂𝑥𝑦

)𝑇
𝒅 = ∇𝑥𝒕𝑥

1
𝑡𝑥𝑦

(√

𝑡𝑥𝑦𝒅 − 𝑞1𝒕𝑦
)

,

∇𝒚,1
𝑞1 = ∇𝒚,1

(

𝒅 ⋅ 𝒕̂𝑥𝑦
)

=
(

∇𝒚,1
𝒕̂𝑥𝑦

)𝑇
𝒅 = ∇𝑦𝒕𝑦

1
𝑡𝑥𝑦

(√

𝑡𝑥𝑦𝒅 − 𝑞1𝒕𝑥
)

,

∇𝒙,1
𝑞2 = ∇𝒙,1

|

|

|

𝒅 ⋅ 𝒏̂𝑥𝑦
|

|

|

= 𝑠𝛼
(

∇𝒙,1
𝒏̂𝑥𝑦

)𝑇
𝒅 = ∇𝑥𝒕𝑥

1
𝑡𝑥𝑦

(

𝑠𝛼
√

𝑡𝑥𝑦𝛬𝛬𝛬
𝑇 𝒅 − 𝑞2𝒕𝑦

)

,

∇𝒚,1
𝑞2 = ∇𝒚,1

|

|

|

𝒅 ⋅ 𝒏̂𝑥𝑦
|

|

|

= 𝑠𝛼
(

∇𝒚,1
𝒏̂𝑥𝑦

)𝑇
𝒅 = ∇𝑦𝒕𝑦

1
𝑡𝑥𝑦

(

𝑠𝛼
√

𝑡𝑥𝑦𝛬𝛬𝛬
𝑇 𝒅 − 𝑞2𝒕𝑥

)

.

(D.3)

ow, we have all the relations needed for the linearization. Since the ISSIP is a function of positions of both beams, we need to
inearize both 𝛿𝜙𝑥 and 𝛿𝜙𝑦. The linearized increment of the section–section interaction force (52) w.r.t. beam 𝑥 is

𝛥𝑥𝒇 = 𝒕̂𝑥𝑦 ⊗
(

𝜙,11𝛥𝑥𝑞1 + 𝜙,12𝛥𝑥𝑞2
)

+ 𝑠𝛼 𝒏̂𝑥𝑦 ⊗
(

𝜙,21𝛥𝑥𝑞1 + 𝜙,22𝛥𝑥𝑞2
)

+
(

𝜙,1𝑰 + 𝜙,2𝑠𝛼𝛬𝛬𝛬
)

𝛥𝑥 𝒕̂𝑥𝑦
=
(

𝜙,11 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,21𝒏̂𝑥𝑦
)

⊗
(

𝛥𝑥𝑞1
)

+
(

𝜙,12 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,22𝒏̂𝑥𝑦
)

⊗
(

𝛥𝑥𝑞2
)

+
(

𝜙,1𝑰 + 𝜙,2𝑠𝛼𝛬𝛬𝛬
)

𝛥𝑥 𝒕̂𝑥𝑦

=
(

𝜙,11 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,21𝒏̂𝑥𝑦
)

⊗
(

∇𝒙𝑞1𝛥𝒖 + ∇𝒙,1
𝑞1𝛥𝒖,1

)

+
(

𝜙,12 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,22𝒏̂𝑥𝑦
)

⊗
(

∇𝒙𝑞2𝛥𝒖 + ∇𝒙,1
𝑞2𝛥𝒖,1

)

+
(

𝜙,1𝑰 + 𝜙,2𝑠𝛼𝛬𝛬𝛬
)

∇𝒙,1
𝒕̂𝑥𝑦𝛥𝒖,1

=
[(

𝜙,11 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,21𝒏̂𝑥𝑦
)

⊗ 𝒕̂𝑥𝑦 +
(

𝜙,12 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,22𝒏̂𝑥𝑦
)

⊗ 𝑠𝛼 𝒏̂𝑥𝑦
]

𝛥𝒖

+
[

(

𝜙,11 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,21𝒏̂𝑥𝑦
)

⊗ ∇𝒙,1
𝑞1 +

(

𝜙,12 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,22𝒏̂𝑥𝑦
)

⊗ ∇𝒙,1
𝑞2
]

𝛥𝒖,1
+

(

𝜙,1𝑰 + 𝜙,2𝑠𝛼𝛬𝛬𝛬
)

