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A B S T R A C T   

The work proposes a probabilistic-driven framework for enhanced corrosion estimation of ship structural 
components using Bayesian inference and limited measurement data. The new approach for modelling mea-
surement uncertainty is proposed based on the results of previous corrosion tests that incorporate the non- 
uniform character of the corroded surface of structural components. The proposed framework’s basic features 
are outlined, and the detailed algorithm is presented. Further, the proposed framework is validated by com-
parison with the classical statistical approach and mass measurements, considering previous experimental work 
results. Notably, the impact of the number of measuring points is investigated, and the accuracy index is pro-
posed to identify the optimum number of measurements. The developed framework has a significant advantage 
over the classical approach since measuring uncertainty is incorporated. Additionally, the confidence intervals of 
both mean value corrosion depth and standard deviation could be gathered due to the probabilistic character of 
the framework. Thus, the presented approach can potentially be used in the structural health monitoring of ship 
structural components and reliability analysis.   

1. Introduction 

Ships and offshore structures are subjected to a severe corrosion 
environment [1], and a protective coating layer has been applied to 
protect them. However, it breaks with time [2], and corrosion starts 
deteriorating the structural components. Various corrosion types could 
be distinguished, such as general corrosion [3], pitting corrosion [4], 
crevice corrosion, galvanic corrosion, erosion-corrosion, and microbio-
logically influenced corrosion [5], recently gaining significant attention 
from researchers. From these various types, general corrosion and 
pitting are most common in ship structures [6]. It must be noted that 
except for general corrosion, the other types could be considered rela-
tively localized phenomena. The ageing structures need to be monitored 
during the service life to identify excessive corrosion degradations. This 
is crucial since the consequences of extreme corrosion damage may 
become severe, including structural collapse and ship hull breaking (e.g. 
Prestige catastrophe [7]), as well as failures of operating offshore 
structures [8]. 

Many works were devoted to investigating the detection and 
modelling of localized corrosion defects. The excessive review of risk- 
based decision-making models for microbiologically influenced 

corrosion (MIC) in offshore pipelines was presented in [5]. The proposal 
of stochastic modelling of pitting corrosion growth was given in [9], 
characterizing corrosion volume and depth growth and validated 
against field data. Other recent works on that problem can be found, e.g. 
in [4,10,11]. Although localized corrosion defects are essential for 
structural safety, the current work focuses on proper diagnostics of 
uniform (general) corrosion, which is discussed in detail in a further 
part. Even so-called uniform corrosion could be subjected to significant 
spread in the corrosion depth, even for a single structural element [12]. 

To monitor the corrosion loss in ship structures, the Classification 
Societies issued guidelines for periodic inspections of ship hull struc-
tures, e.g. [13], related to plating thickness measurements. Currently, 
the most common method for performing thickness measurements is the 
one that uses an ultrasonic thickness gauge. It employs relatively simple 
physical phenomena and measures the time of travel of acoustic signals 
through the thickness of the plating as fast as a signal is received, as the 
thinner component is. However, alternative methods are under inves-
tigation (e.g. guided waves [14]). Moreover, ultrasonic thickness gauges 
are commonly used during inspections due to their simplicity, where the 
measuring ultrasonic thickness gauges are portable, and there is no need 
for more profound expertise to perform measurements. However, there 
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are known drawbacks to this method. As was pointed out in [15], several 
factors may affect the measurements, resulting in their lower quality, 
such as cleanliness, lighting, type of inspected area and human factors. 
In fact, during ship inspections, the hostile conditions for performing 
measurements are rather typical. The high level of uncertainty gener-
ated by this method was also pointed out in different studies, e.g. [16]. 
Further, if an already corroded structural component is subjected to 
further structural analysis, the uncertainties can be magnified [17]. 

Various studies proposed mathematical models to estimate corrosion 
loss during ship service life, e.g. [18,19]. Further, the time-dependent 
model to estimate the corrosion loss of deck plates in ballast and 
cargo tank tankers based on inspection data was proposed in [20] and 
for ship crude oil tanks in [21]. The advanced time-dependent corrosion 
degradation model was recently proposed in [22], where the probability 
distribution of the corrosion depth across the ship hull is estimated 
during the exploitation period. Based on the available real measurement 
data, the developed methodology was applied to predict the corrosion 
depth of the ship’s ballast tanks [23]. The simplified method to predict 
the corrosion level for different ship panels, accounting for the different 
corrosive environments on each side of the plate and based on the 
available real measurement data, was proposed in [24], where some 
probabilistic models were developed to predict corrosion degradation 
uncertainties. The study presented in [25] uses the corrosion degrada-
tion model developed in [18], which was extended using probabilistic 
representations of the real measurement data. Another probabilistic 
model to estimate the corrosion degradation rate of fuel tank structures 
of bulk carriers was proposed in [26]. In [27], the methodology for a 
risk-based corrosion allowance for oil tankers easily applicable in the 
design process was also proposed. 

The critical issue is to validate the proposed corrosion models given 
actual field data. In some works, Bayesian updating was used to update 
the aforementioned general corrosion loss modes based on the available 
measurement data [28,29]. The Bayesian analysis (including Bayesian 
inference and networks) was also used to detect localized corrosion 
defects. In [30], the adaptive approach to predicting pipeline corrosion 
defects was proposed. The Bayesian inference was proposed to model 
the growth and generation of localized corrosion defects based on 
imperfect inspection data [31]. The Bayesian network could also cali-
brate the corrosion rate instrument, as shown in [32]. These works 
showed that Bayesian analysis can be used for problems where limited 
inspection data is available and subjected to significant uncertainty. 

