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Abstract 

Simulation-driven design closure is mandatory in the design of contemporary high-

frequency components. It aims at improving the selected performance figures through 

adjustment of the structure’s geometry (and/or material) parameters. The computational cost 

of this process when employing numerical optimization is often prohibitively high, which is a 

strong motivation for the development of more efficient methods. This is especially important 

in the case of complex and multi-parameter structures. In the paper, an expedited trust-

region-based algorithm for electromagnetic (EM)-driven design optimization of high-

frequency structures is proposed. The presented technique involves a flexible sensitivity 

update scheme depending on the relative design changes with respect to the trust region size, 

as well as a direction of the design relocation and its alignment with the coordinate system 

axes. This allows for performing finite-differentiation-based sensitivity updates less 

frequently and, consequently, brings considerable computational savings. Numerical results 

obtained for an ultra-wideband antenna and a microwave coupler demonstrate that the 
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proposed algorithm outperforms the reference procedure in terms of the number of EM 

simulations necessary to arrive at the optimized solution (around 50 percent). At the same 

time, the design quality loss is minor.  

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1. Introduction 

The importance of numerical optimization in the design of antenna and microwave 

components has been steadily growing over the recent years [1], [2]. One of the fundamental 

components of the optimization processes in high-frequency electronics is a full-wave 

electromagnetic (EM) analysis. EM simulation models can deliver an adequate level of 

performance evaluation accuracy [3]. Furthermore, they are often the only way to ensure 

sufficient reliability, especially for topologically complex structures for which the existing 

theoretical models are highly inaccurate [4], [5]. Typically carried out as the last stage of the 

design process, EM-driven parameter adjustment aims at the improvement of selected 

performance figures, such as impedance matching, bandwidth, gain, or achieving a required 

power split ratio, to name just a few. Satisfying these specifications by means of conventional 

algorithms (either global [6] or local [7,8]) normally requires massive EM simulations. The 

associated computational costs may be prohibitive. 

Numerous techniques for alleviating the aforementioned issue have been developed, 

including adjoint sensitivities [9,10] and machine learning methods [11,12]. Another example 

is feature-based optimization, a technique that exploits a specific structure of the system 

response to accelerate the optimization process by reformulating the design problem in terms 

of the coordinates of appropriately defined characteristic points [13]. Probably the most 

widespread group are surrogate-assisted methods [14]-[16], where, instead of directly 

optimizing a high-fidelity (fine) EM model, a cheaper representation, referred to as a 

surrogate model, is utilized as a prediction tool and iteratively corrected using the 

accumulated high-fidelity data. The surrogate models may be data-driven or physics-based 

ones (e.g., constructed from underlying equivalent networks). The data-driven models are 

versatile, however their application is limited to rather low-dimensional cases [17]. The 

examples include kriging [18,19], Gaussian process regression [20,21], and polynomial 
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response surfaces [18,22]. The physics-based models are considerably less affected by the 

curse of dimensionality, however, at the expense of generality. Popular techniques include 

space mapping [14,15,23,24], as well as response correction techniques [25,26]. Surrogate-

based optimization may lead to a significant computational speedup provided that the 

surrogate model is significantly faster than the fine model, and the two models are 

sufficiently well correlated. Unfortunately, in the case of practical antenna structures and 

miniaturized microwave components, the only available surrogates are those derived from 

coarse-mesh simulations [1]. Their cost is normally substantial and their multiple evaluations 

cannot be neglected in the overall optimization expenses. 

Regardless of whether the high-fidelity model is optimized directly or using a 

physics-based surrogate-assisted routine, it is the overall number of EM simulations (on 

either low- or high-fidelity level) that determines the cost of the parameter tuning process. In 

this paper, a trust-region-embedded algorithm of improved computational efficiency is 

proposed. The key concept of the method is a flexible management scheme for the system 

response Jacobian updating. It utilizes the following two criteria: (i) a relative change (with 

respect to the trust region size) of the parameter vector between the algorithm iterations, and 

(ii) the alignment of the design relocation direction with the coordinate system axes. A rank-

one Broyden formula for the Jacobian update is adopted for parameters satisfying the 

acceptance conditions pertinent to the latter criterion. For the sake of validation, an ultra-

wideband antenna and a miniaturized coupler (implemented using compact microwave 

resonant cells, CMRCs [10]) are considered. The numerical results obtained for these 

benchmark structures indicate that the proposed algorithm allows for achieving a significant 

optimization speedup of around 50 percent, as compared to the reference TR algorithm. At 

the same time, the design quality degradation is minor.  
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2. High-Frequency Structure Optimization with Flexible Jacobian Updates  

This section recalls the design optimization problem and briefly describes the 

reference trust-region-based algorithm. Subsequently, a detailed formulation of the proposed 

algorithm with a flexible Jacobian update scheme is presented, in which two separate 

acceleration mechanisms are combined, both aiming at the reduction of the optimization cost. 