∇𝒙,1
𝒕̂𝑥𝑦𝛥𝒖,1

= 𝐷𝒙𝒇𝛥𝒖 +𝐷𝒙,1
𝒇𝛥𝒖,1,

(D.4)

where

𝐷𝒙𝒇 = 𝒂1 ⊗ 𝒕̂𝑥𝑦 + 𝒂2 ⊗ 𝑠𝛼 𝒏̂𝑥𝑦,

𝐷𝒙,1
𝒇 = 𝒂1 ⊗ ∇𝒙,1

𝑞1 + 𝒂2 ⊗ ∇𝒙,1
𝑞2 +𝑨∇𝒙,1

𝒕̂𝑥𝑦,

𝒂1 =
(

𝜙,11 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,21𝒏̂𝑥𝑦
)

,

𝒂2 =
(

𝜙,12 𝒕̂𝑥𝑦 + 𝑠𝛼𝜙,22𝒏̂𝑥𝑦
)

,
( )

(D.5)
28

𝑨 = 𝜙,1𝑰 + 𝜙,2𝑠𝛼𝛬𝛬𝛬 .
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Linearized increment of the interaction force w.r.t. beam 𝑦 is then

𝛥𝑦𝒇 = −𝐷𝒙𝒇𝛥𝒗 +𝐷𝒚,1
𝒇𝛥𝒗,1,

𝐷𝒚,1
𝒇 = 𝒂1 ⊗ ∇𝒚,1

𝑞1 + 𝒂2 ⊗ ∇𝒚,1
𝑞2 +𝑨∇𝒚,1

𝒕̂𝑥𝑦.
(D.6)

ith these expressions, the linearized increments of 𝛿𝜙𝑥 and 𝛿𝜙𝑦 can be written as

𝛥𝛿𝑥𝜙 = 𝛥𝒇 ⋅ 𝛿𝒖 =
(

𝛥𝑥𝒇 + 𝛥𝑦𝒇
)

⋅ 𝛿𝒖

= 𝛿𝒖 ⋅
(

𝐷𝒙𝒇 ⋅ 𝛥𝒖 +𝐷𝒙,1
𝒇 ⋅ 𝛥𝒖,1 +𝐷𝒚𝒇 ⋅ 𝛥𝒗 +𝐷𝒚,1

𝒇 ⋅ 𝛥𝒗,1
)

,

𝛥𝛿𝑦𝜙 = −𝛥𝒇 ⋅ 𝛿𝒗

= −𝛿𝒗 ⋅
(

𝐷𝒙𝒇 ⋅ 𝛥𝒖 +𝐷𝒙,1
𝒇 ⋅ 𝛥𝒖,1 +𝐷𝒚𝒇 ⋅ 𝛥𝒗 +𝐷𝒚,1

𝒇 ⋅ 𝛥𝒗,1
)

,

(D.7)

or in the matrix form,

𝛥𝛿𝜙 = 𝛥
(

[

𝛿𝒖 𝛿𝒗
]

[

𝒇𝑥
𝒇 𝑦

])

=
[

𝛿𝒖 𝛿𝒗
]

𝛥
[

𝒇
−𝒇

]

=
[

𝛿𝒖 𝛿𝒗
]

(

[

𝐷𝒙𝒇 𝐷𝒚𝒇
−𝐷𝒙𝒇 −𝐷𝒚𝒇

] [

𝛥𝒖
𝛥𝒗

]

+

[

𝐷𝒙,1
𝒇 𝐷𝒚,1

𝒇
−𝐷𝒙,1

𝒇 −𝐷𝒚,1
𝒇

][

𝛥𝒖,1
𝛥𝒗,1

])

.
(D.8)

Evidently, the resulting stiffness matrix is not symmetric. This is a consequence of neglecting the interaction moments. The
linearization of the interaction moments for the averaged LCS approach is quite complicated and we will not pursue it here.
Nevertheless, our numerical simulations show that the derived tangent operator yields good convergence rates, even for the
formulation that includes the interaction moments. This finding actually suggests that the influence of the interaction moment
is not significant in the overall response, as already noted in Section 6.4.

Appendix E. Tangent stiffness accuracy test

An accurate tangent stiffness is crucial for the efficient calculation of nonlinear problems. Therefore, it is highly desirable to
have a reliable testing procedure. Here, we have tested the accuracy of the tangent stiffness by using the complex-step method [40].
It is briefly explained here for the consistency of presentation and as a reference.