Although the intensive development in this field is evident, most of 
the developed mathematical models rely on the data collected during 
inspections, where only the mean corrosion degradation value within 
the structural components (eventually including uncertainty level) is 
estimated. On the other hand, other developed models treat corrosion 
only as a localized phenomenon. The current guidelines issued by the 
Classification Societies related to performing such measurements [4] 
require a minimum of five-point measurements per square meter and 
three-point measurements per 1 m of the stiffener. Such guidelines are 
engineering acceptable since they are sufficient to capture the general 
trend in the thickness loss of the ship structure. A higher number of 
measurements will require much more effort and time, whereas each 
day the ship is out of operation generates costs. However, such an 
approach may be insufficient when structural components on a local 
level are considered. The case of the MOL Comfort container ship [33] 
shows that the failure of a single structural component may trigger se-
vere structural failure of the entire ship hull girder. When considering 
corrosion degradation, the non-uniform thickness loss may significantly 
reduce the structural component load-carrying capacity [34]. Thus, the 
mean corrosion loss value of a single structural component and its 
standard deviation would be beneficial to estimate the structural ca-
pacity of corroded components correctly. This is quite crucial in terms of 
the safe operation of ship structures. Notably, corrosion is an important 
degradation phenomenon in other fields of engineering as well, such as 
civil engineering [35] or the oil and gas branch [36]. 

Unlike the other studies that were focused on estimating and fore-
casting the corrosion degradation development as a general average 
thickness loss in structural components or investigated in detail the 
process of growth of localized corrosion phenomena, the present work 
explores the problem of estimating the corroded plate thickness loss 
within a single structural component based on the limited measurement 
data and accounting for the non-uniform character of the corrosion 
degradation. The problem is highly important for the safety and reli-
ability of ships and offshore structures. In view of recent findings only 
accounting for the non-uniform character of general corrosion, the 
structural performance could be evaluated adequately [34,37]. Never-
theless, current renewal criteria (decision to either replace or not ship 
structural element) rely on the gauged corrosion depth, which could be 
highly uncertain. Thus, the proper treatment of inspection data given 
the required measurement number and consideration of measuring un-
certainty is needed. 

To account for that, a novel probabilistic framework is proposed, 
where the initially assumed corrosion depth characteristics are updated 
based on the measurement data employing the Bayesian inference. Up to 
now, no works have investigated the adequacy of Bayesian analysis for 
assessing the corrosion field characteristics (thickness distribution 
within structural components). In addition, a new approach for mea-
surement error treatment is proposed due to the significant uncertainty 
[12] in the corrosion depth measurements. The corrosion depth’s mean 
value and standard deviation are estimated in terms of their probability 
distributions. The presented framework is validated using real mea-
surement data, showing its credibility. Finally, the impact of the number 
of points of the corrosion depth measurement within the structural 
component is investigated, and the concept of accuracy index is pro-
posed to quantify that. Finally, the conclusions coming from the pre-
sented work are drawn. 

2. Materials and methods 

2.1. Case study of corroded specimens 

The case study, which will be analyzed in the current work, has been 
described in [12], where the experimental corrosion was carried out, 
and further compressive strength tests were performed [34]. However, 
since it will be used to validate the framework introduced in the other 
part of the study, the main features and results are introduced herein at 
the beginning. The work presented in [12] aimed to develop a meth-
odology for accelerated corrosion testing of steel specimens. The normal 
strength steel specimens (A grade) were subjected to corrosion degra-
dation; a detailed chemical composition can be found in [12]. The nine 
stiffened plates (1.25 m long and 0.4 m wide with a stiffener of 0.1 m 
height) were subjected to accelerated corrosion degradation, but only 
natural factors were controlled. Three different initial thicknesses were 
investigated (5 mm, 6 mm and 8 mm), leading to different degradation 
levels in terms of severity. The corrosion degradation level was 
measured via mass measurements, and the Degree of Degradation (DoD) 
was considered as a governing degradation parameter. The DoD was 
calculated as a percentage loss of the initial mass of the specimen. 
Detailed thickness measurements were also performed using a certified 
ultrasonic gauge to capture the corroded thickness distributions. An 
example of a corroded specimen with measured thicknesses is presented 
in Fig. 1. 

It needs to be noted that the thickness was measured at each point of 
the grid from both sides of the plate and stiffener. The summary of the 
mean value thickness from mass and ultrasonic NDT (non-destructive 
testing) measurements is presented in Table 1. Detailed information 
about thickness distribution in each specimen can be found in [12]. 
Since mass measurements consider the difference between the plate’s 
initial (intact) and final mass with high accuracy, we can consider the 
mean value thickness loss calculated using mass measurements as the 
most accurate. Thus, it will validate the proposed methodology 
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regarding the mean value thickness loss. 
Even from the broad perspective, seen in Table 1, it is noted that the 

ultrasonic NDT measurements overestimated the residual thickness 
estimated from the mass measurements even though a significant 
number of measuring points were considered. Thus, the corrosion depth 
is underestimated, which leads to a non-conservative assessment. The 
residual averaged thickness obtained via mass measure is the most ac-
curate since the total material loss is captured. This encouraged the 
discussion of the uncertainties in ultrasonic NDT measurements in trying 
to find a solution to catch them, which is also the aim of the presented 
work. 