2.1. Design Closure as an Optimization Task  

Here, a design closure is considered, i.e., the adjustment of (typically) geometry 

parameter vector x in order to improve the selected performance figures. We will denote as 

R(x) the response of an EM-simulated model of the structure at hand; typically, it is a 

frequency characteristic, e.g., scattering parameters, gain, radiation pattern, power split ratio. 

The task of finding the optimum design x
*
can be formulated as 

  * argmin ( )U
x

x R x  (1) 

In (1), a scalar objective function U incorporates the performance specifications. Its definition 

depends on the type of the optimized structure. Below, two different objective functions are 

exemplified, further used for handling the verification cases of Section 3.  

In the case of antennas, one of typical objectives is to minimize the reflection 

response S11 (which is equivalent to reducing the return loss) within the frequency range of 

interest F 

 11( ( )) max | ( , ) |
f F

U S f


R x x  (2) 

In (2), the explicit dependence of |S11(x,f)| on both the geometry parameters x and the 

frequency f is shown. The optimization problem (1) with the objective function defined by (2) 

is formulated in a minimax sense. 

If, however, multiple performance figures are to be handled, one of possible 

approaches is to select the main objective and control others in an implicit manner, i.e., by 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


casting them into constraints (e.g., using penalty functions). In the case of microwave 

couplers, a practical design problem may be to maximize the bandwidth BW (typically, 

symmetric with respect to the operating frequency f0), or to obtain the assumed (either equal 

or non-equal) power split dS = |S21| – |S31| at f0. Another objective may involve the allocation 

of the minima of the matching and isolation characteristics (|S11| and |S41|) close to f0. The 

objective function U comprising all of these objectives may be defined as 

 
11 41

2 2 2

1 2 min. 0 3 min. 0( ( )) ( ) ( ) ( ( ) ) ( ( ) )S S SU BW d f f f f        R x x x x x  (3) 

In (3), fmin.S11 and fmin.S41 refer to the frequencies of the minima of |S11| and |S41|, respectively, 

whereas ζk , k = 1, 2, 3, denote the penalty coefficients. The presented penalty function 

concept (cf. (3)) allows for efficient handling of the expensive constraints, particularly if both 

the objective function and the constraints come from EM simulation [27], [28]. 

2.2. Trust-Region Gradient Search as a Reference Algorithm 

In this paper, a standard trust-region (TR)-based gradient-search procedure [29] 

serves as a reference algorithm. It is an iterative routine, which generates a sequence of 

approximations x
(i)

, i = 0, 1, …, to the optimum design x
*
 

 
 

     

1 ( )

; ; 1,...,

arg min ( ( ))
i i i

k k k k k

i i

x d x x d k n

U


    

x L x  (4) 

where n is a number of the design variables. In (4),  L
(i)

(x) = R(x
(i)

) + JR(x
(i)

)(x – x
(i)

) is a 

linear approximation of R at the current iteration x
(i)

. The parameter ranges of antennas and 

microwave components usually differ substantially: starting from fractions of millimeters (as 

it is in the case of line widths or spacings) and reaching up to tens of millimeters (in the case 

of lengths of the transmission line). Therefore, instead of an Euclidean norm with a scalar TR 

radius, here, an interval type TR is adopted, determined by the size vector d
(i)

. In (4), for each 

component xk of the parameter vector x the respective interval is given as: –d
(i)

k   xk – x
(i)

k  

d
(i)

k, k = 1, …, n.  The initial size vector d
(0)

 is made proportional to the design space sizes, 
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which allows for an appropriate handling of variables of essentially different ranges. In the 

TR algorithm, the vector d
(i)

 is altered according to the standard rules based on the gain ratio 

[29]. The gain ratio is defined as  = [U(R(x
(i+1)

))  U(R(x
(i)

))]/[U(L
(i)

(x
(i+1)

))  U(L
(i)

(x
(i)

))], 

i.e., it is an actual versus linear-model predicted objective function improvement. A positive 

value of the gain ratio indicates that the iteration was successful, and then the candidate 

design obtained by (4) is accepted.  

