A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors

Roland Ryndzionek, Łukasz Sienkiewicz

PII: S0041-624X(21)00105-0
DOI: https://doi.org/10.1016/j.ultras.2021.106471
Reference: ULTRAS 106471

To appear in: Ultrasonics

Received Date: 23 October 2020
Revised Date: 17 May 2021
Accepted Date: 17 May 2021

Please cite this article as: R. Ryndzionek, L. Sienkiewicz, A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors, Ultrasonics (2021), doi: https://doi.org/10.1016/j.ultras.2021.106471

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.
Highlights

- A comprehensive and original review of recent studies (2015-2020) on the ultrasonic piezoelectric motors
- A classification of piezoelectric motors according to vibration types and output motion
- The working principles and performance of different structures
- Summary and future perspectives of ultrasonic piezoelectric motors
A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors

Roland Ryndzionek, Łukasz Sienkiewicz

- A comprehensive and original review of recent advances (2015-2020) on the ultrasonic piezoelectric motors.
- A classification of piezoelectric motors according to vibration types and output motion.
- The working principles and performance of different structures.
- Summary and future perspectives on ultrasonic piezoelectric motors.
A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors

Roland Ryndzionek, Łukasz Sienkiewicz

Gdansk University of Technology, Faculty Of Electrical And Control Engineering, Gdansk, Poland

Abstract

In this paper a comprehensive review of recent studies on the ultrasonic piezoelectric motors is presented. The authors focus on research articles published in the last five years mostly. The primary subject of this investigation is the development of piezoelectric ultrasonic motors including analytical, numerical and experimental analysis. In further sections, classification methods of piezoelectric motors, survey criteria and three main groups of ultrasonic piezoelectric motors with examples have been presented and described. Finally, the conclusions and future research perspectives have been proposed.

Keywords: piezoelectric motor, traveling wave motor, ultrasonic, multi-DOF, direct drive,

1. Introduction

Since the introduction of the first commercial ultrasonic transducer, a growing interest in the advancement of piezoelectric actuators and motors has been observed. Various new piezoelectric structures have been developed since then[1, 2, 3, 4, 5]. Thus, researchers recognize a real renaissance of this technology [6, 7, 8, 9, 10, 11]. In general, the penetration of piezoelectric technology reaches almost all fields of engineering technology today e.g. automotive, aerospace, precision manufacturing, optical scanning, bio-technology and
medicine [12, 13, 14, 15, 16, 17, 18] as well as energy harvesting [19, 20, 21, 22].

Developments in the ultrasonic actuator and motor technology are possible thanks to on-going research in the active materials development, especially considering novel high power and low loss ceramics and polymers [23, 24, 25, 26, 27, 28, 29]. Active materials that exhibit a significant and useful piezoelectric effect fall into three main groups: natural and synthetic crystals, polarized piezoelectric ceramics, and certain polymer films.

The most widely used piezoelectric material is ferroelectric ceramic - a polycrystalline ceramics like barium titanate (BaTiO3) and lead zirconate titanate (PZT) being the most common examples [30, 31, 32, 33]. Among the existing piezoelectric materials, hard PZT ceramics have the highest ability for application in the field of actuators, motors, or motion stages [34, 35, 36, 37]. Moreover, the increase of theoretical power density thanks to advances in material science can be an indication, that there is still a potential to be extracted from electro-active materials by a novel actuator and motor designs [38, 39].

The two most common classification methods of piezoelectric motors are based on either the vibration type generated by the inverse piezoelectric phenomenon, or the output motion produced by a motor (Figure 1, [40]).

In literature and in the industry the classification based on resonant and non-resonant vibration types has been utilized most frequently [51, 52, 53, 54]. The widest group of piezoelectric motors in terms of vibration generation is resonant or ultrasonic motors. The ultrasonic motor can be defined by the phenomenon in which electrical energy is converted by the inverse piezoelectric effect to obtain displacement of an actuator at one of its resonant frequencies in the ultrasonic range. This microscopic vibration is then amplified by means of friction or contact-less coupling with a moving element of the motor [55, 56, 57, 58].

This work aims to review recent advancements in the field of piezoelectric ultrasonic motors and to categorize them in terms of the macroscopic output motion generated, namely rotary and linear - single degree-of-freedom (DOF), spherical, rotary-linear and planar, which are multi-DOF designs.

The authors focused mostly on research articles published in the last five
Figure 1: A classification of piezoelectric motors according to vibration types and to output motion [40]: (a) walking linear motor [41, 42, 43]; (b) inertial linear motor [44, 45, 46]; (c) standing wave rotary motor [47, 48]; (d) traveling wave spherical motor [49, 50].

years. However, the authors made a few exceptions to highlight a unique concept. Search criteria were as follows:

- The article written in English appeared in a journal in the last five years (from 2015 to 2020).
- The primary subject of the article was the development of piezoelectric ultrasonic motors which included analytical, numerical and experimental analysis.
The measurement data should contain resonant frequencies, speed-torque characteristics for rotary motors, thrust for linear motors and speeds for each axis in the case of multi-DOF designs.

Figure 2: Percentage division of ultrasonic motor designs with respect to the macroscopic movement generated by the motor, according to the Scopus database for years 2015-2020.

Articles that did not present experimental analysis were excluded from the review. With such criteria the search was executed in Scopus and IEEE Explore databases. Title, abstract and keywords were analyzed for the string: ("linear/rotary/spherical/planar/rotary-linear" AND "ultrasonic" AND "motor").

After removing duplicates, analysing if the titles and abstracts fulfil the research criteria, the authors examined the full manuscripts. The Scopus database returned 261 records between 2015 and 2020, while 121 items were found in IEEE Explore for the same period. The most represented sub-group were rotary and linear motors, namely single DOF designs. The spherical, cylindrical or planar motors representing the multi-DOF sub-group were noticeably less frequently investigated (Figure 2).
This review is organised into five chapters which describe the main sub-
groups of ultrasonic motors (USM). Chapter 2 is dedicated to rotary ultrasonic
motors (RUSM), which are divided into traveling wave (TWUSM), standing
wave (SWUSM) and bending mode ultrasonic motors (BUSM). Linear ultrasonic
motors (LUSM) are presented in Chapter 3. The next chapter deals with multi-
DOF designs, such as spherical ultrasonic motors (SUSM) described in sub-
chapter 4.1, rotary-linear ultrasonic motors (RLUSM) - in sub-chapter 4.2 and
planar ultrasonic motors (PUSM) – in sub-chapter 4.3. The selected electro-
mechanical and geometrical motor parameters are presented in tables in the
corresponding chapters. In the final chapter, the authors give their opinion on
the present state of USM and list possible challenges and perspectives for future
ultrasonic motors.

