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INTRODUCTION

Loads belong to the crucial causes of wear both surface 
(linear) and volumetric one, that results in failures of self-
ignition engines. Especially unfavourable influence on wear of 
the engines is due to excessive thermal loads in the elements 
which form their working spaces (combustion chambers). 
Though mechanical loads of the engines have not so important 
influence on their wear but if they are excessive (especially 
those exerted on main and crankshaft bearings) they can also 
lead to serious failures called breakdowns [3, 7, 8, 15].

 It is possible to predict such failures in the case of 
application of suitable diagnostic systems so designed as to 
generate full diagnoses, i.e. these capable of predicting their 
technical state. To elaborate such prediction it is necessary 
to determine a.o. loads which can appear during operation 
of engines. In present, loads of combustion engines have 
been generally analyzed deterministically [7, 9, 16, 17, 18]. 
Such analyses based on a probabilistic approach have been 
performed as a rule in a simplified way. However loads of the 
combustion engines should be modeled in time and space as 
random variables attributed to random events in which loads 
of an appropriate value are measured. The fact that a given 
load measurement is a random event, means that to which an 
appropriate probability should be attributed. Moreover the 
loads should be analyzed in successive instants of operation 
of combustion engines. The so considered loads form the 
process of data. Hence it is necessary to elaborate a concept 
of analyzing and assessing such loads in the probabilistic 
aspect with taking into account the fact that the load changes 
successively occurring one by one in the above mentioned 
instants form a stochastic process. However the instants are 
not random variables but parameters of the process.

A probabilistic concept of load assessment 
of self-ignition engines

In order to elaborate such concept, probabilistic features 
of the loading process of combustion engines should be first 
determined beginning from analysis of states of the process, 
i.e. the engine loads considered to be random variables.

ENGINE LOADING CONSIDERED 
AS A RANDOM VARIABLE

In Introduction it was demonstrated that engine load 
values can not be precisely predicted. Therefore the following 
hypothesis H1 can be formulated: „Engine load is a random 
variable therefore during successively performed measurements 
its values can be predicted only with a certain probability”.

Qualitative interpretation of combustion engine load in an 
arbitrary instant t can be presented in the following form:

QD(t) = QC(t) + QM(t)                         (1)

where:

QC(t) = ∆U(t) + QO(t)
and
QD(t) – thermal energy (EC) delivered to engine in the 

instant t
QC(t) – thermal energy transferred by engine elements during 

its operation (thermal loading) in the instant t
QM(t) – mechanical energy associated with presence of gravity 

and formation of gas forces, friction and inertia forces 
(mechanical loading) in the instant t

∆U(t) – internal material energy increments, in the instant t, of 
elements through which a part of the thermal energy 
QC(t), denoted QO(t), penetrates

QO(t) – energy emitted to environment in the instant t, by walls 
of engine elements, e.g. those forming working spaces 
(combustion chambers) and other.
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The above mentioned engine loads can be considered 
random variables.They result first from transformation of 
chemical energy contained in fuel into thermal energy, and next 
- the latter into mechanical one (Fig.1). In the interpretation of 
the transformations it was taken into account that the heat is 
a form of transformation of chemical energy into thermal one, 
and the work – that of thermal energy into mechanical one.

Fig. 1. Example schematic diagram of energy transformation in self-ignition 
engine: ECh – chemical energy; EC – thermal energy; EM – mechanical 
energy; ET − thermal and mechanical energy losses; SoZS – self-ignition 
engine; OEM − mechanical energy consumer (e.g. ship propeller, electric 

generator, compressor, pump); Qc(t) – thermal load in the instant t; 
QM(t) – mechanical load in the instant t.

In the case when only one parameter (one random quantity) 
is used for load description then the load (value of the loading 
process) is one-dimensional random variable. And, if many 
parameters are used to describe the load (i.e. value of loading 
process) then it is a multi-dimensional variable. The load 
is then described by a set of many (generally n in number) 
random variables. In such case it can be considered to be 
a n-dimensional random function, i.e. a set of many (n) real 
functions which attribute unambigously many numerical values 
to each random event, which load measurement constitutes too 
[1, 3, 4, 10, 14].