2.2. Uncertainties in ultrasonic NDT measurements 

As already outlined, the typical ultrasonic measurements are sub-
jected to significant uncertainties. Two types of uncertainties are iden-
tified, i.e. epistemic and aleatory. The first ones are related to 
insufficient information, thus, due to the limited number of measure-
ments, and they can be reduced by gathering more information, i.e. 
more measures. A typical example of this type of uncertainty is pre-
sented in Fig. 2, showing the relation between the mean value of 
thickness estimated from specific measurements carried out either on 
the first or second side of the plating. The black dashed line represents 

the accurate value of the residual thickness obtained via mass mea-
surements, and the x-axis shows the number of measures. The y-axis 
shows the estimated mean value of the corroded plate depth as a func-
tion of the number of measurements. 

With the increase in the number of measurements, it is noted that the 
mean value of corrosion depth tends to be close to the accurate value of 
the corroded plate for most of the specimens. Notably, there could be 
significant differences between the two sides considered for measure-
ments. Further, if only three measuring points are considered, the re-
sidual thickness could be overestimated even up to 1 mm. Generally, 
using up to 10 measuring points, the results are scattered and rather non- 
reliable. Only for selected cases, the thickness estimates are relatively 
accurate. However, the mean value is somewhat different from the 
actual residual corroded thickness for the same number of measure-
ments and different plate side measurements. 

Nevertheless, even when significantly increasing the number of 
measurements, there is still some difference between the mean value of 
the corroded plate thickness defined by the ultrasonic NDT measure-
ments and those captured via mass measurements. This leads to the 
second type of uncertainty, the aleatory one. This type relates to the 
measuring method and phenomena that should be captured, regardless 
of the number of measurements carried out. Notably, as seen in Fig. 2, 
even for the maximum number of measures, the mean value of the re-
sidual corroded plate thickness is higher than the one defined by mass 
measurements. This uncertainty is related to corrosion degradation, 
which causes an irregular thickness distribution (see Fig. 3) on both 
macro and micro scales. The ultrasonic measurements are based on the 
time of travel of the acoustic signal perpendicular to the plate surface. 
The thickness may be accurately estimated for non-corroded specimens 
since both plating surfaces are flat and parallel. However, for corroded 
specimens, the plate surfaces are not parallel, leading to a longer time of 
travel, and local non-uniformities (in both the front and back side of the 
plate regarding the position of the probe) could cause additional signal 
reflections [17]. These phenomena disturb the thickness identification 
significantly. This is the main reason that readings could be substantially 
different for the same measuring points but performed on the two sides 
of the plating (see Fig. 3). 

In the analyzed case study [12], the measurement conditions were 

Fig. 1. Corroded specimen – stiffened plate (left) and corroded thickness of plate (central) and stiffener (right) [12].  

Table 1 
Mean value of residual thickness measurements [12].  

Specimen Residual thickness [mm] 

Mean - mass Mean – 1st side Mean – 2nd side 

1.5 4.638 4.735 4.682 
2.5 3.948 4.051 4.121 
4.5 4.320 4.410 4.318 
1.6 5.192 5.428 5.355 
3.6 4.778 5.081 5.034 
4.6 5.600 5.865 5.753 
1.8 6.896 7.301 7.312 
2.8 7.453 7.557 7.633 
3.8 6.213 6.719 6.691  
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excellent, i.e. the surface was clean, the lighting was good, and the po-
sition to carry out the measurements. However, in normal ship structure 
inspection conditions, additional sources of uncertainties will exist [15]. 
Finally, one should consider the uncertainty of measuring equipment 
itself. However, the uncertainties generated by a typical ultrasonic 
thickness gauge may be regarded as relatively low compared to other 
sources of uncertainty [16]. 

The current work considers both uncertainties (i.e. aleatory and 
epistemic). To account for the aleatory uncertainty related to measuring 
technique and corrosion character, the novel proposal is made for 
measurement error, as described in Section 3.2. The way this uncer-
tainty is incorporated into the framework is discussed in Section 2.3. The 
second type of uncertainty related to several measurements is also 
considered. This is inherently connected with Bayesian inference since 
the more measures we have, the more confident our predictions of 

corrosion depth distribution parameters are, resulting in lower spread. 
This is demonstrated in Section 4, where the results obtained using the 
proposed framework are presented. 

2.3. Framework outline 

As noted, the corroded plate thickness measurements are subjected 
to significant uncertainties. On the other hand, during the periodic in-
spection measurements on ships, there is no time to perform such a large 
number of measures to identify the level of corrosion depth more pre-
cisely. Comparing the current recommendations [13] and the analysis 
presented in Fig. 2, only a coarse estimation of the corroded plate 
thickness distribution can be identified. Further, due to aleatory un-
certainty, the corrosion depth could be significantly underestimated, 
giving the non-conservative assessment. Since periodical measurements 

Fig. 2. Mean value thickness of corroded plates as a function of the number of measurements using NDT and mass measurements.  
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are typically performed in 5 years, the non-conservative estimation may 
lead to structural failure before the next measuring campaign. Thus, the 
presented framework aims to estimate the corrosion loss based on the 
limited measurement data accounting for the measurement error. 