In the design of high-frequency structures, the Jacobian JR is usually evaluated using 

finite differentiation (FD), which requires performing n additional EM analyses upon each 

successful algorithm iteration. The computational cost of the optimization process is mainly 

determined by the cost of Jacobian updates. In the case of an unsuccessful iteration 

(i.e.,  < 0), a new candidate design has to be sought by solving (4) with a reduced d
(i)

 [29], 

which increases the overall optimization cost by additional n EM simulations. 

2.3. Enhanced Algorithm with Flexible Jacobian Updates 

The high computational cost of design optimization with the conventional TR 

algorithm is mainly incurred by evaluating the system response Jacobian through FD. The 

proposed algorithm with flexible Jacobian updates delivers an effective method of alleviating 

this computational overhead. A significant reduction of the overall number of FD calculations 

needed by the algorithm to converge is achieved with the use of two independent procedures. 

The first routine exploits relative design changes with respect to the trust region size in order 

to omit the FD calculation for the selected variables; the routine is referred to as accelerated 

update procedure (AUP). The second one, Broyden update procedure (BUP), utilizes a 

direction of the design relocation, and its alignment with the coordinate system axes, as a 

guide for pinpointing the parameters, for which Broyden updating formula is to be utilized 

instead of FD. The two procedures are subsequently combined, which allows achieving 
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substantial cost savings, and, at the same time, the sufficient design quality, as shown in 

Section 3.  

2.4 Selection Matrix Updating Procedure 

In the proposed algorithm, a binary selection matrix Γ is utilized to store the 

information pertaining to FD calculation of Jacobian JR : if it is compulsory, the respective 

matrix entry equals one, otherwise it is set to zero. In the first iteration, the selection matrix Γ 

is initialized as an n  1 column vector: γk.1 = 1, k = 1, …, n. Thus, the entire Jacobian JR is 

estimated with FD at the beginning of the optimization process. Next, in each iteration, the 

matrix Γ is accrued by an extra column that contains the information regulating the Jacobian 

update in the upcoming iteration. 

In the following, a detailed description of both update procedures: the accelerated 

(AUP) and the Broyden (BUP) update procedure is provided. The former selects the 

parameters that exhibit small relative changes between iterations, the latter seeks for the 

parameters characterized by a good alignment of the most current design relocation vector 

with the corresponding coordinate system basis vectors. For the identified parameters, the 

calculation of the respective part of the Jacobian is either skipped (AUP) or superseded with 

the Broyden formula (BUP). The outcomes of both procedures are then combined in order to 

create the selection matrix Γ. Both procedures are presented in the form of the flow diagram 

in Fig. 1.  

Accelerated Update Procedure. In the AUP procedure (see Panel A of Fig. 1), the changes 

of the geometry parameters throughout the optimization course are monitored. The adopted 

measure is defined as a relative design change of the k-th parameter, k = 1, …, n, w.r.t. the 

TR region size in the i-th iteration, 

        1 1i i i i

k k k kx x d
 
   k = 1, …, n,                              (5) 
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In (5), xk
(i)

, xk
(i+1)

 and dk
(i)

 denote the k-th components of vectors x
(i)

, x
(i+1)

, and d
(i)

, 

respectively. In addition, Jk refers to the k-th column of the Jacobian JR (associated with the 

kth parameter of the structure under design). The decision about the update of Jk through FD 

in the (i+1)th iteration is based on: (i) the decision factor αk
(i+1)

 and (ii) monitoring of the 

optimization history run (this is to ensure that Jk is estimated through FD at least once per 

N iterations).  

