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A B S T R A C T   

The subject of the current work was a simple but robust novel two-stage procedure for the non-destructive 
determination of effective elastic constants using ultrasonic wave propagation. First, ultrasonic bulk wave ve
locities measured on cubic samples were used to calculate most of the elements of the stiffness matrix. Secondly, 
the remaining elements were determined using the dispersion curves of elastic guided waves measured on plate 
samples. Based on the complete stiffness matrix it was possible to calculate the complete set of effective elastic 
constants. The algorithm was verified for AM elements produced from PLA filament satisfying the conditions of 
transversely isotropic and orthotropic material models. For the transversely isotropic samples, Young’s moduli 
(E) varied from 2.6 to 2.9 GPa, shear moduli (G) equalled between 0.9 and 1.2 GPa, whereas Poisson’s ratios (ν) 
ranged between 0.20 and 0.32. In orthotropic sample the corresponding values were: E = 1.3–2.8 GPa, G =
0.6–1.2 GPa, and ν = 0.07–0.59. The results of the current study have been compared with references from the 
literature, giving satisfactory agreement.   

1. Introduction 

Additive manufacturing (AM), colloquially known as 3D printing, is 
becoming increasingly popular in many branches of industry. It has 
many bio-medical applications, e.g., in production of dental casts [1,2] 
or bone tissue implants [3,4]. It was also successfully used in engi
neering for manufacturing mechanical rotors [5,6] and so-called soft 
robots [7,8]. AM is a group consisting of powerful techniques that can be 
used to create spatial elements at different scales, from nano-particles to 
full-scale engineering structures. A number of different materials are 
used for production, such as polymers, metals, ceramics or concrete. 
Among many materials, biodegradable thermoplastic polymers are very 
popular because they do not require sophisticated equipment and are 
easy to manufacture. One of the common filaments is polylactic acid or 
polylactide (PLA). It is an eco-friendly and low cost material with a 
relatively low melting temperature ranging between 160 and 180 ◦C. 
Despite the simplicity of the manufacturing of 3D printed parts with 
PLA, there are some challenging issues that need to be addressed, e.g., 
the presence of local material inhomogeneities, voids or shape distor
tion. Damage identification and imaging, such as failure analysis of AM 

elements requires detailed analyses, e.g., using numerical simulations, 
which require an appropriate description of the structure and the elastic 
behaviour of the AM elements. 

In order to mechanically characterise 3D printed samples, which are 
generally heterogeneous, it is necessary to accurately model their micro- 
and macrostructure, including filament orientation, the presence of 
voids, and, if appropriate, inserts, such as carbon or wood fibres. 
However, for many applications, it is sufficient to use a simplified 
approach, i.e., material homogenization, which allows the exact het
erogeneous model to be replaced with the homogeneous one described 
by effective elastic parameters. A number of works can be reported that 
use this approach to characterise the static behaviour of 3D printed el
ements. Biswas et al. [9] analysed the mechanical response of ABS 
samples printed with different raster angles. They performed finite 
element simulations using micromechanical models prepared based on 
micro-CT scans to determine the elastic constants of the samples using 
the homogenized orthotropic material model. Gonabadi et al. [10] 
predicted the macro-scale elastic response of 3D printed samples made 
of PLA based on finite elements modelling of the real sample micro
structure. The models were prepared to determine the elastic constants 
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of an orthotropic material model based on a tensile test, 3-point bending 
and Iosipescu shear tests. Lei et al. [11] analysed the influence of 
printing parameters on the mechanical behaviour of samples made of 
PLA reinforced with carbon fibres. They used scanning electron micro
scope images to reveal the internal structure of the samples and carried 
out material homogenization, assuming an orthotropic material model. 
Torre et al. [12] considered the behaviour of PLA samples under tensile, 
simple bending, three-point bending and bending-torsion tests. They 
determined the elastic parameters of the samples by treating them as 
orthotropic. Sabik et al. [13] determined the effective elastic constants 
of PLA samples based on static tensile tests using a transversely isotropic 
model. They considered the tensile failure of the dogbone samples using 
experimental and theoretical approaches. 

The above-reported works show the results of numerical simulations 
and destructive testing. However, a current trend is to use non- 
destructive testing (NDT) measurements, which are very promising 
because they can be repeated many times without damaging the sam
ples. One of the NDT techniques with a number of efficient applications 
for investigation of 3D printed elements is a vibrational method, based 
on the low-frequency vibration response. Piovan et al. [14] considered 
the identification of the effective bending elastic modulus of parallele
piped samples produced from PLA filament. They also characterised the 
dynamic behaviour of U-shaped beams experimentally and with finite 
element models. Medel et al. [15] determined the equivalent elastic 
modulus of PLA samples. They discussed the influence of different 
printing parameters (raster angle, build orientation, layer height, 
printing speed and nozzle temperature) on the dynamic behaviour of 
rectangular prisms. Krivic and Slavič [16] proposed the simultaneous 
identification of elastic modulus, damping and coefficient of thermal 
expansion of samples produced from different filaments, including PLA, 
PETG and nylon. They integrated different measurement techniques 
such as digital image correlation, scanning laser Doppler vibrometry 
(SLDV) and vibration testing to investigate samples with a specific ge
ometry. The works described above mostly deal with the problem of 
determining a single value of the elastic modulus, i.e., equivalent 
bending elastic modulus, which is not sufficient for the complete char
acterisation of the material. A complete set of orthotropic elastic con
stants was determined using the vibrational technique by Huang and Lin 
[17]. They determined the elastic constants of PLA from the natural 
frequencies of the bending and torsional vibration modes, using the 
simplification that the Young’s modulus, shear modulus and Poisson’s 
ratio in each plane of symmetry satisfy the relation applicable to 
isotropic materials. 