Typically, based on the small sample, statistically, we cannot draw 
general conclusions using a specific statistical approach (e.g., calcu-
lating mean value, standard deviation, etc.). Additionally, it is not clear 
the confidence interval of such estimations (e.g., how precisely the mean 
value of corrosion depth is estimated). From the various existing sta-
tistical approaches, the Bayesian updating [30,38] allows drawing 
conclusions based only on the limited sample size. Firstly, some prior 
assumptions are needed, i.e., the general overview of how the parame-
ters analyzed may be statistically distributed. The prior knowledge can 
be considered from either boundary conditions or previous experience. 
Then, using the Bayesian inference (based on the Bayes theorem), the 
posterior knowledge (probability distribution of a particular variable) 
having the observed data may be estimated. 

Whereas the typical (i.e. frequentists) inference is a statistical 
method that draws results directly from data, the Bayesian inference 
defines probability as the degree of belief for particular events. The 
belief is further verified and modified, given the observation data. The 
basic form of the Bayesian inference relies on the Bayes theorem as 
follows: 

P(H|D) =
P(D|H)⋅P(H)

P(D)
(1)  

where H and D stand for the hypothesis and data, respectively. 
P(H) is the prior probability for the hypothesis, and P(H|D) is the 

posterior probability for the hypothesis, but considering new data. 
Further, P(D|H) is the likelihood of the hypothesis, which is not the same 
as probability. The likelihood shows how well the given hypothesis can 
represent the data. Finally, the P(D) is the prior probability of the data 
acting as a normalizing factor. 

Thus, in view of the problem formulated in the current work, the 
Bayes inference is formulated as follows to determine the distribution of 
corrosion depth: 

p(β|D) =
p(D|β)⋅p(β)

p(D)
∝p(D|β)⋅p(β) (2)  

where β are the corrosion depth distribution parameters, i.e., dMean and 
dStDev; D are the measurement data containing gauged corrosion depth 
values. The p(D|β) is the likelihood of the hypothesis that measurement 
data follows the truncated normal distribution described by dMean and 
dStDev. The p(β) is the prior distribution of the β parameters. 

The likelihood p(D|β) for N measurement points could be calculated 
as follows: 

p(D|β) = p(D|dMean, dStDev) =
∏N

i=1
p(di|dMean, dStDev) (3)  

where di is considered as the single measurement point with or without 
consideration of measurement error. Thus, it could be either a deter-
ministic value or a random representation. 

Which is more important, additional iterations having new prior 
knowledge based on the previous runs of the Bayesian inference can be 
performed. In this view, the observed data may be limited since, having 
some prior information, there is some background knowledge about the 
distributions of the analyzed variables. Firstly, only some essential data 
must be gathered based on classical statistics. Such methodology is 
perfectly applicable in the corrosion degradation process and inspection 
measurements since, having previous information on how the corroded 
plate thickness is distributed within structural components and 
regarding measurement error, the corroded plate thickness distribution 
in newly inspected areas can be estimated. 

The approach employed uses the Bayesian inference, and the 
framework diagram is presented in Fig. 4. Below, the additional 
description is given in a point-by-point manner:  

1 Firstly, the prior assumptions are adopted, preferably based on 
experience. From the beginning, the corrosion depth within the 
corroded plating follows a truncated normal distribution. The justi-
fication for choosing the specified distribution is given in Section 3.1. 
Thus, the truncated to zero-value normal distribution is employed, 
which has two governing parameters, i.e. mean value (d̃Mean) and 
standard deviation (d̃StDev). Since, in the beginning, the level of 
corrosion degradation is unknown, these parameters are assumed to 
be uniformly distributed. The mean value of the corrosion depth can 
be between 0 mm and the initial non-corroded plating thickness (t0). 
The standard deviation is between 0 mm and half of the initial 
plating thickness (t0/2).  

2 The first run of the Bayesian inference (see Eq. 2) is conducted. It 
allows us to estimate the distribution parameters of the corrosion 
depth within the plate (d̃Mean, d̃StDev), based on the given measure-
ment data (see Section 2.1). Notably, the distributions of the mean 
value and standard deviation (non-deterministic values) and their 
confidence levels are estimated, i.e. histograms of both d̃Mean and 
d̃StDev. This first iteration allows an estimate of the corrosion depth 
distribution parameters and their uncertainties without consider-
ation of the measurement error.  

3 The measurement error is estimated depending on the corrosion 
depth obtained for each measurement (the measurement error is 
introduced in Section 3.2), i.e. di,err = f(di). The measurement error 
follows the truncated normal distribution. This allows transferring 
the measurement data from a deterministic to a probabilistic repre-
sentation. Thus, each measuring point has a specific probability 
distribution.  

4 The second run of the Bayesian inference is performed to account for 
the measurement error. For the second iteration of the Bayesian 
inference, the informed prior regarding the mean value of corrosion 
depth (d̃Mean) based on the results from the first iteration can be used. 
Unlike in the first run, it is considered that the mean corrosion depth 
follows the truncated to zero normal distribution having the 
following parameters: 

̃dMean,2nd ∼ N
(
Mean

(
̃dMean,1st

)
, Mean( ̃dStDev.1st)

)
(4)   

where Mean(dMean,1st) is the mean of dMean distribution from the first run, 
and Mean(dStDev.1st) is the mean of the dStDev distribution from the first 
run. 

