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Abstract: In this survey paper, typical solutions that focus on the reduction in negative effects
resulting from the common-mode voltage influence in AC motor drive applications are re-examined.
The critical effectiveness evaluation of the considered methods is based on experimental results of
tests performed in a laboratory setup with an induction machine fed by an inverter. The capacity
of a common-mode voltage level reduction and voltage gradient du/dt limitation is discussed to
extend motor bearings’ lifetime and increase motor windings’ safety. The characteristic features of
the described solutions are compared and demonstrated using laboratory results.

Keywords: common-mode voltage; AC drive; voltage gradient; ground leakage current; bearing
current; common-mode disturbances

1. Introduction

Since the second half of the 20th century, dynamic development of energy conversion
methods using power electronic inverters has been observed. As a result, a new generation
of electric drives has been developed, whose DC current machines have been replaced by
AC current engines (induction and synchronous) supplied by power electronic converters.
Thanks to the development of advanced control methods, mechanical variables (torque
and angular velocity of the motor shaft) may be fully controlled. Modern electric drives
are independent of power source types, and most popular topologies are composed of
an indirect frequency converter with a controlled or non-controlled AC/DC converter
supplying a DC/AC inverter [1].

In most popular electric drives, basic three-phase full-bridge inverters are commonly
used; however, for medium- and high-power applications, multilevel inverters are also
applied [2]. Due to the application of fast-switching power transistors, modern variable-
frequency drives may operate with carrier frequencies up to 200 kHz [3,4]. It should be
noted that, nowadays, a tendency for increasing the switching frequency is still observed,
which enables a reduction in system dimensions, in order to increase power conversion
density, which allows improving inverters’ operational features. This trend is additionally
strengthened by the spreading of modern power electronic switches made with silicon
carbide SiC and gallium nitride GaN techniques [5,6].

Despite the unquestionable advantages of conventional two-level bridge inverters
(such as simplicity, low cost, various control strategies or susceptibility to modifications),
some disadvantages should also be indicated, which are mainly caused by the switch
commutation process under non-zero currents and voltages (hard switching). For hard
switching conditions, voltage gradients may exceed 10 kV/µs, which results in a high du/dt
gradient in the voltage supplying the machine [7]. The long-line effect appears in the wire
connecting the motor and inverter. Due to an impedance mismatch between wires and
the motor, a wave reflection of the voltage at the line ends occurs (Figure 1) [6,8–10]. As a
result, a significant overvoltage may be observed at electrical machine terminals, whose
level may reach twice that of the inverter’s nominal supply voltage. Hence, the stress on
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the cables’ and motor windings’ insulation increases, which is the reason for the decrease
in the insulation lifetime and reduces the drive’s mean time to failure (MTTF) [6,11,12].
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currents are excited, which may be a significant danger for the electromagnetic compati-
bility of the environment due to the possibility of interaction through magnetic and ca-
pacitive coupling with other elements [14]. Considering the impact of generated dis-
turbances on operational features and the reliability of electric drives, a common-mode 
EMI reduction is one of the most important challenges accompanying power inverters’ 
application [15].  

The main path of common-mode disturbance currents consists of wires connecting 
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[16,17]. The levels of generated common-mode perturbations are mainly determined by 
parasitic capacitances between semiconductors and the radiator (usually grounded) [18]. 
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Figure 1. A phase voltage measured on the motor terminals (motor was connected to the inverter
through a cable of 2.5 m in length).

Another consequence caused by applying power inverters in electric drives is the
generation of electromagnetic interference emissions (EMI) [13]. It should be noted that the
level of generated EMI is one of the main criteria of AC drive inverters’ practical evaluation.
As a result of high du/dt gradients, undesirable high-frequency disturbance currents are
excited, which may be a significant danger for the electromagnetic compatibility of the
environment due to the possibility of interaction through magnetic and capacitive coupling
with other elements [14]. Considering the impact of generated disturbances on operational
features and the reliability of electric drives, a common-mode EMI reduction is one of the
most important challenges accompanying power inverters’ application [15].