 
Fig. 1. Flow diagram of the update procedures: accelerated update procedure (A) and Broyden 

update procedure (B). The following notation is used: (i) AUP parameters: αk
(i+1)

 – a decision 

factor for k-th geometry parameter and (i+1)th iteration; ηk
(i+1)

 – a history count, α – threshold 

value, Α – an AUP binary decision vector; (ii) BUP parameters: βk
(i+1)

 – a decision factor for 

k-th geometry parameter and (i+1)th iteration, βmin – an alignment threshold value, Β – a BUP 

binary decision vector.  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The optimization history is scrutinized at the span of the preceding N iterations (N is the 

algorithm control parameter). The history count ηk
(i+1)

 is defined as the total number of 

iterations (among the last N iterations), in which FD was performed for the k-th parameter. The 

outcome of the AUP procedure—the binary AUP decision vector A—is a result of the 

conversion of αk
(i+1)

 and ηk
(i+1)

. The following notation is used: Ai+1.k is the k-th entry of the 

vector A, pertaining to the (i+1)th iteration. If Ai+1.k = 1, the estimation of Jk through FD is 

recommended; otherwise (i.e., Ai+1.k = 0) it can be omitted.  

The algorithm control parameter N allows for controlling the trade-offs between 

computational speedup and the design quality. The higher the value of N, the higher the 

savings, however at the expense of deteriorated design quality, as increasing N leads to 

lengthening the span of iterations, during which Jacobian update through FD is not omitted. On 

the other hand, too small N may lead to a substantially prolonged optimization time, compared 

even to that of the conventional TR algorithm.  

The vector A is created as follows. First, the decision factors αk
(i+1)

, k = 1, …, n, 

(cf. (5)) and the history counts ηk
(i+1)

 are assessed for all parameters. Next, Ai+1.k is assigned a 

zero value in the two following cases: 

1. For all parameters: if the TR size ||d
(i)

|| does not exceed a user-specified threshold dthr, 

2. For the selected parameters: if the TR size ||d
(i)

|| is over the threshold dthr, and if both: 

(i) Jk was calculated with FD at least once in the last N iterations (i.e., ηk
(i+1)

 > 1), and 

(ii) αk
(i+1)

 is below the user-specified threshold α.  

Broyden Update Procedure. In the BUP procedure (see Panel B of Fig. 1), the parameters 

for which the respective columns of JR can (potentially) be calculated using the rank-one 

Broyden update formula (BF) instead of FD are determined. The BF update is implemented as  

 
 ( 1) ( ) ( 1) ( 1)

( 1) ( )

( 1) ( 1)

i i i i T

i i

i T i

  



 

  
 

R

R R

f J h h
J J

h h
,       i = 0, 1, …                         (6) 
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In (6), f
(i+1)

 = R(x
(i+1)

) – R(x
(i)

), and h
(i+1)

 = x
(i+1)

 – x
(i)

. It is worth mentioning that the 

Jacobian estimate JR
(i)

 (calculated after performing i iterations) incorporates information 

about the system response sensitivity merely in an i-dimensional subspace spanned by the 

vectors h
(1)

, h
(2)

, …, h
(i)

. In consequence, in the spaces of higher dimensions, usually poor 

results are obtained with the sole use of BF.  

BUP is governed by a vector B created as follows. First, the alignment factors 

βk
(i+1)

 = |h
(i+1)T

e
(k)

|/||h
(i+1)

|| are calculated for each parameter k, where e
(k)

 = [0 … 0 1 0 … 0]
T
 is 

the standard basis vector. Note that 0  βk
(i+1)

  1 (βk
(i+1)

 = 0 and βk
(i+1)

 = 1 for h
(i+1)

 and e
(k)

 

being orthogonal, and collinear, respectively). If βk
(i+1)

 > βmin (the user-defined acceptance 

threshold), the corresponding component Bi+1.k of the vector B is assigned 0; otherwise, 

Bi+1.k = 1. Higher values of min create stricter conditions for using BF and possibly bring lower 

computational savings accompanied with the higher expected design quality. 

 
Fig. 2. Flow diagram of the selection matrix Γ update procedure (A) and resulting Jacobian 

update procedure (B); for the details on the AUP and BUP decision vectors see Fig. 1. 

Jacobian Update. Both the AUP and BUP contribute to the construction of the matrix  

mentioned at the beginning of Section 2.4. The construction process is shown graphically in 

Panel A of Fig. 2, whereas the flow of the Jacobian update procedure is presented in Panel B. 