The elastic parameters of different materials can be effectively ob
tained by another promising NDT technique, using the propagation of 
bulk and guided ultrasonic waves. Bulk waves have been used by many 
authors to determine the isotropic elastic constants of concrete elements 
[18–20] or adhesives [21–23]. Guided wave measurements have been 
successfully used to characterise the elastic behaviour of different ele
ments, among many, adhesive joints [24–26] or composites [27–29]. In 
particular, Lamb wave dispersion curves have been used to determine 
the elastic constants of various elements described by the isotropic 
[30–32], transversely isotropic [33–35], and orthotropic [36–38] ma
terial models. Some applications of ultrasonic waves for the material 
characterisation of AM elements can also be reported. Foster et al. [39] 
evaluated the elastic constants of aluminium samples produced by ul
trasonic additive manufacturing. They determined the effective stiffness 
constants using ultrasonic wave velocities. Javidrad and Salemi [40] 
used longitudinal and transverse waves to determine the elastic con
stants of Inconel 625 samples produced using a laser powder-bed fusion 
process. They verified the results with static tensile tests. 

The current state-of-the-art shows that the number of works 
considering NDT techniques for the determination of elastic constants of 
3D printed samples is limited. A lack of straightforward and effective 
approach for characterization of elastic response of AM elements is 
observed. The original contribution of the current work is the simple but 

robust novel ultrasonic wave-based procedure for non-destructive 
identification of effective elastic constants of additively manufactured 
samples treated as homogenized material. Based on the fabrication 
process of the samples, transversely isotropic and orthotropic material 
models were used to describe the mechanical behaviour of the samples. 
The set of carefully designed experiments performed on PLA samples 
produced with different raster angles was reported. Two fundamental 
phenomena using elastic waves were considered, i.e., bulk wave prop
agation in volumetric samples and guided wave propagation in plates. 
Additionally, theoretical calculations of guided wave dispersion curves 
were carried out using the semi-analytical finite element (SAFE) 
method. The results proved that ultrasonic waves can be used for fast 
and effective characterisation of AM elements. The results of the per
formed study are intended for further use in damage imaging and failure 
analysis of these types of elements. 

2. Ultrasonic wave-based identification of elastic parameters 

The phenomenon of elastic wave propagation is strongly dependent 
on the mechanical properties of the medium in which it occurs. Thanks 
to this fact, it is possible to determine the constitutive matrix C of the 
medium based on the wave characteristics. It is well known that in 
unbounded media so-called bulk waves propagate, i.e., P-waves (pres
sure or longitudinal waves) and S-waves (shear or transverse waves). 
Both waves propagate with different velocities, commonly denoted as cL 
and cT, respectively. One of the methods utilizing bulk waves is ultra
sonic pulse velocity (UPV) which allows one to determine the time of 
flight (TOF) of the wave through a volumetric sample (e.g., cube or 
cylinder). Based on the TOF and the length of the propagation path 
d (distance between the transmitting and receiving transducers) it is 
possible to determine the wave velocity as: 

ci =
d

TOF
, i = L, T. (1)  

The bulk wave velocities can be used to define some elements of stiffness 
matrix C, but are generally not sufficient to determine the full matrix 
when considering more complex material models than isotropic. The 
quasi-longitudinal and quasi-transverse waves can be used to overcome 
this problem, however, specifically shaped samples are required [40]. 

In restrained media, such as plates, shells or rods, so-called guided 
waves occur. These waves are characterised by multimodality and 
dispersion (frequency-dependence), i.e., at a given frequency a number 
of wave modes can propagate simultaneously with different velocities. 
The relation between wave characteristics and frequency can be repre
sented graphically as dispersion curves. The guided wave dispersion 
curves can be determined experimentally, and, by comparison with 
theoretical results, allow the characterisation of the elastic constants. 
The shape of dispersion curves can be used to derive the constitutive 
matrix C, but depending on the complexity of the material model, car
rying it out using only dispersion curves can be a difficult multi- 
dimensional optimization problem. For a homogeneous isotropic ma
terial, only two material constants need to be described. However, in the 
case of 3D printed elements, which are usually not characterised by 
isotropy, more complex approaches are required, including transverse 
isotropy or orthotropy. 

Taking into account the factors described above, it is proposed to use 
both bulk waves and guided waves to determine the constitutive matrix 
C and then the elastic constants. A novel algorithm (Fig. 1) is introduced 
to simplify the analysis. The procedure requires the production of two 
types of samples – cube and plate, prepared with the same printing 
parameters. First, the cubic sample is investigated using the UPV 
analyzer to determine the TOF of the wave. Knowing the sample ge
ometry, it is possible to calculate the wave velocity using formula (1). 
The obtained velocities of pressure and shear waves, together with the 
mass density of the sample, allow some elements of the C matrix to be 
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calculated, however, in general, it is not possible to obtain the complete 
matrix only from measurements of a single volumetric sample. 
Depending on the complexity of the material model, some of the ele
ments remain unknown. 

Independently, the plate sample is investigated to determine the 
experimental dispersion curves. A powerful and commonly used method 
is to measure the series of signals on the surface of the sample using 
scanning laser Doppler vibrometry, supported by further signal pro
cessing using two-dimensional fast Fourier transform (2D-FFT) [41–45]. 
The result of the calculations are dispersion curves in the form of a 2D 
map in the frequency-wavenumber domain. For further processing, 
curve tracing algorithms are required. However, in the current study, it 
is proposed to extract only a small number of n points from each curve, 
taken at specific frequencies. This approach can be useful, especially in 
cases where experimental dispersion curves may not be visualized with 
the same quality over the entire assumed frequency range. The previ
ously determined C matrix based on bulk waves (with some unknown 
elements), together with mass density and plate thickness can be used 
for the calculation of theoretical dispersion curves. There are a number 
of techniques capable of calculating theoretical dispersion curves, 
including the SAFE method [46,47]. Several calculations are required 
with different values of the unknown parameters of the C matrix. The 
series of theoretical dispersion curves obtained are then compared with 
the experimental curves (represented by previously determined control 
points) to obtain the best fit. Considering the fact, that the SAFE cal
culations provide the dispersion curves in the form of a disordered set of 
points not related to individual curves, for each i-th control point at a 
given frequency, a theoretical wavenumber value kt,i closest to the 
experimental ke,i is found (without considering whether the curve is 
appropriate – if it is not a good curve, the error will increase anyway). 
Then the sum of squared errors is calculated for all n control points 
according to the formula [31]: 

RSS =
∑n

i=1

(
ke,i − kt,i

)2
. (2)  

The minimization of the RSS function allows the missing elements and 
the complete C matrix to be determined. Depending on the assumed 
material model, a certain number of elastic constants can be further 
calculated. 