In service practice the self-ignition engine load is usually 
defined by means of the following parameters: pmax – maximum 
combustion pressure, tmax – maximum combustion temperature, 
pe – mean effective pressure, cśr − mean piston speed, ∆ϕpśr 
– mean pressure rate velocity. The specified parameters can 
be considered to be values of random variables which can be 
denoted respectively as follows: Pmax, Tmax, Pe, Cśr and ∆Φpśr.

If the load is determined by means of such random variables 
as: maximum pressure (Pmax) and maximum temperature 
(Tmax), the two random variables (Pmax, Tmax) can be considered 
simultaneously. The variables can be taken stepwise. Then the 
quantities pimax and tjmax are arbitrary realizations of the variables. 
Hence the pair (pimax, tjmax) is realization of the two-dimensional 
random variable (Pmax, Tmax). Simultaneous occurrence of 
the events: Pmax = pimax and Tmax = tjmax is determined by the 
probability q(pimax, tjmax). In this case all the values pimax and tjmax 
which can occur, must follow the relation [1, 10]:

(2)

The set of the probabilities p(pimax, tjmax) constitiutes a two-
dimensional distribution of the random variable (Pmax, Tmax).

The probability p(pimax) of the random event Pmax= pimax, 
without taking into account value of the random variable Tmax, 
is equal to the sum of the probabilities p(pimax, tjmax), which 
contains all possible values tjmax, therefore:

(3)

The set of the probabilities q(pimax) determined according 
to Eq. (3), is a boundary distribution of the random variable 
Pmax.

In practice it is neccesary to determine the conditional 
probability q(pimax/tjmax) of the random event Pmax = pimax under 

the condition (assumption): Tmax = tjmax. This implies that an 
engine is most loaded mechanically and thermally when in its 
working spaces (cylinders) maximum pressure and temperature 
values occur. The probability can be determined by using the 
formula:

(4)

The set of the conditional probabilities q(pimax/tjmax) under 
the same condition (assumption): Tmax = tjmax, is a conditional 
distribution of the random variable Pmax under the condition: 
Tmax = tjmax. The sum of the conditional probabilities q(pimax/tjmax) 
containing all the possible values pimax equals one, i.e.:

(5)

In practice it may so happen that the random variables 
Pmax and Tmax are independent, e.g. as a result of an incorrectly 
performed regulation of engine. Then the following relations 
are valid:

q(pimax/tjmax) = q(pimax)                    (6)

q(tjmax/pimax) = q(tjmax)                    (7)

By taking into account Eq. (6) and (7) in Eq. (4) the 
following is obtained:

q(pimax/tjmax) = q(pimax) q(tjmax)                (8)

The random variables Pmax, Tmax which satisfy the condition 
(8), are stochastically independent. In the case if the condition 
is not satisfied the random variables Pmax, Tmax are stochastically 
dependent (correlated) random variables.As results from Eq. 
(8), in investigations should be taken into account the fact that 
in the case of the independent random variables Pmax, Tmax their 
conditional distributions do not differ from their boundary 
distributions.

The load described by three parameters, for instance the 
maximum pressure Pmax, maximum temperature Tmax and mean 
effective pressure pe, can be considered in the same way. Then 
the three stepwise random variables (Pmax, Tmax, Pe) should be 
considered. The three quantities: pimax, tjmax and pekmax constitute 
realizations of the random variables. Hence the three (pimax, tjmax, 
pe) is realization of the three-dimensional random variable. 
The probability of simultaneous occurrence of the events: 
Pmax = pimax, Tmax = tjmax and Pe = pek, constitutes the probability 
p(pimax, tjmax, pek).

In the case of the taking into account of all the values: pimax, 
tjmax and pek, which can occur, the following is valid:

(9)

The set of the probabilities q(pimax, t jmax, pek) is 
a three-dimensional distribution of the random variable 
(Pmax, Tmax, Pe).

The probabilities q(pimax) of the random variable: 
Pmax = pimax, without taking into account value of the random 
variable Tmax as well as the random variable Pe, is equal to the 
sum of the probabilities q(pimax, tjmax, pek) which covers all the 
possible values of tjmax and pek, hence:

(10)

The set of the probabilities q(pimax) which follow Eq. (10), 
is a boundary distribution of the random variable Pmax.
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The presented proposal of description of the load of 
combustion engines is important as the load impacts wear of their 
elements. For this reason, the wear in a given instant of operation 
time of the engines is also a random variable, and when analyzed 
in successive instants of the operation, their values should be 
considered as those following a random process. 