The main path of common-mode disturbance currents consists of wires connecting the
inverter to the motor and the PE protective ground wire as the return wire (Figure 2) [16,17].
The levels of generated common-mode perturbations are mainly determined by parasitic
capacitances between semiconductors and the radiator (usually grounded) [18]. However,
parasitic capacitive couplings between semiconductors and the grounded radiator, as well
as ground capacitances of DC link buses, Cp1 and Cp2, allow reducing the length of the
common-mode currents’ paths to the shortest possible loop, excluding impedance of the
supply grid [15].
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A high du/dt of the common-mode (CM) voltage slopes excites significant peaks in the
leakage current circulating in a PE protective ground wire, which may provoke undesirable
operation of residual current circuit breakers, incorrect activation of fire alarms or various
sensor operation disturbances [19,20]. It should also be noted that some part of the CM
voltage at motor terminals is transferred to a non-grounded motor shaft, which results in an
occurrence of a shaft voltage uSH [21]. The shaft voltage influence results at bearing currents’
flow through motor bearings, and, sometimes, these currents are also closed through
bearings of the machine loading the motor [22]. The bearing currents cause pits, craters
or stripes that appear on the rolling surfaces of bearings, which leads to deterioration of
bearings and reduces the MTTF drive factor [18,23]. Especially destructive are electrostatic
discharge machining (EDM) bearing currents when insulating lubricating grease films in
rotating bearings are broken down due to exceeding the maximum withstand value by
the machine shaft voltage [24]. It should be noted that the probability of EDM current
occurrence depends on the CM voltage maximum value, and it increases according to the
growth of the CM voltage level [25,26].

The aim of this paper is a critical evaluation of selected methods focused on reducing
negative effects resulting from CM voltage impact. The comparative evaluation is based
on analysis of approaches presented in the literature and experimental tests of the selected
solutions. In the first part of this paper, a mechanism of CM voltage generation in an
electric drive fed by a conventional two-level bridge inverter is described. Next, a review
of methods and experimental results is presented in the form of tables and diagrams to
demonstrate the effectiveness of the compared solutions.

2. Mechanism of Common-Mode Voltage Generation in Electric Drive Fed by a
Conventional Hard-Switched Two-Level Bridge Voltage Inverter

In a hard-switched two-level bridge inverter (Figure 3), due to the application of a
high-capacity capacitor CF, the inverter input voltage uF remains constant and is equal
to the supply voltage UDC [8]. Assuming that ground capacitance Cp1 = Cp2, the voltage
between DC buses and the ground PE equals UDC/2 for a “+” bus and, adequately,−UDC/2
for a “−” bus. The values of inverter output voltages uA_PE, uB_PE and uC_PE are determined
by an actual state of inverter transistors TF1–TF6, and, exemplarily, for voltage uC_PE, the
following relation may be formulated:

uC_PE = uTF6 −
UDC

2
(1)
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At steady state, voltage uC_PE equals UDC/2 if transistor TF6 is turned off, or uC_PE =
−UDC/2 if transistor TF6 is turned on. Analogous relations may be formulated for output
voltages uA_PE and uB_PE.
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Considering the scheme presented in Figure 3, where motor windings are represented
by impedance Zo, the value of a common-mode voltage uN_PE results from

uN_PE = uC_PE − uC (2)

Moreover, the following relations are also valid:

uA_PE = uN_PE + uA, (3)

uB_PE = uN_PE + uB, (4)

which leads to
uA_PE + uB_PE + uC_PE = 3uN_PE + uA + uB + uC. (5)

Assuming symmetry of motor windings’ impedances:

uA + uB + uC = 0, (6)

Thus, the common-mode voltage uN_PE is given by

uN_PE =
uA_PE + uB_PE + uC_PE

3
(7)

The DC buses’ ground capacitances Cp1 and Cp2 and capacitance CPE (between the
grounded motor frame and a neutral point N of star-connected stator windings) form a
voltage divider; hence, e.g., for an inverter state of 000 related to TF1, TF2 and TF3, the
common-mode voltage uN_PE is described by

uN_PE = −UDC
Cp1

Cp1 + Cp2 + CPE
. (8)

However, in most cases, it can be assumed that CPE << Cp1 and Cp1 ≈ Cp2; hence, at
steady state, the common-mode voltage uN_PE is only determined by a value of the supply
voltage UDC and by a state of inverter transistors TF1–TF6. To summarize, for inverter
active states uN_PE = ± UDC/6 and uN_PE = ± UDC/2 for the zero vectors 000 and 111.

Considering Equation (1), it can be recognized that the value of derivative duC_PE/dt
depends on the rate of change in transistor TF6’s voltage:

duC_PE
dt

=
duTF6

dt
, (9)

Hence, the value of derivative duN_PE/dt is given by

duN_PE
dt

=
d(uC_PE − uC)

dt
=

duTF6

dt
− duC

dt
. (10)

Considering the scheme presented in Figure 3, the dominant part of a ground leakage
current iPE flowing in a PE protective wire from the motor to the inverter is closed in a loop
including a motor ground capacitance CPE. Thus, the value of the current iPE is mainly
determined by a value of gradient duN_PE/dt, which is correlated with values of derivatives
duA_PE/dt, duB_PE/dt and duC_PE/dt resulting from the rate of inverter transistors’ voltage
changes. It should also be noted that value of capacitance CPE depends on the motor type,
and, typically, for motors with power from 1 to 50 kW, it varies from 2 to 10 nF [27,28].