2.1. Ultrasonic waves in an orthotropic medium 

In the case of an orthotropic material, three orthogonal planes of 
symmetry can be distinguished. The mechanical properties are unique 
and differ along three perpendicular directions 1, 2, 3 (Fig. 2). 

The stiffness matrix C characterizing the orthotropic material con
tains nine independent elastic constants: C11, C22, C33, C12, C13, C23, C44, 
C55, C66, represented in C as [48]: 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)  

The stiffness matrix C is essential for the determination of theoretical 
dispersion curves of guided waves and can be used to determine theo
retical values of wave velocities of bulk waves. The velocities of bulk 
waves along three axes in orthotropic material are given in Table 1. 

It is evident that only six of the nine parameters are present in the 
equations, so measuring the wave velocities along three axes is not 
sufficient to determine the full matrix C. For this reason, guided wave 
dispersion curves are required, because guided wave propagation de
pends on the complete matrix. Therefore, three additional parameters 
need to be determined. 

In order to determine the elastic constants, it is useful to invert the 
stiffness matrix C to obtain the compliance matrix S [48]: 

Fig. 1. Scheme of the proposed algorithm for ultrasonic wave-based identification of mechanical parameters of 3D printed samples.  

Fig. 2. Designation of material axes in orthotropic material.  

Table 1 
P-wave and S-wave velocities in the orthotropic medium [48].  

Direction (axis) P-wave velocity S-wave velocity 

Along 1 
cL,1 =

̅̅̅̅̅̅̅̅
C11

ρ

√

cT,12 =

̅̅̅̅̅̅̅̅
C66

ρ

√

cT,13 =

̅̅̅̅̅̅̅̅
C55

ρ

√

Along 2 
cL,2 =

̅̅̅̅̅̅̅̅
C22

ρ

√

cT,21 =

̅̅̅̅̅̅̅̅
C66

ρ

√

cT,23 =

̅̅̅̅̅̅̅̅
C44

ρ

√

Along 3 
cL,3 =

̅̅̅̅̅̅̅̅
C33

ρ

√

cT,31 =

̅̅̅̅̅̅̅̅
C55

ρ

√

cT,32 =

̅̅̅̅̅̅̅̅
C44

ρ

√
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S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/E1 − ν12/E1 − ν13/E1 0 0 0
− ν21/E2 1/E2 − ν23/E2 0 0 0
− ν31/E3 − ν32/E3 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G31 0
0 0 0 0 0 1/G12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)  

from which it is possible to determine the elastic constants, i.e., three 
Young’s moduli E1, E2, E3, three shear moduli G23, G31, G12 and six 
Poisson’s ratios ν12, ν21, ν13, ν31, ν23, ν32, which are pairwise dependent 
(in fact, nine independent constants are needed to characterize the 
material). 

2.2. Ultrasonic waves in a transversely isotropic medium 

Transverse isotropy is a specific example of orthotropy where two of 
the directions are equivalent, thus one axis of symmetry and two 
transverse axes are distinguished, forming a plane of isotropy. Suppose 
that the symmetry axis is 3 and the other two (1, 2) are transverse axes 
(see Fig. 2). Compared to the orthotropic model, the problem is 
simplified from nine independent constants to five, i.e., C11, C33, C12, 
C13, C44. The stiffness matrix has the form [48]: 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
C11 − C12

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)  

The bulk wave velocities along the axes of the transversely isotropic 
medium are given in Table 2. There are two P-waves travelling with 
different velocities (one along the symmetry axis and two along the 
transverse axes with equal velocities). One S-wave travels along the 
symmetry axis and two different S-waves propagate along the transverse 
axes, depending on the direction of particle motion (one in the plane of 
isotropy and one out of this plane). Four different wave velocities allow 
determining four of the five elements of C. Only C13 is missing, which 
can be determined based on the dispersion curves. 

Knowing the exact form of the C matrix, the elastic constants can be 
calculated using the compliance matrix S (inverse of C), as proposed for 
the orthotropic model, however, they can also be determined directly 
from the stiffness matrix [49]. Young’s moduli (along transverse axes E1 
and symmetry axis E3) are calculated according to the formulae: 

E1 =
(C11 − C12)

(
(C11 + C12)C33 − 2C2

13

)

C11C33 − C2
13

,

E3 = C33 −
2C2

13

C11 + C12
.