As stated above, Γ is expanded by an additional column in each iteration, which is derived as 
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follows. For a given parameter k, the entry γi+1,k of matrix Γ is set to 0, if Bi+1.k = 0 

(irrespectively of Ai+1.k), and in that case Jk is calculated with BF. On the other hand, if 

Bi+1.k = 1 and Ai+1.k = 0, then γi+1,k is assigned –1, indicating the usage of Jk from the previous 

iteration, i.e., Jk(x
(i+1)

) = Jk(x
(i)

). In the case of Bi+1.k = Ai+1.k = 1, Jk is estimated through FD 

(as both procedures indicate it is obligatory). The numerical results of Section 3 indicate 

substantial computational savings that can be obtained this way.  

 

3. Numerical validation 

A benchmark set comprises two high-frequency structures: a wideband antenna [30] 

shown in Fig. 3(a) and an equal-split rat-race coupler (RRC) [31] presented in Fig. 3(b). 

The antenna is implemented on Taconic RF-35 substrate (h = 0.762 mm, εr = 3.5, 

tanδ = 0.0018). It utilizes a quasi-circular radiator and a modified ground plane for bandwidth 

enhancement. The design variables are x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]
T
. The lower and 

upper bounds for design variables are: l = [0.2 2 0.2 0.5 0.2]
T
 and u=[1 8 1 5.5 1]

T
; all 

dimensions in mm. The antenna is to be optimized for minimum reflection within the UWB 

frequency range (3.1 GHz to 10.6 GHz). 

The second structure (RRC) is also implemented on RF-35 substrate and its 

independent geometry parameters are x = [w1 l1 w2 l2 w3]
T
, whereas l3 = 19w1 + 18w2 + w3 – l1, 

l4 = 5w1 + 6w2 + l2 + w3, l5 = 3w1 + 4w2 and w4 = 9w1 + 8w2 (all in mm) are relative 

dimensions. The lower and upper bounds for the parameters are the following: l = [4 0 3 0.1 0 

0 4 0 2 0.2 0.2]
T 

and u = [15 6 8 0.9 5 8 15 6 5 1.0 0.9]
T
, respectively (dimensions in mm). 

The coupler is to be optimized for maximum bandwidth (defined at –20 dB level of matching 

and isolation and symmetric around f0). The RRC is supposed to operate at f0 = 1 GHz. 

The computational models are implemented in CST Microwave Studio. 

For the sake of adequate assessment of the optimization process performance, the 

tested algorithms were executed (for each structure) ten times with random initial designs. 
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Table 1 contains the statistics, including the results obtained with the reference TR algorithm 

(see Section 2.2). The representative plots of the initial and the optimized responses for the 

antenna and the RRC are shown in Fig. 4. In the case of AUP, the control parameter value 

N = 3 was adopted, as this value ensures good design quality while retaining substantial cost 

savings (the quality versus speedup trade-off determined by different values of N is investigated 

in depth in [32]). Several values of the alignment algorithm control parameter (BUP) were 

used for each structure and for each initial design: β0 = 0, 0.025, 0.05, 0.1, 0.2 and 0.3.  

 

 

Fig. 3. High-frequency structures used for benchmark purposes: (a) UWB antenna of [30], 

and (b) CMRC-based miniaturized microstrip rat-race coupler of [31]. 

 

Note that increasing the threshold value leads to lower computational savings, because 

the condition for applying the Broyden update formula becomes more rigorous (and, 

consequently, FD is performed more frequently). Still, the highest value of the alignment 

acceptance threshold (i.e., β0 = 0.3), bringing the best design quality, delivers a satisfactory 

reduction of the overall optimization cost (57% for the antenna and 48% for the RRC). Table 1 

also includes the case of β0 = 0, corresponding to the Jacobian updated exclusively with the 

use of BF. This is to demonstrate that abstaining from FD produces designs of an insufficient 

quality. Here, the standard deviation of the respective objective functions calculated for the set of 
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performed algorithm runs is used for the result repeatability quantification. For all the values of 

the acceptance threshold (except for β0 = 0), the standard deviation value is nearly the same, 

which is an advantage of the proposed algorithm. In addition, the values of both objective 

functions: maximum in-band reflection S11 (antenna) and the bandwidth BW (RRC) are nearly 

constant, irrespective of the threshold value changes.             