Fig. 3. Corrosion degradation impact on the corroded plate surface.  
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Fig. 4. Proposed framework.  
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In terms of the prior corrosion depth standard deviation, the same 
prior as in the first iteration is used. Based on the results of the second 
iteration, the final posterior distributions of mean value and standard 
deviation of corrosion depth are gathered, accounting for the measure-
ment error.  

1 Additional iterations are performed since better prior knowledge 
may result in a better estimate. Thus, the prior knowledge regarding 
the mean value corrosion depth in the subsequent iterations is 
updated ( ̃dMean,i ∼ N(Mean( ̃dMean,i− 1), Mean( ̃dStDev.i− 1)), resulting in 
the minimum difference between the mean value corrosion depth 
obtained in subsequent runs.  

2 If the difference between the two subsequent runs of the Bayesian 
inference satisfies the condition that |Mean( ̃dMean,i) −

Mean( ̃dMean,i− 1)| < 0.01 mm, the entire algorithm is finished.  
3 The distributions obtained in the final step (d̃Mean, d̃StDev) are 

considered as results of the framework. 

The adopted prior distribution of the corrosion depth is described in 
Section 3.1, and a description of the measurement error is presented in 
Section 3.2. Finally, the proposed framework is validated using experi-
mental data, as presented in Section 4.1. 

The presented framework was implemented in specially developed 
code in Python programming language, and the Bayesian inference was 
implemented using the PyMC3 library [39]. The PyMC3 library uses the 

Fig. 5. Distributions of corrosion depths.  
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Markov chain Monte Carlo method for sampling the probability distri-
butions of the variables considered in the framework. 

3. Parameters distributions 

3.1. Corrosion depth distribution 

The corrosion depth distribution may be assumed priorly based on 
the detailed measurements from the analyzed case study (see Section 
2.1). Notably, previous works also analyzed thickness distribution, but 
usually for the much more extensive area considered, such as the plating 
of an entire deck of a tanker ship [40] with limited measurement points, 
as typically required during inspections. In this case, the corrosion depth 
was modelled using log-normal distribution. Paik et al. [41] suggested 
using either log-normal or normal distribution to model the corrosion 
depth based on the surveys of ballast tank structures. However, the 
log-normal distribution has two disadvantages. The first one is those 
parameters that describe the log-normal distribution are not directly a 
mean value and standard deviation. Thus, they are not intuitive. Sec-
ondly, the log-normal distribution is considered from 0 to infinity. 
Therefore, theoretically, the corrosion value depths exceeding the initial 
thickness of the plating can be seen. These two disadvantages may be 
quickly obeyed when using the truncated normal distribution. On the 
one hand, truncation does not allow the corrosion depth to be below 
0 and above the initial thickness. On the other hand, the intuitive pa-
rameters, i.e., mean value and standard deviation are used to model the 
distribution. 

The corrosion depth distribution for each specimen of the analyzed 
case study (see Section 2.1) is presented in Fig. 5. The corrosion depth at 
each point on the plating was calculated as the difference between the 
initial thickness of the specimen and the gauged thickness. 

Fig. 5 presents histograms of corrosion depths for each specimen and 
their probability density functions (PDF) obtained via kernel density 
estimates (KDE). The KDE allows showing the PDFs precisely based on 
accurate data since it does not follow any known distribution. The exact 
estimation is visible, e.g. for a 5 mm specimen with 14 % of DoD, since 
two local extrema were found (typical distributions cannot capture this). 
However, the KDE leads to quite different distributions for each spec-
imen, so it is non-practical to use it for modelling. Nevertheless, it is 
considered the best possible estimate of the actual PDF. Further, for each 
specimen, the PDF that follows the truncated to zero normal distribution 
is fitted to the results (marked as fitted PDF on graphs). 

Based on the comparison of distributions, the truncated normal 
distribution represents the corrosion depth distribution very well. The 
distribution is almost the same for a couple of specimens as the ones of 
KDE. Only for two specimens (6 mm – 7 % DoD and 5 mm – 14 % DoD) 
the deviation between the KDE and fitted distributions is significant. 
Thus, the truncated normal distribution is considered the prior distri-
bution of the corrosion depth in the framework. 

It is noted that even for a considerably low level of corrosion 
degradation (7 % of DoD), the residual thickness is strongly non- 
uniform. Further, with the increase of the degradation level, the range 
of corrosion depth increases, and the variance, too. For the low level of 
corrosion degradation, more measurement data are closer to 0 mm, and 
left-bound distribution truncation has a significant value. With the in-
crease of the mean value corrosion depth, the distribution became closer 
to the normal distribution. There are no significant differences between 
the distributions obtained for various thicknesses. However, for the 8 
mm specimens, the distributions are closer to the normal ones, even for 
lower levels of degradation. 

3.2. Measurement error 

It can be seen from Table 1 that even with very dense points of 
measurement, the corrosion depth may be significantly underestimated. 
Notably, the exact mass measurements are possible only for isolated, 

disintegrated specimens but not for the structural components of the 
integral ship hull structure. Thus, it can be related only to non- 
destructive ultrasonic measurements. The suggested probabilistic 
framework accounts for the measurement error and allows for a con-
servative assessment of real corrosion depths. Based on the study in 
[12], it was found that when the minimum value from two measure-
ments performed on both sides of the corroded plates at each point was 
considered, the resulting mean value of corrosion depth was closest to 
the one calculated based on the mass loss. 