2. Rotary ultrasonic motors

An ultrasonic motor is a drive system that uses a mechanical vibration in the
ultrasonic wave range as its driving source. The principle of operation of these
systems is based on the activity of a resonant mode of a mechanical structure
to generate a kinematic interface and to transform micro travel movements into
motion of large amplitude.

Most of the designs use the PZT ceramics to generate the vibrations [59, 60]. In
general, the piezoelectric motors are composed of four main parts: stator, rotor,
piezoelectric ceramics, and a dedicated power supply. Despite the relatively
simple mechanical design, there is a variety of structures that produce rotary
motion [61, 62]. Table 1 illustrates the mechanical output performances of some
existing rotary ultrasonic motors in the last few years.

2.1. Traveling and standing wave ultrasonic motors

The most common group among the rotary ultrasonic motors (among the
ultrasonic motors, as well) is traveling wave ultrasonic motors (TWUSM). Con-
sisting of a ring shape stator and driving tips, this structure is similar to a Shin-
sei motor [63] designed in 1986 [64, 65, 66]. The TWUSM have been applied
successfully in the manipulators and nano-positioning systems due to their high resolutions (e.g. camera focus system [67, 68]). The principle of operation of the TWUSM is based on traveling wave generation by the piezoelectric ceramic assembly which is supplied by two sinusoidal, phase-shifted voltages [69, 70, 71, 72] (Figure 3a). The direction of elliptic motion generated by the ceramics is the opposite to the direction in which a traveling wave propagates (Figure 3a) [73]. However, friction loss between the stator and the rotor, dielectric loss of the piezoelectric materials and mechanical damping loss of the stator are the heat sources. Thus, they generate significant heat and cause the temperature rise of the motor [74].

![Figure 3: a) A principle of operation for a TWUSM [75, 76]. A rotary traveling wave ultrasonic motor presented in b) Xuefeng Ma et al. "© 2021 IEEE. Reprinted, with permission from [77]" and c) Weishan Chen et al."© 2021 IEEE. Reprinted, with permission from [78].]

A structure described (Figure 3b) by Xuefeng Ma et al. in [77] has reduced numbers of PZT ceramics (from 128 in the first prototype to 16). A real novelty
comes with the PZT ceramics orientation and the polarization which is perpendicular to the stator. The dimensions of the motor are as follows: external diameter - 60 mm, thickness of the stator around 15 mm. For a supplied voltage of 400 Vp-p at 24.86 kHz the motor rotational speed is 52.45 rpm.

A next structure has been presented by Weishan Chen et al. in [78]. This motor uses 20 PZT stacks with opposite polarization nested alternately into the stator slots (Figure 3c).

The structure is symmetrical and uses two rotors to improve the mechanical output characteristics. The main dimensions of the motor are: external diameter of the stator - 60 mm, thickness of the stator - 15 mm, thickness of the full structure 67 mm. The motor resonant frequency is 19.85 kHz. With 150 Vp-p supplied to the ceramics, this motor obtained maximal speed of 146 rpm.

Figure 4: a) The ultrasonic micro-motor stator structure, front and back view. b) The manufactured prototype of micro-motor. "Reprinted from [79], with the permission of AIP Publishing."

Although, rotational speeds in the range of low hundreds of rpms are more common, rotary ultrasonic motors may reach very high rotational speeds. This has been proven by Yanqiang Zhao et al. The authors developed an oblate-type ultrasonic micro-motor with multi-layer piezoelectric ceramic and chamfered driving tips [79]. The motor consists of a stator, a rotor, and shells (Figure 4)
and has impressive micro-scale dimensions. Moreover, the stator is fabricated with a multilayer piezoelectric ceramic glued to a copper ring with six driving tips. In experimental tests, micro-motor reached 2100 rpm and 0.3 mNm at the voltage of 20 Vp-p and frequency of 35.5 kHz. Since then, even higher speed designs were proposed, reaching 7000 rpms at the drive voltage of 350 Vp-p and a motor with external dimensions of 29x9 mm [80].

The smaller subset of rotary ultrasonic motors is represented by the standing wave ultrasonic motor (SWUSM). The standing wave ultrasonic motor needs only one vibration mode excited by a single-phase sinusoidal voltage. Standing waves are produced whenever two waves of identical frequency interfere with one another. The stator/rotor contact is discontinuous, characterized by fixed points along the contact surface. In contrast to the TWUSMs, where the contact is constant, and the rotor moves along with the traveling wave.

A radial standing wave ultrasonic motor has been presented in Figure 5a and was designed by Xiaoxiao Dong in [81] and Chunrong Jiang et al. [82].

The principle of operation is based on utilizing the first-order radial vibration mode of the stator. The main part of the motor is stator, comprising of the PZT ceramics, the metal ring and the leaf springs (Figure 5b). The motor has been manufactured and the continuous contact behavior between the stator and rotor is confirmed by contact test results. The normal drive frequency of the stator is 74 kHz with rotary speed of 45 rpm and blocking torque of 0.4 Nm. This prototype is an example of micro-meter motor with the external diameter of the structure reaching 30 mm. In the further research the authors are declaring to focus on the improvement of the model of the interaction between the load and stator vibration.

The motor developed by Bai Deen et al. [83] and presented in Figure 6a has an interesting design. The motor consists of a leftward bending longitudinal–torsional convertor, and a rightward bending longitudinal–torsional convertor (stator), piezoelectric stack, rotor, and screws. Moreover, the convertor (stator) has driving tips with a specific shape (Figure 6b). Those tips amplify the vibrations produced by the piezoelectric ceramics.
A variety of experimental tests were conducted by authors. The optimum excitation frequency of the actuator for pushing the rotors was 20.86 kHz. The prototype obtained a peak no-load speed of 342 rpm. Furthermore, the maximum torque of 72 mNm was achieved at the speed of 60 rpm.

2.2. Bending mode ultrasonic motors

The third group of ultrasonic motors uses a bending mode of vibration to create macroscopic rotary motion [84, 85]. On one hand, bending mode ultrasonic motors (BUSM) have a simpler structure which is favorable in terms of industrial application. On the other hand, such mechanical construction results in less stable contact conditions (a single point of contact). The BUSMs typically consist of a stator, rotor, piezoelectric ceramics, and a shaft [86, 87, 88, 89, 90], resembling the usual build of other rotary ultrasonic motors. The difference is in the exciting mode of piezoelectric ceramics - the bending mode of the stator is
used. In general, the stator consist of two cylindrical blocks with a piezoelectric ceramics placed between them (Figure 7). Xiaohui Yang et al. in [92] have presented an evolution of their research (Figure 8a). A cylindrical ultrasonic motor using a longitudinal-bending hybrid vibrations has been developed. This is an improved version of the cylindrical motor described in [93]. A new design requires only two pieces of PZT ceramics.
instead of four pieces. The operating principle of the motor employs two basic vibration modes, which are the first longitudinal mode and the third bending mode of the beam. The stator consists of a metal beam, cylinder, and two ceramic plates. Moreover, the cylinder and beam have been manufactured from the same block of aluminum.