(6)  

Shear moduli out of the plane of isotropy G31 and in this plane G12 are: 

G31 = C44, G12 =
C11 − C12

2
. (7)  

Poisson’s ratio out of the plane of isotropy ν31 is: 

ν31 =
C13

C11 + C12
. (8)  

Additionally, two dependent Poisson’s ratios, the second out of the plane 
of isotropy ν13 and in the plane of isotropy ν12 can be calculated as: 

ν13 =
E1

E3
ν31, ν12 =

E1

2G12
− 1. (9)  

3. Experimental investigations 

3.1. Object of research 

The research was conducted on additively manufactured samples 
produced using fused filament fabrication (FFF) method from polylactic 
acid with the use of UltiMaker 3 Extended (Utrecht, The Netherlands). 
The PLA filament with a diameter of 2.85 mm was manufactured by 
UltiMaker. Three variants of infill pattern were considered (#1–3, as 
shown in Fig. 3a), differing in the direction of filament deposition (see 
Table 3). The raster angles with respect to the sample x-axis in two 
consecutive layers were: 0◦/90◦ (#1), 45◦/-45◦ (#2) and 90◦/90◦ (#3). 
First two variants were selected as typical due to the symmetry of the 
directions in printing plane. The third one was chosen to verify the 
possibilities and limitations of the currently developed method. The 
layers were produced one by one along the z-axis with 100 % infill with 
the printing speed of 3600 mm/min. The nozzle diameter was 0.4 mm. 
To ensure the print quality of the specimens, a layer thickness of 0.1 mm 
and the line width of 0.4 mm were used. The temperatures used for the 
3D printing process were around 60 ◦C for the building platform and 
220 ◦C for the printing nozzle. The samples were manufactured without 
top and bottom solid layers, and also without the perimeter outlines to 
avoid their influence on the results, thus the analysis refers only to the 
layers produced as infill. In order to determine the mechanical param
eters, two types of samples were produced for each manufacturing 
variant. The first was the cubic samples, denoted as #C1-3 (Fig. 3b), 
with designed dimensions of 50 × 50 × 50 mm3. Exact dimensions, such 
as mass and mass density of the samples are given in Table 3. In addition, 
plate samples were produced (Fig. 3c) with an area of 100 × 180 mm2 

and a designed thickness of 3 mm. The measured thicknesses for the 
plates produced were: t = 3.07 mm (#P1), t = 3.09 mm (#P2) and t =
3.11 mm (#P3). 

3.2. Experimental setup and procedure 

3.2.1. Ultrasonic pulse velocity analyzer 
The measurements of ultrasonic bulk wave velocities were con

ducted using the ultrasonic pulse velocity tester Pundit PL-200 (Proceq). 
The device, shown in Fig. 4a, uses the through-transmission technique, i. 

Table 2 
P-wave and S-wave velocities in the transversely isotropic medium [48].  

Direction (axis) P-wave velocity S-wave velocity 

Along 1 
cL,1 =

̅̅̅̅̅̅̅̅
C11

ρ

√

cT,12 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11 − C12

2ρ

√

cT,13 =

̅̅̅̅̅̅̅̅
C44

ρ

√

Along 2 
cL,2 =

̅̅̅̅̅̅̅̅
C11

ρ

√

cT,21 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11 − C12

2ρ

√

cT,23 =

̅̅̅̅̅̅̅̅
C44

ρ

√

Along 3 
cL,3 =

̅̅̅̅̅̅̅̅
C33

ρ

√

cT,31 = cT,32 =

̅̅̅̅̅̅̅̅
C44

ρ

√

Fig. 3. Object of research: a) sample infill in two consecutive layers (variants 
#1–3), b) geometry of cubic samples, c) geometry of plate samples. 
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e., a pair of transducers is required to evaluate the TOF of the wave. To 
determine the TOF of the P-wave, standard single-crystal probes with a 
diameter of 49.7 mm emitting a wave with a central frequency of 54 kHz 
(Fig. 4b) were used. A gel couplant was used to ensure the appropriate 
contact between transducer and sample surface for effective propagation 
of the wave through the sample. In the case of S-wave measurements, 
dry-point contact probes with 5 dual-crystal transducers with a central 
frequency of 40 kHz were chosen (Fig. 4c), where the distance between 
the two furthest transducers was 47 mm. The dimensions of the contact 
face of both types of probes were smaller than each face of the cubic 
sample. The dimensions of the samples tested met the requirement of at 
least exceeding the wavelength, which was expected to be equal to 37 
mm for the P-wave (assuming cL,max = 2000 m/s) and 30 mm for the S- 
wave (assuming cT,max = 1200 m/s). 

The TOF of the P-wave was measured along each of the three axes (x, 
y, z) by placing the 54 kHz probes on each pair of faces of the tested 
cubes (y-z, x-z, x-y, respectively). Three independent measurements 
were made on each face to eliminate random measurement errors. Since 
it is known that the direction of wave propagation and the direction of 
particle motion of shear wave are perpendicular, the measurements with 
40 kHz probes were carried out at each sample face i-j (along axis k) for 
two orientations of probes, generating two shear waves independently, i. 
e., in the i-k plane and in the j-k plane (i, j, k = [x, y, z], i ∕= j, i ∕= k, j ∕= k). 
The TOF of each S-wave was determined four times. The complete set of 
experimental data obtained from UPV measurements is available at 
[50]. 

3.2.2. Scanning laser Doppler vibrometry 
The measurements of ultrasonic guided wave propagation were 

conducted using the SLDV technique. The experimental set-up is 

presented in Fig. 5a. The input signals were provided by the arbitrary 
function generator AFG 3022 (Tektronix, Inc.) and amplified by the 
high-voltage amplifier PPA 2000 (EC Electronics). Each excitation signal 
was in the form of a wave packet produced by the windowing of a single- 
cycle sine function with a raised cosine (Hann) window. Different carrier 
frequencies were used, namely, 50 kHz, 100 kHz, 150 kHz, 200 kHz, and 
250 kHz. The waves were excited with the use of NAC2024 (Noliac) 
piezoelectric actuators with dimensions of 3 × 3 × 2 mm2, made of lead 
zirconate titanate (PZT) compound. The actuators were attached to each 
plate sample with petro wax 080A109 (PCB Piezotronics, Inc.) to ensure 
correct coupling. Two measurement scenarios were assumed to inde
pendently excite different types of dominant waves, using different lo
cations of the PZT actuators. First, the elastic waves were excited in the 
plane of the sample, inducing mainly symmetric modes using the S-type 
actuator. Secondly, the waves were excited perpendicular to the plate 
surface, to better capture the antisymmetric modes (A-type actuator). 
The signals of the propagating waves (out-of-plane velocity component) 
were remotely collected at the upper surface of each plate by the scan
ning head of the laser vibrometer PSV-3D-400-M (Polytec GmbH) 
equipped with a VD-07 velocity decoder. The signals were recorded at 
91 points distributed along a straight line with a length of 90 mm. The 
scanned area of each sample was covered with retro-reflective sheeting 
to improve the light backscatter. The sampling frequency of the recorded 
signals was 2.56 MHz. The signals were measured and averaged 20 times 
to reduce the influence of signal noise. The time interval between two 
consecutive measurements at each point equalled 100 ms to ensure 
appropriate attenuation of wave signal, giving a total measurement time 
of 2 s for each measurement point. Each plate (#P1-3) was tested ac
cording to the scheme presented in Fig. 5b (actuators on the shorter side 
of a plate, measurements along the y axis, using trace line A). 