 

 
 

Fig. 4. Representative reflection responses of the considered high-frequency components: (a) 

wideband antenna (the horizontal line indicates the design specifications), (b) compact RRC 

(the vertical line indicates the required operating frequency f0). The initial and optimized 

design are marked gray and black, respectively.  

 

The optimum threshold value for the antenna appears to be β0 = 0.1, because it secures 

computational savings as high as 61%. At the same time, the design quality degrades to a small 

extent, and this is also the case for the standard deviation. On the other hand, for the coupler, 

the most advantageous setup seems to be β0 = 0.05. It delivers the cost savings of around 53%, 

as well as the best bandwidth accompanied by the smallest bandwidth standard deviation. 

Table 2 provides the results obtained by means of the AUP and BUP procedures used 

separately. This data is given to emphasize the benefits of combining both methods into one 

framework. As far as the AUP procedure is concerned, the sole usage of it in the case of the 

antenna, ensures the design quality and the cost savings almost equal to those obtained with 

BUP at β0 = 0.1. While the combined procedures yield nearly the same solution quality, the 

cost savings are higher (around 61 percent for the combined version versus approx. 
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47 percent for either AUP or BUP). Whereas for the coupler, employing only the 

AUP procedure delivers the same bandwidth as with β0 = 0.05, accompanied by lower 

savings (around percent for AUP and almost 69percent for BUP) and higher standard 

deviation (nearly equal to that obtained for β0 = 0). The combined procedures, however, lead 

to a better bandwidth, along with the savings of around 53 percent and the same standard 

deviation as for AUP. 

It can be concluded from the comparison of the results of Tables 1 and 2, that it is the 

combination of the two procedures that allows for making the quality of the solution almost 

independent of β0. Clearly, the increase in β0 for the BUP procedure only, leads to an 

improvement of the quality of the solution, both in terms of the objective function value and 

the standard deviation. However, this comes at the expense of significantly lowered cost 

savings. As a matter of fact, the savings for BUP are considerably smaller than for the 

combined algorithm: they drop to around 20 percent for the antenna, and to barely 4 percent 

for the RRC. The algorithm involving both procedures permits obtaining the designs of a 

quality comparable to BUP, however, associated with significantly higher computational 

savings.  

4. Conclusions 

The paper proposes a novel procedure for a cost-efficient design optimization of 

high-frequency structures. It is based on the standard trust-region gradient-based algorithm 

with numerical derivatives, enhanced by a flexible Jacobian updating scheme. The 

proposed algorithm involves two separate acceleration mechanisms: (i) replacing the cost-

inefficient finite differentiation with Broyden updates, and (ii) suppressing sensitivity 

updates altogether for the selected parameters. Identification of relevant parameters is based 

on the analysis of design relocation between the algorithm iterations. The proposed 

algorithm delivers significant computational savings associated with only minor 
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degradation of the design quality, which has been demonstrated for a wideband antenna and 

a miniaturized microstrip coupler. The future work will include application of the algorithm 

within surrogate-based optimization frameworks. 

 

Acknowledgement 

This work is partially supported by National Science Centre of Poland Grant 

2015/17/B/ST6/01857. 

REFERENCES 

1. Koziel S, Ogurtsov S. Antenna design by simulation-driven optimization. Surrogate-

based approach. New York: Springer; 2014. 

2. Zhang J, Zhang C, Feng F, Zhang W, Ma J, Zhang QJ. Polynomial chaos-based 

approach to yield-driven EM optimization. IEEE Trans Microwave Theory Tech. 

2018; 66(7): 3186–3199. 

3. Sevgi L. Electromagnetic modeling and simulation. IEEE Press Series on 

Electromagnetic Wave Theory; 2014. 

4. Koziel S, Bekasiewicz A. Multi-objective design of antennas using surrogate models. 

Singapur: World Scientific; 2016. 

5. Koziel S, Kurgan P. Compact cell topology selection for size-reduction-oriented 

design of microstrip rat-race couplers. Int J RF Microwave Comput Aided Eng. 2018; 

28(5). 

6. Nocedal J, Wright SJ. Numerical Optimization. 2nd ed. New York: Springer; 2006. 

7. Lalbakhsh A, Afzal MU, Esselle KP. Multiobjective particle swarm optimization to 

design a time-delay equalizer metasurface for an electromagnetic band-gap resonator 

antenna. IEEE Antennas Wirel Propag Lett. 2017; 16: 915–915. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8. Darvish A, Ebrahimzadeh A. Improved fruit-fly optimization algorithm and its 

applications in antenna array synthesis. IEEE Trans Antennas Propag. 2018; 

66(4):1756-1766. 