![Diagram of motor components]

Figure 8: a) Longitudinal-bending hybrid USM proposed by Xiaohui Yang et al. [92]. "Reprinted, with permission from Elsevier." b) BUSM proposed by Yingxiang Liu [94]. "Reprinted, with permission from Elsevier."

In laboratory tests the authors obtained a maximum speed of 42 rpm and a maximum output torque of 6.26 mNm with drive voltage and frequency of 100 Vp-p and 57.47 kHz, respectively.

Another original structure has been developed by Yingxiang Liu in [94]. This rotary piezoelectric motor utilizes multi-bending vibrators (Figure 8b). The purpose of this design was to achieve a high output power. The presented motor has four bending vibrators which are set around the circumference of the rotors. Moreover, due to the symmetrical structure, utilization of two rotors is possible. Each vibrator is equipped with two groups of PZT elements (PZT-A and PZT-B). The multi-bending feature of the vibrators is due to the different voltage signals thus different bending modes. PZT-A and PZT-B can excite the flexural bending mode of vibration in the circumferential direction of the
rotor and the radial direction of the rotor, respectively. The prototype has been set under experimental investigation and mechanical characteristics have been verified. The working frequency was from 22.0 kHz to 28.0 kHz with drive voltage of 200 Vp-p. In this case the maximum speed was 301 rpm. The maximum achieved torque was 9.2 Nm, which is indeed an impressive result for an ultrasonic motor.

Table 1: Performances of chosen existing ultrasonic rotary piezoelectric motors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Frequency [kHz]</th>
<th>Speed [rpm]</th>
<th>Torque [mNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. Ma et al.</td>
<td>2020</td>
<td>24.86</td>
<td>52.45</td>
<td>30</td>
</tr>
<tr>
<td>L. Yang et al.</td>
<td>2020</td>
<td>55.86</td>
<td>405</td>
<td>20</td>
</tr>
<tr>
<td>D. Bai et al.</td>
<td>2019</td>
<td>20.86</td>
<td>342</td>
<td>72</td>
</tr>
<tr>
<td>C. Jiang et al.</td>
<td>2019</td>
<td>74.0</td>
<td>45</td>
<td>400</td>
</tr>
<tr>
<td>L. Wang et al.</td>
<td>2019</td>
<td>77.3</td>
<td>2200</td>
<td>0.5</td>
</tr>
<tr>
<td>L. Wang et al.</td>
<td>2018</td>
<td>50.1</td>
<td>7000</td>
<td>0.5</td>
</tr>
<tr>
<td>R. Ryndzionatek et al.</td>
<td>2018</td>
<td>24.4</td>
<td>62</td>
<td>400</td>
</tr>
<tr>
<td>P. Hareesh et al.</td>
<td>2018</td>
<td>54</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>V. Dabbagh et al.</td>
<td>2017</td>
<td>49.6</td>
<td>122</td>
<td>0.32</td>
</tr>
<tr>
<td>D. Xu et al.</td>
<td>2016</td>
<td>40.5</td>
<td>64</td>
<td>10.4</td>
</tr>
<tr>
<td>X. Ynag et al.</td>
<td>2016</td>
<td>57.47</td>
<td>342</td>
<td>6.26</td>
</tr>
<tr>
<td>Y. Zhao et al.</td>
<td>2016</td>
<td>39.5</td>
<td>2000</td>
<td>0.37</td>
</tr>
<tr>
<td>Y. Ma et al.</td>
<td>2016</td>
<td>44.8</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>Y. Liu et al.</td>
<td>2016</td>
<td>21.5</td>
<td>158</td>
<td>53</td>
</tr>
<tr>
<td>T. Peng et al.</td>
<td>2015</td>
<td>20</td>
<td>147</td>
<td>22.5</td>
</tr>
<tr>
<td>W. Chen et al.</td>
<td>2014</td>
<td>19.85</td>
<td>146</td>
<td>1000</td>
</tr>
<tr>
<td>Y. Liu et al.</td>
<td>2013</td>
<td>25.1</td>
<td>298</td>
<td>9300</td>
</tr>
</tbody>
</table>

With 30% of total USM proposed in the considered period, rotary ultrasonic motors are the second largest group among the USM designs. Moreover, it is the most widely recognized type of piezoelectric ultrasonic motor, arguably
thanks to TWUSM concept introduced in the 1970s and commercialized in the 1980s. Modern applications of RUSMs include high precision positioning stages evaluated for space or drive elements in high-end distance and angle measurement stations [102, 103]. The performances of some existing RUSMs are presented in Table 1 and Table 2. The listed values were extracted directly, or they were assessed based on geometry provided in the references. Modern rotary USM can achieve impressive mechanical characteristics, with maximal speed up to 7000 rpms and torque up to 9.2 Nm. With dimensions of the active parts in the micro-meter range, rotary USMs present elevated torque and power density compared to traditional motors designs.
Table 2: Performances of chosen existing ultrasonic rotary piezoelectric motors - continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Power density [W/kg]</th>
<th>Torque density [Nm/kg]</th>
<th>Torque/Volume [Nm/m³]</th>
<th>Volume [m³]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>2</td>
<td>3.67</td>
<td></td>
<td></td>
<td>3.00E-2</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>4.63E+3</td>
<td>4.32E-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>5.87E+2</td>
<td>1.23E-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>3.83E+4</td>
<td>1.05E-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9.72</td>
<td>0.14</td>
<td>7.96E+1</td>
<td>6.28E-6</td>
<td>3.60E-3</td>
</tr>
<tr>
<td>90</td>
<td>0.04</td>
<td>9.46E+1</td>
<td>5.28E-6</td>
<td>1.30E-2</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>0.80</td>
<td>2.83E+3</td>
<td>1.41E-4</td>
<td>5.00E-1</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>0.01</td>
<td>6.62E+4</td>
<td>7.55E-9</td>
<td>5.00E-2</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>2.33E+2</td>
<td>1.37E-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>15.6</td>
<td>2.08</td>
<td>6.47E+3</td>
<td>1.61E-6</td>
<td>5.00E-3</td>
</tr>
<tr>
<td>92</td>
<td>2.38</td>
<td>0.27</td>
<td>8.04E+2</td>
<td>7.79E-6</td>
<td>2.35E-2</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>6.72E+2</td>
<td>5.51E-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>2.28E+4</td>
<td>8.78E-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>18.99</td>
<td>3.35</td>
<td>1.23E+4</td>
<td>4.30E-6</td>
<td>1.58E-2</td>
</tr>
<tr>
<td>78</td>
<td>28.89</td>
<td>5.56</td>
<td>1.05E+4</td>
<td>9.54E-5</td>
<td>1.8E-1</td>
</tr>
<tr>
<td>94</td>
<td>3.50E+4</td>
<td>2.66E-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Linear ultrasonic motors