3. Review of Methods Dedicated to CM Voltage Reduction and Limiting Negative
Effects Resulting from uN_PE Voltage Impact

The problem of the measurement and reduction in negative effects resulting from
CM voltage impact arose with the dissemination of electric drives fed by voltage inverters.
One of the most important aspects affecting the MTTF value of electric drives results from
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bearing current occurrences in electric machines [19,22]. A shaft grounding, application of
conductive greases or dedicated shielded cables, as well as the use of insulated or hybrid
bearings, are proposed to reduce bearing currents [22,23,29]. Nevertheless, considering
the mechanism of excitation and character of bearing currents, it should be noted that
application of one chosen solution may cause a limitation of one type of bearing current and
a significant increase in other types of bearing current at the same time (see Table 1) [22].
For example, when one end of the motor shaft is grounded via a brush, EDM currents
may be completely reduced; however, the possibility of rotor ground current excitation
increases if a non-insulated clutch is applied between the motor and load.

Table 1. Effectiveness of the most commonly applied solutions dedicated to bearing current reduction.

Solution
Bearing Current Type EDM Currents Circulating Currents Rotor Ground Currents

shielded cables no influence possible increase at higher
rotor shaft speed partial reduction

grounding of one end of rotor shaft via
brush complete reduction

effective, if an opposite
bearing is made as hybrid
bearing or insulated one

possible increase if a
non-insulated clutch is
applied between motor

and load

insulated bearings partial reduction partial reduction partial reduction

hybrid bearings complete reduction complete reduction complete reduction

A complete reduction in bearing currents is only provided when relatively expensive
hybrid bearings with ceramic rolling elements (Figure 4a) are applied at both ends of the
motor shaft. It must be also noted that application of insulated bearings with an insulating
layer placed at the outer bearing surface (Figure 4b) results in a partial reduction in EDM
currents—about 40 to 60% [22,23].
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It should be noted that those solutions depicted in Table 1 do not affect the primary
source of bearing currents, which is a CM voltage excited by an inverter. In the consid-
ered inverter system, the highest possibility of destructive EDM current excitation occurs
for inverter zero states 000 or 111 when the uN_PE voltage reaches its maximum values.
Hence, the possibility of a reduction in EDM current occurrence is only possible when
the amplitude of the CM voltage is efficiently limited. Basing on the literature review,
some exemplary solutions may be specified. In [8,30], specially dedicated active zero
voltage control (AZVC) modulation methods were proposed in which two opposite active
vectors with exactly the same duration are applied instead of inverter zero vector 000 or 111
(Figure 5). Theoretically, the application of the AZVC method enables a reduction in uN_PE
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voltage maximum levels to ±UDC/6. However, if inverter transistors are switched in two
different branches at the same time, undesirable spikes, whose amplitude exceeds±UDC/2,
may then be noted in the CM voltage waveforms [30]. Moreover, the application of the
AZVC method may decrease the quality of the motor current [8]. Another modification of
the modulation technique focused on CM voltage reduction is based on using the tri-carrier
PWM method with a fixed or adaptive carrier phase displacement angle [31,32]. As a result,
significant suppression of the CM voltage harmonic at the carrier frequency is reported, and
uN_PE voltage levels may be effectively reduced to ±UDC/6. Additionally, a 50% reduction
in the leakage ground current may be achieved; however, an increase in the motor current
THD is a negative effect of the applied method [32]. Moreover, significant modifications of
inverter control algorithms are needed. It is worth mentioning that similar works have also
been carried out for multilevel inverters [33].
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Figure 5. Principle of inverter output voltage forming: (a) classic space vector pulse width modulation
(SVPWM); (b) active zero voltage control modulation.

Another approach is based on using specially dedicated active common noise canceller
circuits (ACCs) [34,35]. In ACCs, the reduction in CM voltage levels is ensured by the
formation of an appropriate compensation voltage, which is added to the phase voltages
through a transformer TM placed between the motor and inverter (Figure 6) [36]. The
solution provides a reduction in uN_PE voltage levels of more than 90% regardless of the
inverter transistors’ state [34]. Additionally, if an ACC operates in a configuration with an
active common-mode filter, 20 dB of the average CM voltage attenuation for a frequency
higher than 10 MHz is reported [36]. However, the four windings’ transformer TM should
be capable of operating with a high switching frequency which significantly increases the
complexity of the system. As a result, the application of Mn-Zn ferrite as the magnetic core
of the transformer is proposed to ensure CM voltage suppression in a range of frequencies
up to several MHz [36]. It should also be noted that application of an ACC requires access
to both DC link buses between the rectifier and inverter. In the case of commercially
available high-integrated devices, this requirement is often difficult to realize because
manufacturers do not usually make these terminals available to users.
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Figure 6. Active common noise canceller.