ENGINE LOADING CONSIDERED 
AS A STOCHASTIC PROCESS

As commonly known, in trying to maintain engine’s 
continuous power rate or its rated power, in successive instants 
engine’s mechanical load values are rather close to each other, 
depending on operational conditions. And, engine’s thermal 
load values can, in presence of the mechanical loads, vary and 
even exceed to a great extent their limit values. It results from 
the dependence of thermal load not only on mechanical one 
but also on a state of engine’s cooling system, lubricating oil 
quality, pressure in lubricating system of bearings, oil quantity 
delivered to lubricate cylinder liners, etc [4, 7, 8, 12].

The loading (mechanical and thermal) of engines can be 
considered in a dynamic (short) time interval measured in 
[ms] (i.e. that in which one or at most a few thermodynamic 
cycles of engine occur), or in that quasi-static (long) which is 
equivalent to a correct engine operation time interval usually 
measured in [h].

By comparing the loads which occur during successive 
thermodynamic cycles, i.e. during the short time interval 
(td), one can state that they are different because different 
causes [7, 8, 16, 17, 18]. Along with increasing values of the 
engine operation time td the differences are also increasing. 
Hence at a given value of the dynamical time interval and in 
investigating the loads during particular cycles in the instants 
td1, td2,…, one can obtain different engine load values. The 
event of obtaining a given value of the load is random one. 
It means that to each instant of the time td a random variable 
equivalent to the engine load in that instant, can be attributed. 
In the same way to each instant of the quasi-static time (tq) 
a random variable equivalent to the engine load in that instant, 
can be attributed. 

The engine load taken as a random variable in a given 
instant t, constitutes value of the loading process. In turn, the 
process constitutes a run of consecutive load changes causually 
inter-connected in function of time, and possible to be described 
by different random parameters (quantities) whose values can 
be predicted only with a certain probability. Hence the loading 
process is stochastic, i.e. a function whose values for a given 
time instant of engine operation, t, are randomly variable. 
Therefore the following hypothesis H2 can be formulated: 
„The engine loading process is stochastic because values of the 
engine loading in a given time instant (which is not a random 
variable) are randomly variable”. 

As results from the theory of stochastic processes the set of 
such instants is that of parameters of the process [6, 14].

The engine loading process is stochastic one of continuous 
realizations. However by its discretization the stochastic 
process of constant realizations within particular time intervals 
of engine operation, can be achieved. The so modified loading 
process (process of load changes) can be described in the form 
of a semi- Markovian model which has a strictly determined 
set of loading states, [4, 6, 14].

The engine loading can be characterized by means of 
various quantities (parameters, indices). Generally, it can be 
expressed in the following form (11):

Q(t) = f[QM(t), QC(t)]                      (11)
where:
Q  – engine’s loading

QM  – engine’s mechanical loading
QC  – engine’s thermal loading
t  – engine’s operation time interval.

In empirical loading investigations at least two stochastic 
processes: {QM(t): t ≥ 0}and {QC(t): t ≥ 0}can be considered. 
They are components of the vectorial process {Q(t: t ≥ 0}, 
[4, 9, 16, 17, 18].

In the case of the loads QM and QC it can be possible to 
write that they are vectors of the following components in 
a given instant t:

(12)

(13)

where:
pmax – maximum combustion pressure; pz – combustion 

pressure; pe – mean effective pressure (pe = ηmpi; ηm – 
mechanical efficiency; pi – mean indicated pressure)

cśr – mean piston speed; ϕ - degree of isochoric pressure 
increment; ϕp – instantaneous pressure increase rate; 
n – engine crankshaft rotational speed; Pg – gas pressure 
force; Pb – inertia force; q&  – thermal flux (energy) 
density; ∇T – temperature gradient; ρ – degree of initial 
isobaric decompression; Tmax – maximum combustion 
temperature; Tz – combustion pressure; Tsw – exhaust 
gas temperature; Q – heat flux; Tol – oil temperature; 
Tw – cooling water temperature.