In general, a linear ultrasonic motor (LUSM) is a structure that can realize a bidirectional motion by utilizing two separate vibration sources with a phase difference or two superimposed vibrations from one source on the stator \cite{104, 105, 106}. Compared with the electromagnetic motor, LUSM has many advantages e.g. high thrust at low speed, structure without reduction gears or low noise operation \cite{107, 108, 109, 110, 111, 112, 113}. The basic LUSM design can be realized as a very simple structure, composed only of a stator and a mover. In particular, the stator incorporates a piezoelectric material and a mover is realized as a slider \cite{114, 115}. Table 3 presents the mechanical output performances of some existing linear ultrasonic motors.

The first structure that should be introduced is a bimodal standing wave ultrasonic motor developed by Xiang Li et al. \cite{116}. Extended research of the motor has been presented in \cite{117}. A dynamic model taking into account nonlinearities of piezoelectric transducers under high drive voltages is considered. The authors are continuing their research and study on LUSMs \cite{118}. The prototype is presented in Figure 9 and is composed of a stator with eight PZT-8 piezoelectric patches which are bonded symmetrically onto a contact tip and a bar. The performance of the prototype is analyzed under different voltage levels from 50 Vp-p to 400 Vp-p (Figure 10). The maximum measured no-load speed was 0.8 m/s (at drive voltage of 400 Vp-p and resonant frequency of 39.5 kHz). The application field of this prototype is listed as a precision positioning due to the high step resolution.

Similar structure of LUSM presented in \cite{119} by Shaopeng He et al. is dedicated to deep-sea applications. However, this motor design uses only four piezoelectric ceramics which in combination with the aluminum plate forms a stator. The stator is symmetrical on the xoy and yoz axes (Figure 11). The ceramics are divided into two groups with opposite polarization directions in each group. During the simulation analysis, authors investigated the influence of water pressure on the resonant frequency and called it a wet modal analysis.
However, the results of the analysis showed that pressure of water has little effect on the resonant frequencies. The prototype (Figure 12) has been tested in submerged state which, as predicted, lowered its performance. The measured velocity of LUSM was 214 mm/s at the drive voltage and frequency of 200 V and 72 kHz, respectively, while the water pressure was 8 MPa.

Some linear ultrasonic motor designs exhibit large output thrust along with the favorable speed. Such an example is a motor (Figure 13) developed by Shao Sijia et al. presented in [120]. The typical no-load speed and maximum output thrust of the prototype are 0.83 m/s and 56 N under applied voltage of 150 Vrms. However, this optimized design was first reported in 2010 [121].

Another high-powered and high-thrust LUSM is the structure designed (Figure 14) by Jianye Niu et al. in [122]. The authors reported the maximal thrust force around 96.1 N and no-load sliding speed of 1470 mm/s. The force and

Figure 9: a) The structure of the proposed motor by Xing Li et al. [116, 117], b) Cross-section of the actuator and direction of the vibrations. "Reprinted, with permission from Elsevier."
power density reached 234.1 N/kg and 67.8 W/kg respectively, which are relatively high ratios among conventional LUSMs.
Figure 12: The prototype of the motor proposed by Shaopeng He et al. © 2021 IEEE. Reprinted, with permission from [119].

Figure 13: The structure of the motor proposed by Shao Sijia [120].

Figure 14: The structures of LUSMs developed by Jianye Niu in [122].
Finally, in Figure 15, the ultrasonic motor with bidirectional motion is presented. This structure has been developed by Liu Zhen et al. in [104]. The motor is composed of a stator, a slider, a preload device, and a base which makes it a simple and compact construction. The output characteristics of the prototype are as follows: maximal thrust of 4.0 kg, which is 33.3 times its own weight, and maximum no-load speed of 385 mm/s.

![Figure 15: The novel LUSM driven by a single mode developed by Liu Zhen. "Reprinted from [104], with the permission of AIP Publishing."](image)

Linear ultrasonic motors are the most represented group in this review with 52% of total number of USMs, experiencing constant growth since mid 1980s. This is due to inherit qualities of LUSMs such as: simple mechanical structure with possibility of adaptation to a given application (various shapes reported in the literature), direct drive with high positioning accuracy and high thrust density. Such features situate LUSMs as a good candidates in the nano-positioning stages (S. Shao et al. [120] - LUSM driving a working platform), miniature machining tools, micro-lens drives in digital cameras (e.g. X. Li et al. [123]), precise biomedical manipulators and robot joints (e.g. J. Liu et al. [124] and...
S. He et al. [119]). The simple structure of LUSMs sets them as good basis for multi-DOF systems (Table 3). Parameters such as thrust density, weight and size have been presented in Table 4 as a reference point for comparisons.