Table 3 
Parameters of samples used for experimental investigations.  

Printing 
Variant 

Raster angles Cubic Samples Plate samples 

Symbol ax [mm] ay [mm] az [mm] m[g] ρ [kg/m3] Symbol t [mm] 

#1 0◦/90◦ #C1  49.5  49.6  50.0  130.4 1062 #P1  3.07 
#2 45◦/-45◦ #C2  49.5  49.5  50.1  133.7 1089 #P2  3.09 
#3 90◦/90◦ #C3  48.5  49.5  50.1  132.1 1098 #P3  3.11  

Fig. 4. Experimental setup for the determination of bulk wave velocities: a) measurement with Pundit PL-200 UPV tester on a cubic sample, b) P-wave transducers 
(54 kHz), c) S-wave transducers (40 kHz). 
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Additionally, plate #P3 was tested using the scheme presented in Fig. 5c 
(actuators on the longer side of a plate, measurement along the x axis, 
using trace line B) due to the fact that the x and y axes were not 
equivalent in this sample (unlike for samples #P1 and #P2). The com
plete set of experimental data gathered by the laser vibrometer in the 
course of the guided wave measurements is available at [50]. 

As a result of each experimental measurement, a guided wavefield 
w0(x,t) in the space (x) and time (t) domain was acquired. In order to 
obtain dispersion curves, the first step was to expand the dataset in the 
space domain by adding zero vectors (so-called zero-padding). The two- 
dimensional fast Fourier transform (2D-FFT) was then applied to the 
expanded dataset w(x,t) allowing the wavenumber-frequency (k-f) 
relation to be obtained, according to the formula [41–45]: 

D(k, f ) =
∫∫

w(x, t)e− i2π(kx+ft)dxdt, (10)  

where D(k,f) are the Fourier coefficients. The map representing the 
relation of D vs. k and f enabled the identification of the specific wave 
modes. For a number of independent measurements, allowing to plot 
dispersion curves in different frequency ranges, the 2D-FFT calculations 
were performed independently and then, all maps were aggregated to 
obtain complete dispersion curves. 

4. Results and discussion 

4.1. UPV measurements 

The P-wave and S-wave velocities were determined from Eq. (1) 
based on the TOFs of the bulk waves obtained from the UPV tests and the 

exact dimensions of cubic samples #C1-3 (see Table 3). As there was 
more than one measurement for each type of wave, the final velocity 
values were averaged. The results for all samples are presented in 
Table 4. Three P-wave velocities (one along each of the x,y and z axes) 
and six S-wave velocities (two along each axis, with perpendicular di
rections of particle motion) were determined for all cubes. In the shear 
wave symbols, the indices denote the directions of wave propagation 
and particle motion, respectively. The S-wave velocities along the x-axis 
for sample #C3 were not calculated, because the corresponding signals 
were of low quality due to the infill pattern, making it impossible to 
determine the TOF. It is important to note that the resulting wave ve
locities did not exceed the limit used to calculate the minimum specimen 
size in Section 3.2.1, thus the measurements were conducted properly. 

4.2. Transversely isotropic material model (variants #1 and #2) 

4.2.1. Identification of mechanical parameters based on bulk wave 
velocities 

Taking into account the fabrication process of the samples in variants 
#1 and #2, they met the requirements of a transversely isotropic ma
terial model. The mechanical properties in the x-y plane should be equal, 
so it was assumed to be the plane of isotropy, whereas the third axis (z) 
was an axis of symmetry. This assumption was confirmed by the fact that 
the P-wave velocities in the x and y directions were almost identical (the 
difference between cL,x and cL,y with respect to their mean value was 
equal to 0.20 % for #1 and 0.12 % for #2), so the mean value, denoted as 
cL,1, was assumed for further considerations. Moreover, S-wave veloc
ities in the x-y plane (cT,x(y) and cT,y(x)) were similar (relative difference 
equal to 0.10 % for #1 and 0.06 % for #2), so they were averaged and 

Fig. 5. Experimental set-up for the determination of dispersion curves in plate samples (a); scheme of scanning points with trace A (b) and trace B (c).  

Table 4 
P-wave and S-wave velocities for cubic samples #C1-3.  

Sample cL,x [m/s] cL,y [m/s] cL,z [m/s] cT,x(y) [m/s] cT,x(z) [m/s] cT,y(x) [m/s] cT,y(z) [m/s] cT,z(x) [m/s] cT,z(y) [m/s] 

#C1  1828.8  1832.5  1766.8 1043.8 919.6  1044.8  923.2  917.4  922.5 
#C2  1767.9  1770.0  1862.5 1028.6 949.6  1028.0  950.6  952.0  948.4 
#C3  1368.1  1815.4  1733.6 –––* –––*  880.0  1037.2  720.9  1047.6  

* signals corresponding with these velocities were not legible, and TOFs were impossible to be determined reliably. 
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denoted as cT,12. It was also expected that the S-wave velocities in the 
two remaining planes (x-z, y-z) should be equal in pairs and indeed they 
were (the relative difference between the extreme values with respect to 
the mean value was 0.63 % for #1 and 0.38 % for #2), so they were 
averaged and denoted as cT,13. As a result, four independent values of 
wave velocities were used for the characterisation of the elastic behav
iour of samples printed with #1 and #2 variants (Table 5). 