As results from Eqs. (11) ÷ (13), the engine loading depends 
on many quantities (parameters, indices), hence it can be 
considered a stochastic process which contains superposition 
(composition) of particular individual processes (in the simplest 
case – that of QM and QC). Such interpretation of the loading 
is suitable for general considerations but it may be rather not 
useful for practical purposes.

The loading can be also considered to be a vectorial process 
whose components are random variables which characterize 
load values in particular instants of engine operation time, 
described in the form of Eqs. (12) and (13).

Generally, the loading can be understood as a process 
whose states can be taken into account in the form of random 
variables. The process, as observed from Eqs. (12) and (13), 
is mult-dimesional because it can be determined only when 
load parameters which form a complete set of parameters, 
are measured and probabilities of obtaining their values - 
determined.

The complete set of load parameters (indices) can be 
interpreted as that which contains all the parameters necessary 
to determine engine’s loading.

In every instant tdl,(l = 1, 2, …,n), of the dynamic time 
interval td, n following random variables: Qtd1

, Qtd2
,…, Qtdn

, can 
be considered. The variables have been further denoted: Q1, 
Q2,…, Qn. They can stand for n different quantities (parameters, 
indices) of investigated loading (e.g. Q1 = pmax, Q2= Tmax, Q3 
= pe, Q4 = q& , etc).

If particular load features are simultaneously considered (the 
load can be characterized by an excessive combustion pressure, 
excessive combustion temperature, excessive heat flux, etc) 
the set of n random variables, being a n - dimensional random 
variable, is obtained. Hence at a distinguished instant t the 
loading Q(t) can be considered to be a n- dimensional random 
variable Qt (further marked Q). Therefore the so considered 
loading can be determined by a set of n real unambiguous 
functions which attribute numerical values to every random 
event (i.e. occurence of a given load value).
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Generally, in order to simplify further considerations, 
they can be limited by assuming that the random variable Q 
will be a two-dimensional random function (QM, QC). For the 
reason that measurements are periodically executed it can be 
assumed that the random variables QM and QC are stepwise 
(non-continuous) random ones. Realizations of the variables 
are respectively the quantities: qMi and qCi. Hence the pair 
(qMi

, qCi
) is realization of the random variable (QM, QC). The 

variable takes the values (qMi
, qCi

) with a determined probability 
p(qMi

, qCi
) which is that of simultaneous occurrence of the 

events: 
QM = qMi and QC = qCi

The set of the above mentioned probabilities p(qMi
, qCi

) 
constitutes the two-dimensional distribution of the random 
variable (QM, QC). In a similar way as in the preceding 
considerations which have made it possible to formulate Eqs. 
(2) and (3), the mentioned distribution p(qMi

, qCi
) satisfies the 

following condition:

(14)

The boundary distribution of the random variable QM is 
as follows:

(15)

and, the distribution of the random variable QC has the 
following form:

(16)

From the investigations have been performed so far it results 
that some quantities which characterize the loading, e.g. pe, cśr 
[3, 16, 17, 18] characterize both mechanical and thermal one. 
Therefore it is obvious that there are relations between the 
mechanical and thermal load. For the reason that they constitute 
random processes a stochastic relationship between them should 
be expected. Hence to explain the relationship the following 
hypothesis H3 can be formulated: „Between the mechanical 
load QM(t) and the thermal load QC(t) a stochastic relationship 
occurs because determined variants of one of the variables are 
accompanied by different variants of the other.”

Therefore it yields that the relationship between the loads: 
(QM(t) and QC(t)) cannot be described by using the common 
method of algebraic equations. This seems true as the loading 
depends on a large number of factors including those non-
measurable [2, 3, 12, 14]:

During the main energy transformation process in 
combustion engine (Fig. 1) thermal energy is transformed into 
mechanical one, but not inversely. Hence the thermal load (QC) 
can be conventionally assumed an independent variable, and the 
mechanical load (QM) – a dependent variable. Analogously, it 
can be assumed that QC1

, QC2
,…, QCn

, are independent variables, 
but QM1

, QM2
,…, QMn 

- dependent ones. 
A degree in which the load QM is determined - either by 

the load QC, or QCj
 (j=1,2,…,n) considered to be independent 

variables, may be very different. In practice it may happen 
that one independent variable (QC) almost fully determines the 
dependent variable (QM). However it may also happen that a few 
independent variables (QCj

) only to a small extent influence the 
dependent variable (QM). From the above said it results that 
there is a necessity of taking into account an intensity (force) 
of the stochastic relationship between QC and QM.