Table 3: Performances of chosen existing linear piezoelectric ultrasonic motors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Frequency [kHz]</th>
<th>Speed [m/s]</th>
<th>Thrust [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Niu et al. [125]</td>
<td>2020</td>
<td>26.60</td>
<td>0.140</td>
<td>3.6</td>
</tr>
<tr>
<td>J. Niu et al. [122]</td>
<td>2020</td>
<td>54.34</td>
<td>1.47</td>
<td>96</td>
</tr>
<tr>
<td>Y. Tanoue et al. [126]</td>
<td>2020</td>
<td>84.73</td>
<td>0.148</td>
<td>0.29</td>
</tr>
<tr>
<td>X. Li et al. [116]</td>
<td>2020</td>
<td>39.5</td>
<td>0.75</td>
<td>ND</td>
</tr>
<tr>
<td>Z. Yin et al. [127]</td>
<td>2020</td>
<td>20.1</td>
<td>0.19</td>
<td>10</td>
</tr>
<tr>
<td>L. Wang et al. [128]</td>
<td>2018</td>
<td>46.95</td>
<td>0.140</td>
<td>2.8</td>
</tr>
<tr>
<td>J. Liu et al. [124]</td>
<td>2018</td>
<td>24.15</td>
<td>0.827</td>
<td>27</td>
</tr>
<tr>
<td>S. Shao et al. [120]</td>
<td>2016</td>
<td>24.43</td>
<td>0.83</td>
<td>56</td>
</tr>
<tr>
<td>J. Yan et al. [129]</td>
<td>2016</td>
<td>31.12</td>
<td>0.735</td>
<td>1.1</td>
</tr>
<tr>
<td>Z. Liu et al. [104]</td>
<td>2016</td>
<td>24.4</td>
<td>0.385</td>
<td>40</td>
</tr>
<tr>
<td>X. Li et al. [123]</td>
<td>2015</td>
<td>174</td>
<td>0.23</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Table 4: Performances of chosen existing linear piezoelectric ultrasonic motors - continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Weight [kg]</th>
<th>Thrust density [N/kg]</th>
<th>Size [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Niu et al. 122</td>
<td>0.41</td>
<td>234</td>
<td>116×91×32</td>
</tr>
<tr>
<td>Y. Tanoue et al. 126</td>
<td>0.005</td>
<td>58</td>
<td>20×10×6</td>
</tr>
<tr>
<td>Z. Yin et al. 127</td>
<td>1.3</td>
<td>7.64</td>
<td>192×52×52</td>
</tr>
<tr>
<td>L. Wang et al. 128</td>
<td>0.06</td>
<td>46.7</td>
<td>62×16×16</td>
</tr>
<tr>
<td>J. Liu et al. 124</td>
<td>0.26</td>
<td>103</td>
<td>66×58×58</td>
</tr>
<tr>
<td>S. Shao et al. 120</td>
<td>24.43</td>
<td>2.3</td>
<td>100×100×35</td>
</tr>
<tr>
<td>J. Yan et al. 129</td>
<td>0.1</td>
<td>11</td>
<td>83×13×13</td>
</tr>
<tr>
<td>Z. Liu et al. 104</td>
<td>0.12</td>
<td>440</td>
<td>56×50×8</td>
</tr>
<tr>
<td>X. Li et al. 123</td>
<td>0.0002</td>
<td>60</td>
<td>5×2×2</td>
</tr>
</tbody>
</table>

4. Multi degree of freedom ultrasonic motors

The new functionalities resulting from the simultaneous management of several degrees of freedom within one mechanism (e.g. robotised micro-surgery, micro-positioning for microelectronics or near field microscopy) gave the researchers a particularly rich field of investigation [130, 131, 132, 133, 134, 135]. Numerous multi-DOF designs have been reported [136, 137, 138, 139, 140] utilizing the principles of traveling and standing waves or combinations of longitudinal (‘33’), transversal (‘31’) and shear modes (‘15’) described below.

An active element polarized along its length and subjected to a difference of potential applied between two electrodes perpendicular to its polarization axis Ox3 undergoes, by the converse piezoelectric effect, a change in length in the same direction, thus works in mode 33. In a second configuration (mode 31), the element can be polarized in its thickness direction and subjected to an external field oriented in the same direction. Due to transverse coupling, a change in length perpendicular to the polarization direction can be observed. Finally, the application of an electric field perpendicular to the direction of polarization along the axis Ox3 tends to turn the elementary dipoles around the axis Ox2.
The resulting deformation can be defined as the shear mode or mode 15. The above clarification is made with the reference axes of the coordinate system marked as Ox3 – z, Ox2 – y and Ox1 – x.

In the following paragraphs, three sub groups of multi-DOF motors are mentioned, namely: Spherical Ultrasonic Motors, which are two or three DOF, Rotary-Linear and Planar Motors - two DOF designs (Table 5).

4.1. Spherical ultrasonic motors

One of the first ultrasonic motors called 'spherical' was the motor developed by S. Toyama in 1991 [141] and later upgraded in [142]. The main purpose of its design was a drive dedicated to the assembling machines, laser cutting or as a single joint in robotics. Nowadays, due to the ongoing progress in the fields of active materials and MEMS technology, many novel, advanced spherical ultrasonic motors (SUSM) are reported.

The first highlighted construction, has been developed by Zhibo Huang, presented in [143] and dedicated to the robot’s visual driving systems. The reported motor includes a spherical stator, which utilizes a piezoelectric ceramic spherical shell (Figure 16a). Moreover, special driving feet, enabling an uniform drive of the rotor, have been placed on the stator. An external rotor formed from two hemisphere shells rotates around X, Y, and Z axes respectively, making it a 3-DOF SUSM (Figure 16b). The authors prepared the FEA analysis to obtain the resonance frequencies, which are 31.697 kHz, 31.608 kHz, and 32.272 kHz, respectively (Figure 16c).

The main dimensions of the stator are: sphere outer diameter of the piezoelectric ceramic spherical shell - 30 mm, a diameter of each electrode area - 18 mm, the height of each driving foot - 3 mm and sphere radius of each driving foot - 2 mm. The mechanical output characteristic of the manufactured prototype (Figure 17) were as follows: the maximum rotary velocity of the rotor around X, Y, and Z axes was 245 rpm, 240 rpm and 318 rpm, respectively. The drive voltage was 140 Vp-p at a frequency of 31.7 kHz.

The second structure worth further examination is a design concept that
has been described in [144] by Zheng Li et al. This structure is an impressive, complex motor, which requires high manufacturing precision. In addition, it is an example of an inverted design known from the [138]. The structure consists of three stators (Figure 18a and b) which are placed at an inclined angle of 72.4 degrees in the X-Y plane. A hollow rotor is placed on the stators with the pre-pressure regulator ensuring the stability of the motor. Thus, the 3-DOF movement is available.

The prototype has been tested in laboratory conditions (Figure 19). The resonance frequency of the motor stator was 40.375 kHz. The series of experiments have been conducted to determine the mechanical output performance. The motor has been tested under different drive frequencies and mechanical output performance was measured in the X-axis, Y-axis and Z-axis. For the frequency of 42.25 kHz the prototype obtained the highest speeds of: 29 rpm, 17 rpm and 16 rpm in the X, Y, and Z axes, respectively. The authors are declaring to gradually miniaturize the motor structure in the future.

Examples of similar 3-DOF SUSMs, often termed as multi-DOF ultrasonic
motors are reported \cite{146, 147, 148}. These structures have the same spherical, multi-degree rotor and utilize a combination of longitudinal and orthogonal bending vibrations generated in the stator.