9. Joshi D, Dash S, Jatana HS, Bhattacharjee R, Trivedi G. Analog circuit optimization 

using adjoint network based sensitivity analysis. AEU - Int J Electr Comm. 2017, 

82:221-225. 

10. Koziel S, Bekasiewicz A. Rapid design optimization of antennas using variable-

fidelity EM models and adjoint sensitivities. Eng Comput, 2016;33(7):2007–2018. 

11. Xiao LY, Shao W, Ding X, Wang BZ. Dynamic adjustment kernel extreme learning 

machine for microwave component design. IEEE Trans Microwave Theory Tech. 

2018;66(10):4452–4461. 

12. Fu H, Vong C-M, Wong P-K, Yang Z. Fast detection of impact location using kernel 

extreme learning machine. Neural Comput  Applicat. 2016; 27(1):121–130. 

13. Koziel S. Fast simulation-driven antenna design using response-feature surrogates. Int 

J RF Microwave Comput Aided Eng. 2015;25(5):394-402. 

14. Baratta IA, de Andrade CB, de Assis RR, Silva EJ. Infinitesimal dipole model using 

space mapping optimization for antenna placement. IEEE Antennas Wirel Propag 

Lett.  2018;17(1):17-20. 

15. Xu J, Li M, Chen R. Space mapping optimisation of 2D array elements arrangement 

to reduce the radar cross-scattering. IET Microw Antennas Propag. 2017; 

11( 11):1578-1582. 

16. Xu J, Li M, Chen R. Lump-loaded antenna optimization by manifold mapping 

algorithm with method of moments. Eng Analysis Boundary Elem. 2018; 89:45-49. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


17. de Villiers DIL, Couckuyt I, Dhaene T. Multi-objective optimization of reflector 

antennas using kriging and probability of improvement. IEEE Int Symp Ant Prop. 

2017:985-986. 

18. Chávez-Hurtado JL, Rayas-Sánchez JE. Polynomial-based surrogate modeling of RF 

and microwave circuits in frequency domain exploiting the multinomial 

theorem.  IEEE Trans Microwave Theory Tech. 2016; 64(12):4371-4381. 

19. Hassan SO, Etman AS, Soliman EA. Optimization of a novel nano antenna with two 

radiation modes using kriging surrogate models. IEEE Photonics Journal. 

2018;10(4):1-17. 

20. Jacobs JP. Characterization by Gaussian processes of finite substrate size effects on 

gain patterns of microstrip antennas. IET Microw Antennas Propag. 2016;10(11): 

1189–1195. 

21. Jacobs JP, Koziel S. Two-stage framework for efficient Gaussian process modeling of 

antenna input characteristics. IEEE Trans Antennas Propag. 2014; 62(2):706-713. 

22. Barmuta P, Ferranti F, Gibiino GP, Lewandowski A, Schreurs DMM. Compact 

behavioral models of nonlinear active devices using response surface 

methodology.  IEEE Trans Microwave Theory Tech. 2015; 63(1):56-64. 

23. Bandler JW, Cheng QS, Dakroury SA, Mohamed AS, Bakr MH, Madsen K, 

Sondergaard J. Space mapping: the state of the art. IEEE Trans Microwave Theory 

Tech. 2004; 52(1):337-361. 

24. Simsek M. Aoad A. Multiple operating frequency selections for reconfigurable 

antenna design by SM based optimization IET Microw Antennas Propag. 2017; 

11(13):1898-1908. 

25. Koziel S, Leifsson L. Simulation-driven design by knowledge-based response 

correction techniques. New York: Springer; 2016. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


26. Su Y, Lin J, Fan Z, Chen R. Shaping optimization of double reflector antenna based 

on manifold mapping. Int Applied Comput Electromagn Society Symp (ACES). 2017. 

27. Koziel S, Kurgan P. Compact cell topology selection for size-reduction-oriented 

design of microstrip rat-race couplers. Int J RF Microwave Comput Aided Eng. 

2018;28(5). 