Since there were four different velocities, only four of the five in
dependent coefficients of stiffness matrix C could be calculated. Ac
cording to the formulae in Table 2, the following elements were equal: 
C11 = 3.559 GPa, C33 = 3.315 GPa, C12 = 1.243 GPa, C44 = 0.900 GPa 
(for #1) and C11 = 3.407 GPa, C33 = 3.778 GPa, C12 = 1.104 GPa, C44 =

0.983 GPa (for #2). The only undefined element was C13 because it was 
not present in the equations in Table 2. 

4.2.2. Identification of remaining mechanical parameters based on 
dispersion curves 

The guided wave dispersion curves measured for plate samples #P1 
and #P2 were used to determine the missing element C13 of the stiffness 
matrix. First, 2D-FFT calculations were performed and, as a result, a 
two-dimensional representation of the wavenumber versus frequency 
relation was visualised for both plates (Fig. 6). It can be clearly seen that 
the quality of the maps allows the identification of curves associated 
with specific wave modes. For each curve, control points were 

determined for characteristic frequencies equal to: 50 kHz, 150 kHz, 
250 kHz, and 350 kHz (see Fig. 6). 

Independently, a series of calculations of theoretical dispersion 
curves were performed using an authorial script written in Matlab®, 
utilizing the SAFE method. The stiffness matrix containing elements C11, 
C33, C12, and C44 determined in the previous section was used. The 
missing coefficient C13 was assumed to be in the range between 0 GPa 
and 2 GPa with a step of 0.001 GPa. For each control point read from the 
experimental dispersion curves (with value ke,i), the nearest point of the 
theoretical curves (with value kt,i) was found. The RSS function, repre
senting the squared differences between experimental and theoretical 
values, was then calculated based on Eq. (2). The RSS was used as an 
objective function and was minimised as it represents the divergence 
between experimental and theoretical results. The relation between RSS 
and C13 for both variants #1 and #2 is presented in Fig. 7. Clear minima 
are visible in both diagrams. The optimum values of C13 were deter
mined, which were 1.334 GPa for variant #1 and 1.437 GPa for variant 
#2. It can be seen that the functions are locally sharp which may be due 
to the fact that multiple curves appear in the SAFE results and some 
points may falsely indicate a slightly lower RSS while the wrong curve is 
fitted. However, this effect is rather small for the global result. 

Since the SAFE method, in its simplest approach, does not provide an 
adequate separation of specific curves and all waves modes are coupled, 
including, for example, curves for horizontal or vertical shear waves (not 
considered in the current research), an authorial algorithm was pre
pared in Matlab® to extract only curves corresponding to the symmetric 
and antisymmetric wave modes. First, the visual identification of each 
curve of interest was performed. Second, a two starting points, i.e., 
points of the curve corresponding to its origin, were determined and the 
difference quotient was calculated for them. Then, using the fact that 
dispersion curves are smooth, the following points were determined as 
points with the closest different quotient to the original two. This step 

Table 5 
P-wave and S-wave velocities for samples printed in variants #1–2 (transversely 
isotropic material model).  

Variant cL,1 [m/s] cL,3 [m/s] cT,12 [m/s] cT,13 [m/s] 

#1  1830.7  1766.8  1044.3  920.7 
#2  1768.9  1862.5  1028.3  950.2  

Fig. 6. Experimental dispersion curves (2D-FFT white-blue map) with control points (yellow circles) and theoretical dispersion curves from SAFE (red lines): a) plate 
#P1, b) plate #P2. 

Fig. 7. Relation between RSS and C13 element of stiffness matrix C: a) variant #1 (sample #P1), b) variant #2 (sample #P2).  
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was performed repeatedly to cover the frequency range up to 400 kHz. 
To verify the results of optimisation, the theoretical (separated) curves 
for an optimal C13 value were superimposed on the experimental curves, 
altogether with the control points used for optimisation. The results are 
presented in Fig. 6. A good agreement between the experimental and 
theoretical approach is visible for both plates #P1 and #P2, which is an 
indication of the correctness of the calculations performed. Specific 
curves corresponding to certain symmetric (S0, S1,S2) and antisymmetric 
(A0, A1) wave modes have been identified. 

4.2.3. Calculation of elastic constants 
The complete sets of elements of stiffness matrix C for variants #1 

and #2 are presented in Table 6. Based on the determined elements, 
elastic constants were calculated using formulae (6)-(9). The results are 
given in Table 7. The first five constants are independent of each other 
and the remaining two constants depend on the first five. Since the raster 
angles of two consecutive layers were perpendicular in both printing 
variants, the elastic parameters were comparable. What is worth noting, 
the Young’s modulus in the plane of symmetry was similar, however, the 
modulus along the symmetry axis was lower for #1 and higher for #2. 
This could be the effect of the local disturbance of wave propagation at 
the edges of the cubic samples. The results could be verified by the 
existing literature. Since no specific studies considering the samples 
produced with the same printing parameters were found, the elastic 
constants can be compared only roughly. In [14] some other works were 
referred, showing the range of elastic modulus mostly between 2.2 and 
3.5 GPa, which agrees with our results. Some sources shown values of 
elastic modulus significantly lower (0.3 GPa) and significantly higher 
(9.5 GPa), however, these discrepancies resulted from the different 
sample sizes and test standards. Moreover, the producer’s datasheet 
states that elastic modulus of used PLA filament varies between 3.0 and 
3.4 GPa for different printing orientations (according to ASTM D3039 
standard). Considering the geometry of samples and accuracy of pro
duction process, the reduction of the elastic modulus obtained in our 
research is acceptable. 