In \cite{146}, the design by Shi Shengjun et al. uses two sets of PZT ceramics - the inner set and the outer set as shown in Figure 20a. In total, the motor has 28 pieces of PZT ceramics. The best drive frequency for x, y and z-axis was 26.0 kHz, 26.2 kHz and 26.2 kHz, respectively, while the drive voltage was set to 100 Vp-p. The above drive parameters resulted in the maximum speed for x, y and z-axis of 44, 55, 42 rpm, respectively.
In [147] the ‘Compact Traveling Wave Micromotor’ has been reported. The motor is characterized by micro dimensions of a stator with a size of 0.75 mm × 1.55 mm. The authors presented a different approach compared to other SUSMs highlighted in this section, utilizing a sandwiched Langevin vibrator as the stator. A cuboid bulk PZT polarized longitudinally occupies the main part of the motor with a metal piece bonded on the top and four copper electrodes, which are attached on the four sides of the PZT. (Figure 18b). Thus, perpendicular bending modes can be stimulated.

In laboratory tests, this micromotor achieved a no-load speed of 1850 rpm and maximum torque of at least 2 µNm at 60 Vp-p and frequency of 447 kHz. According to authors, the micromotor is still under development stage and should be submitted to further miniaturization.
In [148] a sandwich-type multi-DoF ultrasonic motor with hybrid excitation has been presented (Figure 20c). It adopts the Langevin type structure but with a square stator’s shape. The main motor components are: 3 cubes (a flange bolt and two end-caps) and two pairs of PZT ceramics placed between them. The cube has external dimensions of 20x20x10 mm, while a rotor is a bearing steel ball with 50 mm diameter. The principle of operation is based on a three driving modes which are: the first longitudinal vibration and two orthogonal second bending vibration modes. In combination, they enable the spherical rotor rotation around x, y and z-axis, respectively. The prototype achieved no-load speeds of 109.8 rpm, 107.9 rpm, and 290.8 rpm in the YOZ, XOZ, and XOY driving modes, respectively. The maximum applied voltage was 200 Vp-p at the frequency of 61.7 kHz.
4.2. Rotary-linear ultrasonic motors

In [150], a high-thrust rotary-linear ultrasonic motor (RLUSM) is reported. This design utilizes a three-wavelength exciting mode which is composed of the first and the third bending vibration modes along the axial direction and circumferential direction, respectively. The rotary motion can be converted into linear motion using the screw output shaft, and the torque is converted into linear thrust. The fabricated prototype (Figure 21) includes three main parts:
a metal elastomer, rectangular piezoelectric plates and a screw output shaft. The metal elastomer and twelve rectangular piezoelectric plates constitute the stator, which external dimensions are 36x46 mm. The output velocity can reach 0.97 mm/s with the load of 4 N when the peak-to-peak voltage and the excitation frequency are 120 Vp-p and 28.9 kHz. The maximum thrust of the motor is 50.8 N which results in a force density of 247.8 N/kg. Power density and force-volume ratio are 2.94E-3 W/kg and 2.54E+6 N/m³, respectively.

Figure 21: A structure of a rotary-linear ultrasonic motor: a high-thrust screw-type piezoelectric ultrasonic motor prototype by Hengyu Li et al. in [150] and schematic drawing of the experimental test bench.
Another example of RLUSM is described in [151]. The authors name this structure as a ‘Rotary-Percussive Ultrasonic Drill’ and design it specifically for rock sampling in Minor Planet Exploration. The drill/motor mainly consists of PZT ceramics, rotary unit, percussive unit, drill tool, and housing, (Figure 22). Four PZT ceramics are situated in a bolt-clamped structure and placed between rotary unit and percussive unit. Under the drive voltage, PZTs generate longitudinal vibration on both sides. The motor converts one side of longitudinal vibration into rotary motion and the other side into percussive motion. FEA is used to adjust the resonant frequencies of rotary and percussive units to be the same and to ensure an effective drilling performance.

Figure 22: Rotary-Percussive ultrasonic drill by Wang Yinchao et al. in [151]: CAD drawing and assembled prototype. ’’© 2021 IEEE. Reprinted, with permission from [151].’’
The fabricated prototype includes the following dimensions: drill tool diameter and length is 3 mm and 60 mm, respectively, total length is 270 mm, while the total weight is 590 g. The vibration characteristics and drilling performance are investigated through tests. Those yield rotary speed of 117.75 rpm and maximum torque of 38 mNm at the preload force of 18 N. Drilling depth of the prototype can reach to 22 mm under the weight on bit of 7 N. The authors aim to improve the drilling capability and to increase the power efficiency in future works.

Chosen electro-mechanical parameters have been presented in Table 5 and Table 6 as reference points for comparisons. Furthermore, spherical and rotary ultrasonic motors have been compared in Figure 26 located in the following chapter.

Table 5: Performances of chosen existing spherical and rotary-linear piezoelectric ultrasonic motors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>DOF</th>
<th>Frequency [kHz]</th>
<th>Speed [rpm]</th>
<th>Torque [mNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. Huang et al.</td>
<td>2020</td>
<td>3</td>
<td>31.73</td>
<td>318</td>
<td>15.3</td>
</tr>
<tr>
<td>Z. Li et al.</td>
<td>2020</td>
<td>3</td>
<td>40.35</td>
<td>29</td>
<td>ND</td>
</tr>
<tr>
<td>S. Shi et al.</td>
<td>2018</td>
<td>3</td>
<td>54.3</td>
<td>106</td>
<td>17.5</td>
</tr>
<tr>
<td>Y. Wang et al.</td>
<td>2018</td>
<td>2</td>
<td>19.98</td>
<td>118</td>
<td>38</td>
</tr>
<tr>
<td>J. Yan et al.</td>
<td>2018</td>
<td>3</td>
<td>38.23</td>
<td>327</td>
<td>ND</td>
</tr>
<tr>
<td>L. Wang et al.</td>
<td>2018</td>
<td>3</td>
<td>45.2</td>
<td>280</td>
<td>ND</td>
</tr>
<tr>
<td>S. Shi et al.</td>
<td>2017</td>
<td>3</td>
<td>26.2</td>
<td>55</td>
<td>118</td>
</tr>
<tr>
<td>X. Yang et al.</td>
<td>2016</td>
<td>3</td>
<td>61.2</td>
<td>290</td>
<td>ND</td>
</tr>
<tr>
<td>L. Yan et al.</td>
<td>2016</td>
<td>3</td>
<td>446</td>
<td>1519</td>
<td>2.0E-3</td>
</tr>
<tr>
<td>J. Wang et al.</td>
<td>2015</td>
<td>2</td>
<td>49.0</td>
<td>92</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 6: Performances of chosen existing spherical and rotary-linear piezoelectric ultrasonic motors - continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. Huang et al.</td>
<td>1.23E+2</td>
<td>ND</td>
<td>ND</td>
<td>1.25E-4</td>
<td>ND</td>
</tr>
<tr>
<td>S. Shi et al.</td>
<td>1.01E+4</td>
<td>ND</td>
<td>ND</td>
<td>1.74E-6</td>
<td>ND</td>
</tr>
<tr>
<td>Y. Wang et al.</td>
<td>ND</td>
<td>33.9</td>
<td>0.06</td>
<td>ND</td>
<td>0.59</td>
</tr>
<tr>
<td>S. Shi et al.</td>
<td>2.42E+3</td>
<td>ND</td>
<td>ND</td>
<td>4.88E-5</td>
<td>ND</td>
</tr>
<tr>
<td>X. Yang et al.</td>
<td>2.29E+3</td>
<td>ND</td>
<td>ND</td>
<td>8.72E-10</td>
<td>ND</td>
</tr>
<tr>
<td>J. Wang et al.</td>
<td>4.82E+2</td>
<td>ND</td>
<td>0.17</td>
<td>1.87E+4</td>
<td>0.544</td>
</tr>
</tbody>
</table>