28. Koziel S, Kurgan P. Inverse modeling for fast design optimization of small-size rat-

race couplers incorporating compact cells. Int J RF Microwave Comput Aided Eng. 

2018;28(5). 

29. Conn AR, Gould NIM, Toint PL. Trust Region Methods. MPS-SIAM Series on 

Optimization; 2000. 

30. Alsath MGN, Kanagasabai M. Compact UWB monopole antenna for automotive 

communications. IEEE Trans Antennas Propag. 2015;63(9):4204-4208. 

31. Koziel S, Bekasiewicz A, Kurgan P. Rapid design and size reduction of microwave 

couplers using variable-fidelity EM-driven optimization. Int J RF Microwave Comput 

Aided Eng. 2016;26(1):27-35. 

32. Koziel S, Pietrenko-Dabrowska A. An efficient trust-region algorithm for wideband 

antenna optimization, European Antennas and Propagation Conference, Krakow, 

Poland, 2019. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 1   Performance Statistics of the Proposed Algorithm for the Structures of Fig. 3. 

Algorithm 

UWB Antenna Compact RRC 

Cost1
 

Cost 

savings2 

[%] 

Max 

|S11|
3 

[dB] 

SD 

(max|S11|)
4 

[dB] 

Cost1 

Cost 

savings2 

[%] 

BW5 

[GHz] 

SD(BW)6 

[GHz] 

Reference 111.2 − −14.9 0.6 43.0 − 0.27 0.01 

β0 

0$ 27.4 75.4 −13.3 1.3 15.9 63.0 0.17 0.12 

0.025 31.0 72.1 −13.4 1.2 17.4 59.5 0.19 0.10 

0.05 35.5 68.1 −13.5 1.2 20.3 52.8 0.22 0.10 

0.1 43.0 61.3 −13.6 1.2 22.0 48.8 0.19 0.11 

0.2 51.1 54.0 −13.6 1.2 22.6 47.4 0.20 0.11 

0.3 47.4 57.1 −13.4 1.0 22.4 47.9 0.20 0.11 

1 Number of EM simulations averaged over 10 algorithm runs (random initial points);  
2 Percentage-wise cost savings w.r.t. the reference algorithm;  
3 Objective function values for the UWB antenna (maximum in-band reflection S11 in dB);  
4 Standard deviation of S11 in dB across 10 algorithm runs;  
5 Objective function values for the compact RRC (bandwidth BW in GHz);  
6 Standard deviation of BW in dB across 10 algorithm runs; 
$ Broyden-only Jacobian updates meaning no FD used whatsoever. 
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Table 2   Performance Statistics of the Algorithm Utilizing either AUP or BUP. 

Algorithm 

UWB Antenna Compact RRC 

Cost1
 

Cost 

savings2 

[%] 

Max 

|S11|
3 

[dB] 

SD 

(max|S11|)
4 

[dB] 

Cost1 

Cost 

savings2 

[%] 

BW
5 

[GHz] 

SD(BW)
6 

[GHz] 

Reference 111.2 − −14.9 0.6 43.0 −  0.27 0.01 

AUP 58.3 47.6 –13.7 1.3 21.0 51.2 0.20 0.10 

BUP 

β0 

0$ 26.5 76.2 −13.3 1.7 15.9 63.0 0.18 0.11 

0.025 37.5 66.3 −13.9 1.3 13.4 68.8 0.20 0.06 

0.05 47.9 56.9 −14.0 0.9 28.9 32.8 0.23 0.04 

0.1 58.4 47.5 −13.7 1.1 27.0 37.2 0.22 0.05 

0.2 75.9 31.7 −14.3 0.9 42.6 0.9 0.22 0.05 

0.3 89.3 19.7 −14.2 0.8 41.3 4.0 0.21 0.06 

1 Number of EM simulations averaged over 10 algorithm runs (random initial points);  
2 Percentage-wise cost savings w.r.t. the reference algorithm;  
3 Objective function values for the UWB antenna (maximum in-band reflection S11 in dB);  
4 Standard deviation of S11 in dB across 10 algorithm runs;  
5 Objective function values for the compact RRC (bandwidth BW in GHz);  
6 Standard deviation of BW in dB across 10 algorithm runs; 
$ Broyden-only Jacobian updates meaning no FD used whatsoever. 
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