4.3. Orthotropic material model (variant #3) 

4.3.1. Identification of mechanical parameters based on bulk wave 
velocities 

The samples produced in variant #3 did not meet the requirements of 
transverse isotropy, thus the orthotropic material model was used to 

characterise their mechanical behaviour. All of the P-wave velocities 
along the three axes x,y, z were different (see Table 4). The S-wave ve
locities in certain planes should be equal in pairs, however, but as the 
velocities along the x axis were indeterminable, this assumption was 
only verified for the y-z plane. The difference between cT,y(z) and cT,z(y) in 
relation to their mean value was equal to 1.00 %, so they were averaged 
and denoted as cT,23. The two remaining velocities (cT,y(x) and cT,z(x)) 
were taken directly and denoted as cT,12 and cT,13, respectively. As a 
result, six independent wave velocities were obtained for the sample 
printed with variant #3 (Table 8). 

Because of the fact that there are six different velocities, six of the 
nine independent coefficients of the stiffness matrix could be deter
mined (the diagonal ones). Using the formulae presented in Table 1 the 
diagonal elements are: C11 = 2.055 GPa, C22 = 3.619 GPa, C33 =

3.300 GPa, C44 = 1.193 GPa, C55 = 0.571 GPa, and C66 = 0.850 GPa. 
The non-zero elements off the main diagonal (C12, C13, C23), which do 
not appear in Table 1 remained unknown. 

4.3.2. Identification of remaining mechanical parameters based on 
dispersion curves 

The missing elements of the stiffness matrix were determined based 
on the guided wave dispersion curves measured for plate #P3, as in 
variants #1 and #2. Since the mechanical parameters along the x axis 
(perpendicularly to the direction of filaments deposition) and y axis 
(along the direction of filament deposition) were different, dispersion 
curves had to be determined along both these directions (using traces A 
and B, as shown in Fig. 5). Experimental dispersion curves measured 
along the y axis and x axis are presented in Fig. 8a and Fig. 8b, 
respectively. The curves along the y axis have a good quality, similar to 
the curves in variants #1 and #2. However, the curves along the x axis 
have a significantly lower quality, because of the fact that the wave 
propagation was disturbed by the structure of the filament deposition (it 
propagated perpendicularly to the filament deposition direction). For 
this reason, control points were determined for the following charac
teristic frequencies equal to: 50 kHz, 150 kHz, 250 kHz, and 350 kHz for 
curves along the y axis and only for 50 kHz and 150 kHz for the x axis 
(see Fig. 8). 

The theoretical dispersion curves were determined, as previously, 
using the SAFE method. The already defined diagonal elements of 
stiffness matrix C were used for the calculation. The elements off the 
main diagonal (C12, C13, C23) were assumed to be in the range between 
0 GPa and 2 GPa with a step of 0.01 GPa. Compared to the calculations 
for the transversely isotropic model, the step was increased to reduce the 
time of calculations, because a three-dimensional optimization would 
require a high computational cost. As before, the RSS function was 
calculated and minimized. Since RSS was a function of three variables, it 
was not possible to visualise it graphically in one diagram. For this 
reason, a few charts were prepared, representing the RSS function in 
relation to each individual variable, while the remaining two were 
heuristically set from the assumed range. It was observed that the RSS 
function obtained a clear minimum for C13 = 1.30 GPa and C23 =

1.01 GPa, while C12 seemed to not influence the RSS. In order to illus
trate these relations, three example plots have been made showing the 
relations between RSS and each of the three variables, while the 
remaining two were indicating minimum (C12 was assumed to be equal 
to C13 for the purposes of this representation). The results are presented 
in Fig. 9. The relations between RSS and C13 (Fig. 9b) and C23 (Fig. 9c) 
showed a substantial influence of both variables on the dispersion 
curves. However, some disturbances were observed, resulting from the 
previously mentioned fact that multiple curves associated with different 
wave modes appear in the SAFE results. The RSS function was expected 
to be smooth (as observed in previous studies [31,32]), so the local sharp 
minima should not be considered, and the appropriate values were ex
pected to be represented by local minima, which are clearly visible for 
both plots at C13 = 1.30 GPa, C23 = 1.01 GPa (as previously mentioned). 
In the case of C12 (Fig. 9a), the RSS function did not change significantly 

Table 6 
Elements of constitutive matrix C of samples printed in variants #1 and #2 
(transversely isotropic material model).  

Variant C11 [GPa] C33 [GPa] C12 [GPa] C13 [GPa] C44 [GPa] 

#1  3.559  3.315  1.243  1.334  0.900 
#2  3.407  3.778  1.104  1.437  0.983  

Table 7 
Elastic constants of samples printed in variants #1 and #2 (transversely 
isotropic material model).  

Variant E1 

[GPa] 
E3 

[GPa] 
G31 

[GPa] 
G12 

[GPa] 
ν31 

[–] 
ν13 

[–] 
ν12 

[–] 

#1  2.857  2.574  0.900  1.158  0.278  0.308  0.234 
#2  2.752  2.862  0.983  1.152  0.319  0.306  0.195  

Table 8 
P-wave and S-wave velocities for variant #3 (orthotropic material model).  

Variant cL,1  

[m/s] 
cL,2  

[m/s] 
cL,3  

[m/s] 
cT,12  

[m/s] 
cT,13  

[m/s] 
cT,23  

[m/s] 

#3  1368.1  1815.4  1733.6  880.0  720.9  1042.4  
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Fig. 8. Experimental dispersion curves (2D-FFT white-blue map) with control points (yellow circles) and theoretical dispersion curves from SAFE (red lines) for plate 
#P3: a) along the y axis (along the direction of filament deposition), b) along the x axis (perpendicularly to the direction of filament deposition). 

Fig. 9. Relation between RSS and optimized elements of stiffness matrix C: a) RSS vs. C12 (for C13 = 1.30 GPa, C23 = 1.01 GPa), b) RSS vs. C13 (for C12 = 1.30 GPa, 
C23 = 1.01 GPa), c) RSS vs. C23 (for C12 = C13 = 1.30 GPa). 