The intesity (force) of the stochastic relationship between 
QM(t) and QC(t) can be determined, during empirical 
investigations, by using the relationship [10]:

(17)

where:
k – number of variants of the variable QM
l – number of variants of the variable QC
N – boundary number of the variable QM or QC
χ2 – value calculated from chi- square formula
T(·)

2 – Czuprow’s convergence coefficent.

It can be proved [10] that TMC takes values from the interval 
[0, 1]. The coefficient equals zero (TMC = 0) if no relationship 
between values of the process (QM and QC) occurs, and if it 
is equal to 1 (TMC = 1) a functional relationship takes place. 
Hence from the hypothesis H3 on the relationship between the 
loads QM and QC the following consequence K can be derived: 
TMC = TCM ≠ 0 = TMC ≠ 1.

Assuming that the syntactic implication H ⇒ K is true, to 
verify the hypothesis the following methods can be applied 
[11, 13]:
� the reductive reasoning which proceeds according to the 

scheme:
(18)

� the „modus tollens” rule which proceeds in line with the 
scheme:

(19)

where: the symbols |− − sign that the hypothesis H is true.

In this case, application of the reductive reasoning can be 
justified by the following:
� Mechanical load increasing as a rule always results in 

thermal load increasing as an increase of the torque Mo 
requires an increase of the fuel charge ∆Gp, i.e. that of 
the chemical energy contained in the charge. The charge 
increase makes it possible to develop a greater thermal 
energy inside the engine combustion chamber (working 
space). A part of the energy is transformed into the 
mechanical energy (EM) in the form of work (Fig.1) and 
the remaining part, the lost energy (ET), is transferred by 
the chamber walls to cooling medium and - together with 
exhaust gas - to the environment.

� Despite the mechanical load does not undergo large 
changes, the thermal load can be significantly increased 
due to worsening the cooling conditions, e.g. due to 
sedimentation of mineral deposits on cooling space surface, 
air penetration to the space, etc.

Despite the reductive reasoning does not guarantee that the 
conclusion that qM has increased is true, the relation: (qM ⇒ qC) 
∩ qC is true. However it does not mean that, if the implication: 
(qM ⇒ qC) on the interpretation that if the mechanical load qM 
increases the thermal load qC” also increases, it can not be 
assumed true that if qC increases then also qM increases, i.e.: 

[(qM ⇒ qC) ∩ qC] ⇒ qM                  (20)

And, application of the „modus tollens” rule results from 
that the scheme of reasoning on the hypothesis H3 is reliable 
and leads to its falsification. However it is so only in the case 
if empirical investigations are truly capable of undeniable 
contradicting the hypothesis H3, i.e. that the mechanical load 
will increase.

It is possible to state generally whether the random variables 
QM and QC are mutually dependent, by investigating the 
probabilities determined with the use of the general equations: 
(14) ÷ (16) or those detailed: (6) ÷ (8).
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In the case when - as in the detailed considerations – the 
conditional distributions of the variables do not differ from 
their boundary distributions, the following is valid:

(21)

It means that the random variables QM and QC are 
independent. And, if Eq. (21) is not satisfied they are 
stochastically dependent. In this case verification of the 
hypothesis H can follow the schemes similar to those presented 
in the form of Eqs. (18) and (19). 

Investigation of stochastic relationship between the random 
variables QM and QC is difficult because distributions of the 
investigated loads (including conditional distributions) can 
differ in many features (variability, concentration, asymmetry 
etc). Hence it is much easier to examine statistical relationship 
between the mentioned random variables QM and QC. 

It should be observed that if no stochastic relationship 
between the random variables QM and QC takes place then any 
statistical relationship does not take place between them too. 
However reverse implication is not true. It directly results from 
that the same conditional mean values are related to the same 
conditional distributions, whereas to the same conditional mean 
values the same distributions are not to be related [1, 10]. 