4.3. Planar ultrasonic motors

The last subgroup of Multi-DOF USMs is represented by two-DoF motors implementing singular plane movement (Table 7). In general, such structures can also be called planar ultrasonic motors (PUSM). The existing nomenclature of PUSMs is not entirely uniform, hence the authors adopt the simultaneous motion along two axes as a key feature of PUSMs. Nevertheless, this Multi-DOF subgroup is not frequently represented, with only 5% of total USM represented in this work. The majority of piezoelectric planar motors reported in the literature is operating at low frequencies (<100 Hz) or single kHz and is not considered in this review.

Yingxiang Liu et al. developed a two-DoF planar motor using a longitudinal-bending hybrid sandwich transducer (Figure 23d). The principle of operation is based on composition of the second longitudinal and fifth bending modes of the motor. The reported prototype is composed of two end caps, two horns, four longitudinal-bending PZT ceramics and eight half-pieces of bending PZT ceramics.

All parts are clamped by a screw (Figure 23c). The authors measured series resonance frequencies and note the fifth bending vibrations along OZ and OY.
axis at 22.38 and 22.25 kHz, while the second longitudinal vibration along the OX-axis is 22.13 kHz. The laboratory tests resulted in a maximum no-load velocity in X and Y-directions at 685 and 657 mm/s under voltages of 500 Vp-p, respectively (Figure 23a and b). Authors claim to focus on its application in a deployable mechanism and dimension optimization in the future.

Another structure is a PUSM designed by Xiangyu Zhou et al. in [166]. This motor utilizes five vibration modes: symmetric and anti-symmetric bending vibration modes of stator in the XOY plane, symmetric and anti-symmetric longitudinal vibration modes of stator along the x-axis and symmetric bending vibration mode in the XOZ plane. The main parts of the motor are: a stator with two Langevin transducers and a pair of isosceles triangular beams, piezoelectric ceramics, electrodes and a screw. The prototype has been manufactured (Figure 24) and tested.
The resonance frequencies have been measured in all vibration modes: symmetric bending mode and anti-symmetric bending mode in the XOY plane, symmetric longitudinal mode and anti-symmetric longitudinal mode along the x-axis and symmetric bending mode in the XOZ plane were 37.04, 36.51, 65.71, 64.36 and 34.98 kHz, respectively. Finally, the mechanical output parameters have been tested. The maximum no-load speed was 211.3 mm/s under the drive frequency of 35.45 kHz and voltage of 400 Vp-p.

In this section chosen multi-DOF ultrasonic motors have been described. This subgroup of USM represents 18% of motors considered in this review, with spherical designs being the most represented multi-DOF subset in the examined period (Figure 2). Embedding more degrees-of-freedom into a single motor is a major way of building size-efficient systems, because reducing the
number of actuators lowers the required space and weight while it does not limit functionality. Therefore, modern multi-DOF USMs are popular in applications, where requirements of high resolution along with restrictions on weight and volume are excluding other types of motors. Those include, but are not limited to: micro-scale machining tools, surgical manipulators, automatic visual driving systems, haptic interfaces and nano-precision motion stages. Several authors report extreme environments applications such as: extraterrestrial or deep-sea exploration.

5. Conclusion and outlook

In this work, a comprehensive review of resonant ultrasonic piezoelectric motors is provided. This review classifies the existing resonant type piezoelectric ultrasonic motors into four groups in terms of their macroscopic output motion. Those are: Rotary Ultrasonic Motors (RUSM), Linear Ultrasonic Motors (LUSM), Spherical Ultrasonic Motors (SUSM), Rotary-Linear Ultrasonic Motors (RLUSM) and Planar Ultrasonic Motors (PUSM). A total of 261 papers dealing with piezoelectric ultrasonic motors have been published in various research journals since 2015. The average number of papers per year is 43.5 for the reviewed period compared to 57.6 for the first half of the 2010s. A decline in the number of papers published per year can be observed in the Figure. Those values were obtained thanks to the methodology explained in the first
Thus, works issued as a conference materials or articles written in languages other than English were excluded from this review.

Figure 25: Number of USM designs per year with respect to the output motion generated. According to the Scopus database for years 2015-2020.

LUSMs and RUSMs, are undoubtedly the most widely recognised groups, with the average of over 22 and 13 papers per year, respectively. On one hand, LUSMs and RUSMs are experiencing a less dynamic development during the reviewed time frame, with lower number of R&D reports per year compared to the first and beginning of second decade of the XXI century. While novel and unique designs are still emerging, research activities are less intensive in those subgroups of Ultrasonic Motors. On the other hand, one can observe increased efforts in the field of Multi-DOF Ultrasonic Motors, namely: SUSM, RLUSM and PUSM designs. The authors believe that this can be attributed to ongoing miniaturization and advancements in CNC machining and metal 3D printing techniques as well as developments in the field of ceramics with lower losses and stable piezoelectric coefficients in broader temperature range. Moreover, the functional efficiency of Multi-DOF designs proves itself well in applications
where specific motions are required and the drive’s volume must be minimized.

The performance of reviewed RUSM and SUSM prototypes can be assessed thanks to a comparison presented in Figure 26. Similar comparison is provided for LUSMs, RLUSMs and PUSMs in Figure 27. No-load speeds and stall torque/thrust values found there, together with power densities, torque densities and torque-volume ratios listed in the Tables 2, 4, 6 and 7 indicate how diverse the ultrasonic motors are and how can they compete with more traditional electro-magnetic motors. The performance of USMs is especially evident in applications requiring mm-size dimensions and weight in the range of single grams.

Several future challenges must be addressed to sustain the interest in USMs in space and volume constrained applications and to reintroduce them to a broader range of use-cases.