Fig. 10. Relation between RSS and optimized elements of stiffness matrix C: a) RSS vs. C12 = C13 and C23, b) RSS vs. C12 = C13 (for C23 = 1.011 GPa), c) RSS vs. C23 
(for C12 = C13 = 1.305 GPa). 
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and was constant with the exception of some sharp maxima. The func
tion had no local minimum even when the scale was changed. This could 
be due to the fact that the curves corresponding to the wave modes 
dependent on C12 were not included in the analysis (only wave modes 
propagating in 1–3 and 2–3 planes were considered according to the 
calculations and experiments). In order to determine C12, additional 
measurements are required for samples printed in different orientation 
to induce propagation of wave modes in 1–2 plane. However, it was not 
considered in the current study taking into account the difficulty of 
printing plate sample vertically. 

To overcome the above-described issue, it was assumed that C12 =

C13, since the P-wave wave velocities along 2 and 3 axes were similar 
(see Table 8). This assumption reduced the dimension of the optimiza
tion problem from 3 to 2, allowing the calculations to be performed with 
a relatively low cost in terms of time. In this case, an additional opti
mization was performed with higher accuracy of 0.001 GPa in the range 
between 1.1 GPa and 1.5 GPa for C12 = C13 and in the range between 
0.8 GPa and 1.2 GPa for C23 (based on the evaluated initial values of the 
parameters). Fig. 10a shows the RSS as a function of two variables. A 
clear minimum was visible, indicating the optimum values of the 
calculation parameters: C12 = C13 = 1.305 GPa and C23 = 1.011 GPa. 
Additionally, two sections of the chart are shown in Fig. 10b,c, repre
senting the RRS in relation to each variable, the second of which was 
optimal. The minima are present in both plots. As in the previous cal
culations, some disturbances can be identified, but their influence on the 
RSS function was irrelevant. The influence of C23 on the results was more 
pronounced, the RSS changes more significantly due to this value when 
compared to C12 = C13. 

Once the parameters C12, C13 and C23, had been determined, the 
calculation of the optimum dispersion curves was conducted using 
SAFE. As for variants #1 and #2, curve separation was performed and 
the curves corresponding to symmetric and antisymmetric wave modes 
were extracted. The final curves were compared with experimental re
sults and control points (Fig. 8). A good agreement was observed for the 
dispersion curves in both directions. As for the previous variants, spe
cific curves corresponding to certain wave modes were identified. 

4.3.3. Calculation of elastic constants 
After all calculations, the complete stiffness matrix was determined. 

All non-zero independent coefficients are listed in Table 9. The stiffness 
matrix was then inverted to obtain compliance matrix S. Based on its 
elements, the elastic constants were calculated according to Eq. (4). The 
elastic constants are given in Table 10. The first nine constants can be 
considered independent whereas the remaining three can be calculated 
based on the symmetry of the compliance matrix. The values can be 
compared with the results obtained for PLA by different authors. In [10] 
the elastic constants were (using the corresponding symbols): E1 =

1.542 GPa, E2 = E3 = 2.820 GPa, G12 = G13 = 0.715 GPa, ν12 = 0.275, 
ν13 = 0.293, ν23 = 0.016. Similar results were obtained in [13], where 
the elastic constants were equal to E1 = 1.460 GPa, E2 = E3 = 2.890 GPa, 
G12 = G13 = 0.817 GPa, ν12 = 0.35. There were some differences be
tween the current results and those reported in previous works, but these 
could be the effect of the slightly different printing parameters, the 3D 

printer used and the filament producer. Taking these factors into ac
count, the comparison was satisfactory. 

5. Conclusions 

The paper dealt with the problem of non-destructive identification of 
elastic parameters of additively manufactured samples. A two-stage ul
trasound-based procedure was introduced. The elastic constants were 
determined by the combined experimental-theoretical approach, uti
lizing bulk wave velocities and guided wave dispersion curves. The 
study resulted in the conclusions presented below.  

• The proposed method allowed the non-destructive characterisation 
of the mechanical behaviour of 3D printed samples satisfying the 
conditions of transversely isotropic and orthotropic material models. 
The analysis was conducted for three different variants of raster 
angles. The results were compared with the existing literature and 
showed satisfactory agreement.  

• It was found that the proposed approach was robust and effective for 
elements meeting the conditions of the transversely isotropic mate
rial model. Due to the relative simplicity of the model, most of the 
elements of the stiffness matrix were determined by simple bulk 
wave velocity measurements on cubic samples, leaving one unknown 
coefficient, which was determined by optimising dispersion curves. 
The values Young’s moduli varied between 2.6 and 2.9 GPa, shear 
moduli equalled between 0.9 and 1.2 GPa, whereas Poisson’s ratios 
ranged between 0.20 and 0.32.  

• The problem proved to be more complicated for the orthotropic 
model, as three elements remained unknown after the wave velocity 
measurements, making the optimization problem three-dimensional. 
Moreover, the dispersion curves were insensitive to one of the co
efficients, which led to an inevitable simplification, i.e., assumption 
that two of the three unknown elements are equal, which was proved 
meaningful for the considered sample. The results were as follows: 
Young’s moduli ranged between 1.3 and 2.8 GPa, shear moduli 
equalled between 0.6 and 1.2 GPa, and Poisson’s ratios changed 
from 0.07 to 0.59. For the possible use of the proposed procedure for 
characterization of generally orthotropic materials, some modifica
tions are required which leaves the field for further development of 
the described algorithm. 

The results obtained will be further used to prepare numerical 
models of AM samples and numerical simulations of wave propagation, 
focusing on non-destructive damage detection and imaging in this type 
of elements. The proposed technique can be used to determine the 
elastic parameters of different materials, such as PEEK or PEKK, which 
will be verified in the future. 
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