The statistical relationship is distinguished by that to 
particular mechanical load values to attribute a mean value of 
thermal load, or reversely, is possible. 

Investigation of statistical relationship between any random 
variables is realized by means of statistical ordered series 
or appropriate regression equations which make it possible 
to determine whether a correlation takes place between the 
mentioned loads and - if it does -whether it is positive or 
negative. In practice particular realizations of self-ignition 
engine loads are observed. In the case if realizations of load 
for a given time instant t differ only a little, i.e. if its particular 
values for a given time instant t constitute (for increasing n, i.e. 
number of load measurements) the series of random variables 
Qn (n = 1,2,…), then the series is stochastically convergent to 
zero under the following condition, [1, 10]:

(22)

for an arbitrary number ε > 0.
The above is equivalent to the statistical convergence of 

the series of random variables {Qn} toward the constant value 
q ≠ 0, hence – to the statistical convergence of the random 
variables {Qn – q} toward zero, that can be expressed as 
follows [1, 10]:

(23)

or 
(24)

The relation (24) makes it possible to consider loads as 
a deterministic process, i.e. that statistical having prediction 
error equal to zero. In such process the past fully determines 
the future.The simplification consisting in the assumption that 
“ the loading constitutes a deterministic process” is commonly 
applied in investigating the engine loads. However it makes 
load assessment to be fully adequate to reality both as regards 
to its features, especially to be capable of rational forming 
its run, i.e. its rational steering, and - if possible - its optimal 
control, difficult.

Comparing the loads occurring in successive cycles 
(number of cycles n ≥ 4), hence within the time interval td 
(short), one can state that they are different. The differences 
are increasing along with increasing n, i.e. when considering 
the load within the time interval tq (long). For this reason 

different load values are obtained at a determined value of 
the time interval td and during investigation of the load in 
particular cycles at the instants td1,td2,…The fact of obtaining 
a given (expected) load value is a random event. This is such 
event because as a result of determination of the same empirical 
conditions the expected load value can occur, but it can also 
not occur. It means that a random variable can be attributed to 
every instant td. Similarly, to every instant tq a relevant random 
variable can be attributed.

From the above presented considerations it results that the 
following hypothesis H4 can be formulated: „The loading is 
a process of asymptotically independent increments because 
along with increasing partition between the time intervals 
within which the load is investigated (load measurements are 
made) its values are less and less mutually dependent”.

Another feature which characterizes load changes consists 
in that observed load values do not show any monotonic 
changes both in the dynamic time (td), i.e. that necessary to 
realize one engine cycle and in the quasi-static time (tq) in 
which the engine delivers power to a consumer, e.g. screw 
propeller. Hence it can be assumed that peak values of the 
quantities which characterize the loading, appear at random. 
Therefore to unambigously (precisely) predict an instant of its 
occurrence, is not possible. The lack of monotony feature of 
engine load changeability makes it possible to formulate the 
hypothesis H5 as follows: „The loading is a stationary process 
because in a longer time the monotony feature of engine load 
changes is lacking”.

The load stationarity (in a broader sense) means that in 
each case all multi-dimensional probability density functions 
depend only on the mutual distance of the instants τ1, τ2,…, τn, 
and do not depend on themselves [2, 5, 12, 14]. Hence one-
dimensional probability density function of load values does 
not depend on the instant which the value corresponds with, 
and two-dimensional one depends only on difference of the 
instants in which observed load values have appeared. And, 
in a narrower sense, the stationary loading (fully stationary) 
is understood as that whose all statistical moments of higher 
orders as well as total moments of the loading (considered as 
a process) does not depend on time. In the case of the stationary 
process (in a narrower sense) the expected value m(t), variance 
V(t), auto-correlation A(τ1,τ2) and auto-covariance K(τ1,τ2) do 
not change. And, the stationary process in a broader sense is 
characterized by that m(t) = m = const as well as A(τ1,τ2) = 
A*(τ2-τ1) = A*(r). In practice, the stationarity of the loading 
in a broader sense is of importance.