However, the measurement is usually performed on one side of the 
plating. The ultrasonic measurements assume that the two surfaces are 
parallel and that the time of travel of the acoustic signal is correlated 
with the thickness of the plating. However, corroded surface irregular-
ities make the surfaces unregular and not parallel on each point. The 
acoustic signal travels a longer distance than one of the mean thick-
nesses of a particular corroded plate place. 

Thus, when comparing the two-sided thickness measurements, it can 
be assumed that the lower value is accurate (closest to the actual 
corroded plate thickness) and the higher value is overestimated. Thus, 
the measurement error may be defined as a difference between the 
corroded plate thickness estimated for both sides of the corroded plate. 
Although this methodology does not fully capture the physical phe-
nomena behind the measurement error (reflection of the acoustic signal, 
etc.), it allows us to quantify the aleatory uncertainty and implicitly 
capture this problem. It is then fully justified from an engineering point 
of view and explains collected measurement data. 

Fig. 6 presents the measurement error calculated for three selected 
specimens described earlier. It is noted that the mean error increases 
with the degradation level (i.e., the mean corrosion depth). Thus, the 
newly introduced measurement error should depend on the corrosion 
depth to comply with the observed phenomenon fully. The following 
finding is easily explained since, with the increase of the corrosion 
depth, the irregularities are also more significant, resulting in growth in 
the measurement error. 

The mean value and standard deviation of the measurement error for 
each plate were estimated and given in Table 1. The power regression 
functions represent the relationship between the corrosion depth’s mean 
value and the measurement error’s standard deviation. Additionally, the 
function tends to be zero for non-corroded material, excluding the 
equipment’s fundamental measurement error. 

The functions used in Fig. 7 are employed in the developed frame-
work. Each measurement point’s second loop of the Bayesian inference 
accounts for the measurement error. The truncated to zero normal dis-
tribution was chosen to model the measurement error (see Fig. 6). 

4. Results and discussion 

4.1. Validation of the framework 

The corroded plate thickness distribution is estimated for the plates 
given in Table 1 to validate the proposed framework. However, a 
different number of measurements is used to see the dependency be-
tween the accuracy of the estimation of the thickness distribution pa-
rameters and the number of measures. Thus, the minimum number of 3 
measurements was used. 

The results of using the proposed framework are presented in Fig. 8 
for six measurements considered (for specimen 1.8, see Table 1) mea-
surements on the first side. The obtained probability distributions are 
shown on the left, whereas the sampling process is given on the right. 
The total number of 20,000 samples was considered to obtain the var-
iables’ probability distributions. After the first run of the Bayesian 
inference, the distributions of the mean value and standard deviation are 
estimated without the measurement error and the prior information 
about the distributions of the mean value and standard deviation of the 
corrosion depth. In the next run, the measurement error is estimated for 
each measurement (see the top chart in Fig. 8), and the distributions are 
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consistent with the model proposed in Section 3.2. Thus, increasing the 
measured corrosion depth makes the measurement error distribution 
more spread, bringing considerable uncertainty. Each measurement is 
then extended from the deterministic representation into a probabilistic 
one with specified distributions (see Fig. 8, second from the top chart). 
The corrosion depth’s mean value and standard deviation are described 
by probability distributions (see Fig. 8). Thus, the estimated mean value 
and standard deviation of the corrosion depth will have the most ex-
pected values as mean values of the distributions and specified confi-
dence intervals (see Fig. 9). 

Based on the histograms in Fig. 9, it can be seen that the most con-
servative corrosion distribution, resulting in the 95 % confidence level of 
corrosion degradation, is achieved for a mean value of the corrosion 
depth of 0.63 mm with a standard deviation of 0.83 mm. The means of 
the mean values and standard deviations for the same analyzed case are 
0.35 mm and 0.43 mm, respectively. 

To compare the classical approach with the proposed framework, the 
mean value of the corrosion depth for various measurements is 
compared for the specimen (1.8), considering measurements performed 
on the first side of the specimen, as seen in Table 2. 

It can be noted from Table 2 that the classical approach of mea-
surements significantly underestimated the corrosion degradation level. 
In the case of the proposed framework, except for the six measurements, 
the upper boundary was higher than the actual degradation level or very 
close to it. Thus, the framework’s accuracy for this specimen was better 

than the classical approach. 
Further, the results obtained for various measurements and corrosion 

degradation levels are compared to validate the framework. For each 
specimen (see Table 1) and the 1st or 2nd sides of the measured corroded 
plating, the results are given in terms of the mean value of the corrosion 
depth distribution and its standard deviation. A total of 18 cases were 
analyzed (nine specimens measured from both sides). Notably, the upper 
and lower bounds (considering 95 % of the confidence interval) and 
mean values of distributions of both parameters are analyzed, depending 
on the number of measurements carried out. Thus, with a 95 % proba-
bility, the distribution’s mean value and standard deviation should lie 
between the lower and upper bound. For the mean value of the corrosion 
depth distribution, the additional horizontal lines are presented, 
showing the corrosion depth value estimated from the mass measure-
ments, which are considered the most accurate (although some uncer-
tainty levels could still be considered). The results from the classical 
approach regarding mean value corrosion depth from measurements are 
also presented. 