The most evident perspectives for USM development are listed as follows.

Improvement of the life cycle. Current USMs operate under the friction
<table>
<thead>
<tr>
<th>Load [N]</th>
<th>Speed [mm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear USM</td>
<td>125</td>
</tr>
<tr>
<td>Rotary-linear USM</td>
<td>122</td>
</tr>
<tr>
<td>Planar USM</td>
<td>126</td>
</tr>
</tbody>
</table>

Figure 27: Comparison of Linear and Planar USMs in terms of no-load speed in mm/s and maximal load in N; Labels indicate the references.

Coupling between the stationary and the moving parts of the motor. This feature limits the motor’s longevity to single tens of thousands of hours. New friction coupling methods as well as optimisation of existing materials and surfaces should be further investigated. Another trend aiming to overcome this challenge is a contact-less design, using near-field acoustic radiation created in the air or fluid between the rotor and the stator [55, 169].

Temperature management. The heating of USMs is inherently connected with their low efficiency. Elevated temperature affects the resonant frequencies, even further reduces the efficiency and finally degrades the mechanical output of the motor. Future research activities should focus on further material development, in particular, achieving lower dielectric dissipation and higher mechanical quality factors, while maintaining good electromechanical coupling factors. Another perspective for ensuring favourable resonance conditions is developing new, robust control strategies with drive frequency tracking [170, 171].

Simplicity of manufacturing. A great variety of USM structures is re-

37
ported in the time-frame of this review, yet, many of them are difficult or impractical to manufacture. Instead, a trend to design a simple motor with fewer number of parts should be generally adopted. Modern fabrication methods such as additive ultrasonic manufacturing from metal foils can aid with the simpler motor assembly, increase the repeatability and reliability, improving the functionality and efficiency of novel ultrasonic motors.

The piezoelectric ultrasonic motors are present roughly for 50 years, and there is a visible decline in the interest in USMs compared with the previous decades. However, novel or perfected designs are still emerging. This fact can be attributed to trends existing in the industry, e.g. ongoing miniaturisation and growing need for functional efficiency. From a critical point of view, USMs may not ever be reintroduced commercially on a larger scale.

The R&D effort will continue, nevertheless, aimed at specific applications. In the author’s opinion, those use cases imposing considerable limitations on size and volume, while requiring high functionality remain the niche for ultrasonic motors.

References

39

storage density of PZT with different Zr/Ti ratios, Vacuum 156 (2018) 456–462. doi:https://doi.org/10.1016/j.vacuum.2018.08.015

URL http://www.mdpi.com/2072-666X/10/2/96

URL https://www.mdpi.com/1424-8220/19/23/5184

[53] Y. Liu, L. Wang, Z. Gu, Q. Quan, J. Deng, Development of a Two-Dimensional Linear Piezoelectric Stepping Platform Using Longitudinal-

46

URL https://www.mdpi.com/2076-3417/9/24/5309

URL http://www.shinsei-motor.com/English/

URL https://iopscience.iop.org/article/10.7567/JJAPS.24S2.739

S. Li, W. Ou, M. Yang, C. Guo, C. Lu, J. Hu, Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters, Ultrasonics 57 (C) (2015) 159–166. doi:10.1016/j.ultras.2014.11.007

URL https://www.mdpi.com/2076-3417/10/16/5605

URL http://www.mdpi.com/2072-666X/9/11/578

[144] Z. Li, Z. Wang, P. Guo, L. Zhao, Q. Wang, A ball-type multi-DOF ultra-

Y. Wang, Q. Quan, H. Yu, D. Bai, H. Li, Z. Deng, Rotary-percussive ultrasonic drill: An effective subsurface penetrating tool for minor planet

[158] Q. S. Pan, L. G. He, C. L. Pan, G. J. Xiao, Z. H. Feng, Resonant-type inertia linear motor based on the harmonic vibration synthesis of piezo-

URL \url{http://www.mdpi.com/2072-666X/8/8/245}

Author declaration

Instructions: Please check all applicable boxes and provide additional information as requested.

1. **Conflict of Interest**

Potential conflict of interest exists:

We wish to draw the attention of the Editor to the following facts, which may be considered as potential conflicts of interest, and to significant financial contributions to this work:

The nature of potential conflict of interest is described below:

☑ No conflict of interest exists.

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

2. **Funding**

☐ Funding was received for this work.

All of the sources of funding for the work described in this publication are acknowledged below:

[List funding sources and their role in study design, data analysis, and result interpretation]

☑ No funding was received for this work.

3. **Intellectual Property**

☑ We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

4. **Research Ethics**

☑ We further confirm that any aspect of the work covered in this manuscript that has involved human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

☐ IRB approval was obtained (required for studies and series of 3 or more cases)
1. Written consent to publish potentially identifying information, such as details or the case and photographs, was obtained from the patient(s) or their legal guardian(s).

5. Authorship

The International Committee of Medical Journal Editors (ICMJE) recommends that authorship be based on the following four criteria:

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

2. Drafting the work or revising it critically for important intellectual content; AND

3. Final approval of the version to be published; AND

4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors. For more information on authorship, please see http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two.

All listed authors meet the ICMJE criteria. We attest that all authors contributed significantly to the creation of this manuscript, each having fulfilled criteria as established by the ICMJE.

One or more listed authors do(es) not meet the ICMJE criteria.

We believe these individuals should be listed as authors because:

Please elaborate below

We confirm that the manuscript has been read and approved by all named authors.

We confirm that the order of authors listed in the manuscript has been approved by all named authors.

6. Contact with the Editorial Office

The Corresponding Author declared on the title page of the manuscript is:

Roland Ryndzionalek

This author submitted this manuscript using his/her account in EVISE.

We understand that this Corresponding Author is the sole contact for the Editorial process (including EVISE and direct communications with the office).
He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

✓ We confirm that the email address shown below is accessible by the Corresponding Author, is the address to which Corresponding Author’s EVISE account is linked, and has been configured to accept email from the editorial office of American Journal of Ophthalmology Case Reports:

Roland.ryndzionek@pg.edu.pl

☐ Someone other than the Corresponding Author declared above submitted this manuscript from his/her account in EVISE:

[Insert name below]

☐ We understand that this author is the sole contact for the Editorial process (including EVISE and direct communications with the office). He/she is responsible for communicating with the other authors, including the Corresponding Author, about progress, submissions of revisions and final approval of proofs.

We the undersigned agree with all of the above.

Author’s name (Fist, Last) Signature Date

1. Roland Ryndzionek
 07.10.2020

2. Łukasz Sienkiewicz
 07.10.2020