To confirm the presented features of the stochastic process 
which the engine loading constitutes, it is necessary to perform 
relevant empirical investigations. From the tests of self-
ignition engines, have been carried out so far, it results that 
their loading is changing continuously so that its particular 
values measured after passing very short time intervals, are 
strongly correlated to each other. However, if the time partition 
between measurements increases, correlation between the 
loads decreases. Hence the loading values measured within 
time intervals (or instants) very distant from each other, can 
be assumed independent. The feature is called the asymptotic 
independence of the load value measured e.g. in the instant 
τi+1 and the value measured in the instant τi, i.e. when the 
partition (time distance) ∆τ = τi+1–τi is sufficiently long. The 
so considered asymptotic independence between load values 
measured or calculated in the instants τi and τi+1 illustrates the 
fact that along with increasing ∆τ dependence between them is 
decreasing. And, from the self-ignition engine work principle 
results also that within a longer time of its correct operation 
there is no (and can not be) monotonously increasing or 
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decreasing changes. Hence it can be assumed that maximum 
load values appear at random in determined instants, therefore 
they can be predicted only with a certain probability. This lack 
of monotony feature is called the load stationarity.

Therefore it can be assumed that verification of the 
presented hypothesis can be performed by checking the 
following consequences which result from it:

– K1: m1(t) = m1 = const
– K2: A(t1,t2) = A*(t2−t1) = A*(∆t)

To verify the hypothesis in question the reductive reasoning 
in accordance with Eq. (18) can be used.

Hence the hypothesis H6 of the following content can be 
formed: „The loading of every engine is an ergodic process 
because the loading values do not depend on its initial 
state”.

The hypothesis is of practical importance as it implies 
that the loading can be cosidered to be a stochastic process in 
which observation probability of the value q(t) belonging to 
the strictly determined set A ⊂ R, can be estimated by means 
of the mean time of presence of each of its realizations in 
the set at a long time of observation (measurements). This 
hypothesis - together with the preceding one - explains why 
vibro-acoustic diagnostics of machines in which vibro-acoustic 
signal is assumed stationary and ergodic, is useful in practice. 
As results from the just presented hypotheses, this is an obvious 
assumption as the loading (cause) generates vibro-acoustic 
signal (consequence).

The statement whether the loading (taken as a stationary 
process) is ergodic, consists in comparing its statistical 
characteristics (expected value, auto-correlation, variance 
etc) achieved as a result of averaging the realization set 
{qk(t)}, with the statistical characteristics obtained as a result 
of averaging a single, sufficiently long realization of the 
loading.

As results from the hypotheses (from the 3rd to the 5th, 
inclusive), the loading investigated in the instants very 
distant from each other, can be considered a purely random 
process, i.e. such stochastic process in which all the random 
variables qt(t ∈ R+), in the discrete time (td), are mutually 
independent.

The presented opinion on engine load features may lead 
to new possibilities in empirical determining wear- to- load 
relationships. Probabilistic approach to engine load is presented 
in some publications, e.g. [2, 4, 12], where it have been assumed 
that load realization is normal process and its values are random 
variables following the Moivre – Gauss distribution. 

FINAL REMARKS AND CONCLUSIONS
� In the presented analysis and synthesis of events it was 

demonstrated that the loading of every self-ignition engine 
considered in a given instant of its time of operation (work), 
can be taken as a multi-dimensional random variable. The 
loading analyzed in successive instants of operational time 
of such engines can be considered to be realizations of 
the loading process. Hence the loading process of every 
engine should be investigated under assumption that it is 
a multi-dimensional stochastic process. The hypotheses 
have been proposed why it is possible to assume that the 
loading process of any self-ignition engine can be taken 
as a stochastic process of asymptotically independent 
increments, and stationary and ergodic one, as well as that 
there is stochastic independence between its mechanical 
and thermal loads. Intensity of the stochastic relationship 
can be stated by using the Czuprow’s test of convergence 
[10] during investigations. 

� For verification of the presented hypotheses the method of 
non-deductive (inductive) reasoning called the reductive 
reasoning, as well as the deductive reasoning method called 
the „modus tollens” rule, have been proposed.

� To recognize features of the processes it is necessary to form 
relevant mathemetical models by using the system modeling 
and by performing suitable empirical investigations.

� From the preliminary considerations it results that the 
loading processes of combustion engines are the processes 
whose features can be analyzed by applying the theories of 
decision (controlled) semi-Markov processes [4, 5].
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