The results of the analysis are presented in Figs. 10—13. Figs. 10 and 
11 present the mean value corrosion depth estimation as a function of 
the number of measurements carried out on the 1st and 2nd sides of the 
specimens, respectively. In Figs. 12 and 13, the standard deviation of the 
corrosion depth is presented as a function of the number of measure-
ments carried out on the 1st and 2nd sides of the specimens, respec-
tively. In addition to the point values for each number of measurements, 
the multi-linear trends are plotted for each parameter to show the 
tendencies. 

Based on the presented results in Figs. 10 and 11, the spread between 
the upper and lower bound decreases with the number of measurements. 
However, the spread is similar between 39 and 104 measurements and 
stabilizes constantly. Thus, when a specific number of measurements are 
achieved, the fundamental measurement uncertainty will result in the 
spread in estimating the mean corrosion depth. Further, the corrosion 
depth estimated from mass measurements mainly lies between the upper 
and lower bounds of the estimated mean corrosion depth. It is often very 
close to the trend of the mean values estimated from the framework. The 
exceptions from that observation are seen for 6 mm specimens with 7 % 
and 14 % of the degradation level, where for the lower number of 
measurements, the framework slightly underestimates the corrosion 
depth. However, the corrosion depth was predicted accurately when 
considering the higher number of measurements (N=39 and N=104) in 
almost all cases. The mean error between framework and mass mea-
surements is at the level of fundamental measuring error of the equip-
ment used. Thus, the corrosion depth predicted using mass 
measurements is the most accurate and proves the accuracy of the 

Fig. 6. Measurement error distribution for three selected specimens.  

Fig. 7. Measurement error mean value and standard deviation as a function of 
the corrosion depth. 
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Fig. 8. Probability density as a function of measurement error, data with error, mean value and standard deviation (left) and spread of measurement error, data with 
error, mean value and standard deviation as a function of the number of simulations (right). 

Fig. 9. The confidence intervals for mean value (left) and standard deviation (right) of corrosion depth.  

Table 2 
Comparison between classical approach and proposed framework.  

No 
measurements 

Mean value [mm] 

Mass Classical Approach (M) Framework (Mean) Framework  
(Lower Bound) 

Framework  
(Upper Bound) 

3 1.104 0.477 0.792 0.002 1.548 
6 1.104 0.222 0.37 0.07 0.675 
9 1.104 0.85 1.123 0.648 1.617 
15 1.104 0.607 0.825 0.468 1.191 
39 1.104 0.678 0.918 0.735 1.101 
104 1.104 0.705 0.954 0.855 1.054  
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proposed framework for predicting actual thickness loss caused by 
corrosion. 

Most importantly, only for 2 cases from 18, the estimated corrosion 
depth was higher than the estimated upper bound. Thus, in comparison 
to the classical approach, where only for one case the corrosion depth 
was assessed higher than the one obtained in mass measurements, the 
introduction of the measurement error improved the obtained estimated 
values. For most cases, the classical approach shows lower values than 

the lower bound from the framework, thus significantly underestimating 
the actual corrosion depth value. This is consistent with findings pre-
sented in [42], where comparing the gauged thickness of corroded 
plating using the classical technique and the actual thickness values 
were presented, and the classical method underestimated corrosion 
depth between 0.6 mm up to 2.2 mm for severely corroded plates. This 
shows that incorporating the measurement error in the presented work 
enables us to efficiently and accurately predict the actual thickness loss. 

Fig. 10. Framework results – mean corrosion depth – side 1.  
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Finally, when only three measurement points are considered, a huge 
spread is observed, and for some specimens, the difference between the 
lower and upper bound reaches the level of 2.6 mm. It is highlighted that 
the current industrial norms require a number of measurements as the 
minimum (the area of the considered plating is around 0.5 m2). 
Nevertheless, even with three measurements only, the presented 
framework will result in the conservative estimation of the corrosion 
depth (i.e., the upper bound of the mean value is higher than the 

corrosion depth estimated from mass measurements) for most cases (for 
15 of 18 analyzed cases). 

The results for standard deviation estimation of the corrosion depth 
distribution are presented in Figs. 12 and 13. As can be noticed, the 
spread between the lower and upper bound significantly decreases with 
more measurements and stabilizes on the constant level for many sam-
ples. When only three or six measurements are considered, the spread of 
results is significant since estimating the entire distribution’s standard 

Fig. 11. Framework results – mean corrosion depth – side 2.  
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deviation with a limited number of observations is strict. However, there 
is a substantial reduction in the spread for nine or more observations. 
Similarly to the mean value corrosion depth, when the upper bound 
from the framework is considered, it will result in a conservative esti-
mation of the standard deviation. 

To investigate the dependency between the corrosion degradation 
level and the number of measurements, the distribution descriptors of 
the mean value estimated in the framework are plotted as a function of 
the corrosion depth evaluated based on the mass measurements (see 
Fig. 14). It is noted that if there is a low number of measurements 

(3,6,9), the uncertainty of the estimation increases significantly with the 
corrosion degradation level. However, for the high number of mea-
surements (104), there is no significant increase in confidence interval 
value between lower and higher degradation levels. Thus, more mea-
surements will be needed to correctly estimate the corrosion depth and 
its probabilistic descriptors, especially for higher degradation levels. 