The residual 𝛹𝛹𝛹 is a function of the vector q, which is stacked with all the degrees of freedom. A second-order approximation of
the residual in some unknown configuration is

𝛹𝛹𝛹
(

q♯ + 𝛥q
)

≈ 𝛹𝛹𝛹
(

q♯
)

+
(

∇q𝛹𝛹𝛹
)♯ 𝛥q + 1

2

(

∇2
q𝛹𝛹𝛹

)♯
(𝛥q)2 , (E.1)

where ♯ designates the previously calculated configuration. Let us introduce an incremental vector of unknowns, where all but the
𝑘th element are zero,

𝛥q̄𝑘 =
[

0 0 ... 1 ... 0
]

. (E.2)

Furthermore, let us define an infinitesimal positive quantity 𝜖 ∶ 0 < 𝜖 ≪ 1. Now, we can find the second-order approximation of the
esidual in a new configuration, incremented by 𝛥q̄𝑘𝜖𝑖, where 𝑖 is the imaginary unit. i.e.

𝛹𝛹𝛹
(

q♯ + 𝛥q̄𝑘𝜖𝑖
)

≈ 𝛹𝛹𝛹
(

q♯
)

+
(

∇q𝛹𝛹𝛹
)♯ 𝛥q̄𝑘𝜖𝑖 +

1
2

(

∇2
q𝛹𝛹𝛹

)♯
(

𝛥q̄𝑘𝜖𝑖
)2 . (E.3)

If we take the imaginary part of this expression,

Im
[

𝛹𝛹𝛹
(

q♯ + 𝛥q̄𝑘𝜖𝑖
)]

≈
(

∇q𝛹𝛹𝛹
)♯ 𝛥q̄𝑘𝜖, (E.4)

and divide the equation with 𝜖,
1
𝜖
Im

[

𝛹𝛹𝛹
(

q♯ + 𝛥q̄𝑘𝜖𝑖
)]

= K̂𝑇 𝛥q̄𝑘 ≈ K𝑇 𝛥q̄𝑘, where K𝑇 =
(

∇q𝛹𝛹𝛹
)♯ , (E.5)

we obtain a second-order accurate approximation of one column of stiffness matrix K𝑇 . Namely, the expression K̂𝑇 𝛥q̄𝑘 represents
an approximation of the 𝑘th column of the tangent stiffness matrix.

Remark. If the residual vector includes operations such as Norm, Sign, and Abs, special care is required due to the complex arguments
in Eq. (E.3).

To provide an insight into the numerical values that follow from this test, let us compare the stiffness matrix K̂𝑇 in Eq. (E.5) with
he one obtained by the consistent linearization in Appendix D, designated here by K̄𝑇 . For this purpose, we define the following
orm of the relative difference between the two stiffness matrices,

𝛿 = ‖

K̂𝑇 − K̄𝑇
‖. (E.6)
29

max K̂𝑇

http://mostwiedzy.pl


Computer Methods in Applied Mechanics and Engineering 429 (2024) 117143A. Borković et al.

w
a
n
a
n
t
t

f

R

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Table 1
Norm of the relative difference between the tangent stiffness
matrix obtained by the complex-step method and by the lin-
earization in Appendix D, for three values of parameter 𝜖. The
cases with (𝒇̂ ≠ 0) and without (𝒇̂ = 0) the interaction moment
are considered.

𝛿

𝜖 𝒇̂ = 𝟎 𝒇̂ ≠ 𝟎

10−5 1.36 × 10−2 1.41 × 10−2

10−6 1.36 × 10−4 5.11 × 10−4

10−7 2.15 × 10−6 4.91 × 10−4

We anticipate that the matrix K̄𝑇 , derived in Appendix D, is exact for the case when the interaction moment is neglected (𝒇̂ = 𝟎) and
approximate when the interaction moment is included (𝒇̂ ≠ 𝟎). Let us consider the model defined in Section 6.1 that is discretized

ith 16 elements and 10 integration points per element, at the configuration 𝑡 ≈ 0.006. Three values of the parameter 𝜖 are varied
nd the values of the norms of the relative differences are given in Table 1. For the model with the exact tangent stiffness (𝒇̂ = 𝟎), the
orm of the relative difference 𝛿 converges to zero, and it can be observed that the approximation given by Eq. (E.5) is second-order
ccurate w.r.t. the parameter 𝜖. For the case of approximate stiffness (𝒇̂ ≠ 𝟎), the norm of the relative difference converges to a
on-zero constant value for 𝜖 → 0. These results confirm that the stiffness matrix derived in Appendix D is accurate for the case when
he interaction moment is neglected, while it is only approximate for the formulation including the interaction moment. However,
his inaccuracy is not significant for the considered example, cf. Appendix D.

All in all, the complex-step method is a straightforward way to test the accuracy of the stiffness matrix, but too expensive to use
or its evaluation.
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