4.2. Optimum number of measurements 

As noted in Figs. 10 and 11, the framework defines the mean value of 

Fig. 12. Framework results – standard deviation of the corrosion depth – side 1.  
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corrosion depths closest to the mean value estimated from mass mea-
surements is not always for the highest number of measurements. One 
reason may be the so-called accumulation of the basic error resulting in a 
cumulative error [43]. Thus, if each measurement is subjected to pri-
mary uncertainty, the infinite increase of measurements will not result 
in cancelling the cumulative error, but in some cases, increase due to the 
cumulation of basic errors of each measurement. 

The accuracy margin AMdepth = depthmass − depthframework is defined as 
a function of the corrosion depth defined by the mass measurement and 
the depth estimated by the framework, which are independent truncated 

to zero normally distributed variables, and the probability that the 
depthmass matches the depthframework is expressed as: 

PAMdepth = P
(
AMdepth = 0

)
(5)  

Since the accuracy margin, AMdepth is a function of the random variables 
depthmass and depthframework, it is a random variable, too and also trun-
cated to zero normally distributed. 

The two first moments of the accuracy margin AMdepth are deter-
mined by: 

Fig. 13. Framework results – standard deviation of the corrosion depth – side 2.  
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EAMdepth = E(depthmass) − E
(
depthframework

)
(6)  

σAMdepth =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

depthmass
+ σ2

depthframework

√
(7)  

where EAMdepth is the mean value margin, and σAMdepth is the standard de-
viation of the accuracy margin. In the present study σ2

depthmass 
is consid-

ered zero. 
The accuracy margin is a linear function of the corrosion depth 

defined by the mass measurement and estimated by the framework, and 
the probability of their matching is defined as: 

PAMdepth =

Φ

(
0 − EAMdepth

σAMdepth

)

− Φ

(
0

σAMdepth

)

1 − Φ

(
0

σAMdepth

) (8)  

and the accuracy matching index is defined by: 

α = − Φ− 1( PAMdepth

)
(9) 

By this definition, the closer the accuracy index is to zero, the more 
accurate the estimation is. An accuracy index higher than zero means 
overestimating the corrosion depth (conservative), and less than zero 
means an underestimate. 

Fig. 15 plots the accuracy index for each specimen and side of 
measurement depending on the number of measurements. 

It is noted that in most cases, determining the optimum number of 
measurements is not straightforward. The blue dashed line represents 

the 0-value of the index, showing an ideal estimation of the corrosion 
depth. For some specimens, the optimum number of measurements will 
be the one with the alpha index closest to zero, where the plot lies on one 
side of the 0-line. However, in some cases, the alpha index oscillates 
between negative and positive values. In that case, we can choose the 
higher value since we generally have a lower spread in the mean value 
for a higher number of measurements. The proposed optimum number 
of measurements is presented as red dots in graphs (see Fig. 15). In all 
cases, approximately 60 measurements result in the lowest alpha index. 

5. Conclusions 

The study aimed to introduce and validate a probabilistic framework 
based on the limited measurement data for a corrosion depth distribu-
tion estimation. It was shown that background knowledge about the 
corrosion degradation process and its impact on structural integrity 
makes it possible to estimate the corrosion depth distribution within the 
single structural component by incorporating the measurement error 
having a probabilistic representation. Compared to the simple statistical 
parameters obtained from measurements, the developed methodology 
allows quantifying the confidence intervals of those parameters. In that 
case, mean value and standard deviation are considered random vari-
ables instead of deterministic ones. 

It was found that with a low number of measurements, the corrosion 
depth distribution parameters (mean value and standard deviation) are 
highly uncertain. Nevertheless, even in that case, the upper bound of 
these parameters could effectively be used as a conservative estimation 
of the corrosion depth distribution. Thus, the incorporation of mea-
surement error, as well as the treatment of corrosion field parameters as 

Fig. 14. Mean value corrosion depth as a function of corrosion depth from mass measurements.  
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random variables, provides a more accurate and safer estimation of 
actual corrosion loss. On the contrary, the significant corrosion degra-
dation may be easily omitted where only deterministic values from 
measurements are considered. 

The presented study may also trigger the discussion about reconsi-
dering the current Classification Societies’ approach regarding currently 
used guidelines for performing such measurements, where the required 
minimum measurement points number is relatively low. The proposed 
accuracy index could help determine the necessary number of mea-
surements. It must also be noted that introduced measurement error 
could be extended in terms of other sources of uncertainties, such as 
measurement conditions and precision of the measuring tool itself. In 
addition, the renewal criteria (decision about the eventual replacement 
of structural element) are currently set based on the results of the clas-
sical approach. Incorporating the presented framework may lead to 
another decision-making regarding renewals during inspections. 

Compared to the classical approach, the developed framework is 
more accurate for estimating corrosion degradation. The possible 
weakness of the solution is the considerable computation time since the 
Bayesian inference is based on random sampling. Thus, more studies are 
needed when this solution is applied in practice. Finally, the measure-
ment error adopted in the framework was calculated based on previous 
corrosion testing. Depending on the corrosion type and surrounding 
environmental conditions, more studies are needed to define the mea-
surement error properly. Finally, benchmarking with other possible 
solutions that may come up in future should be performed. 

The developed probabilistic framework may be used as a decision- 
making tool. Firstly, more dense measurements can be made based on 
the observed uncertainty level. Secondly, the decision can be made 
about the eventual replacement of structural components. Since the 
developed framework is also an uncertainty-quantification tool, it may 
also be used for the reliability assessment of the residual strength of the 

Fig. 15. Accuracy index as a function of a number of measurements.  
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corroded structural components. 
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