If a three-phase motor M is equipped with open stator windings, it may be fed by a
dual two-level inverter in the configuration of inverters X and Y, which are supplied by
voltage source UDC (Figure 7) [37,38]. In the presented configuration, a zero voltage vector
is formed as a combination of opposite active vectors generated by inverters X and Y. A
full synchronization between inverter X’s and inverter Y’s transistors’ switching moments
should be ensured to provide proper operation of the solution. As a result, control systems
and control algorithms become complicated. As it is reported in [39], the presented solution
ensures CM voltage maximum level suppression to ±UDC/3; however, due to the high
complexity, it is not widely used in practical applications.
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Interesting results are found when a soft-switched inverter is used to feed an electric
machine. In such inverters, additional resonant circuits are used to ensure switching
transistors under zero voltage (ZVS) or zero current conditions (ZCS) [40]. In comparison
with hard switching, soft switching results in reduced du/dt and di/dt gradients of voltages
and current waveforms during commutation processes, which enables the limitation of
the duN_PE/dt value below 500 V/µs. Parallel quasi-resonant DC link inverters (PQRDCLI)
with a quasi-resonant circuit placed between the inverter and supply source UDC seem to
be an especially attractive alternative for a basic two-level bridge inverter (Figure 8a) [41].
As a result of the resonant process, the inverter input voltage uF is periodically reduced to
zero to form zero voltage notches, which provides ZVS conditions of all inverter transistors
(Figure 8b). In PQRDCLI, a quasi-resonant circuit is activated only during the inverter’s
main transistors’ switching processes, and it becomes inactive for the rest of the time [41].
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This allows reducing the total power losses generated and the EMI level in a quasi-resonant
circuit and enables implementation of control methods based on SVPWM modulators,
which are widely used in hard-switched inverter control algorithms [42].
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In [20,43], PQRDCLI topologies with two insulating switches T1,D1 and T2,D2 placed
in DC link buses were presented, which ensures separation of the motor from the supply
voltage UDC during inverter transistors’ switching (Figure 8a). As a result, CM voltage lev-
els are limited to ±UDC/6 (in comparison to ±UDC/2 for a hard-switched inverter); hence,
the maximum levels of the motor shaft are also significantly reduced, which decreases the
possibility of EDM current occurrence. It should also be noted that the ground leakage
current iPE and shaft-grounding current at PQRDCLI operation are also limited (by about
five times in comparison with a hard-switched inverter). As it is reported in [20,44], in
comparison with a hard-switched inverter, a reduction in the du/dt gradient during switch-
ing processes in PQRDCLI results in a decrease in the generated conducted disturbances,
especially in the range of frequencies from 0.6 to 15 MHz. However, the higher PQRDCLI
topology complexity, which results in more complicated control algorithms and an increase
in costs, is the main disadvantage of soft-switched inverters. Moreover, further works
are still necessary to optimize component parameters of the quasi-resonant circuits that
should improve the energy efficiency of the considered solutions. It should also be noted
that the common use of modern semiconductors produced with wide-gap materials may
encourage further wider practical use of soft-switched inverters due to the limitation of
problems resulting from the fast switching of transistors [45].

One of the basic methods focused on reducing negative effects resulting from CM
voltage impact is the application of passive filters. This approach is relatively simple,
and its adoption into electric drives does not require any modification of the inverter
construction, which is often needed if more advanced solutions are implemented [46].
Hence, using the additional motor chokes, the sine-wave filters, the du/dt chokes and
the common-mode chokes is the most popular solution met in commercial applications.
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It should be noted that these techniques do not require any modifications of the motor
construction, and hence they can be applied to various motor types.

Due to the low complexity, additional motor chokes installed between the motor
and inverter are willingly used (Figure 9). This solution enables smoothing the motor
current and a reduction in du/dt voltage gradients at the motor terminals. The inductance
of motor chokes depends on the motor power, and it varies from tens of µH for high-
power drives to a single mH for low-power applications. It is worth mentioning that a
permissible fundamental frequency voltage drop at the motor choke inductance LD at rated
load conditions should not exceed 5% [8].
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The typical sine-wave filters are low-pass LC filters (Figure 10) smoothing inverter
output voltage waveforms, which enables forming motor currents and voltage waveforms
to a near sinusoidal profile. The most popular topology of the sine-wave filter is composed
of inductors LS and star-connected capacitors CS, as presented in Figure 10 [5,47]. It is
worth mentioning that more complicated solutions with an increased number of inductors;
with a neutral point of capacitors CS connected alternatively to inverter DC buses or to
a midpoint of capacitors forming the DC link; or with a neutral point grounded are also
proposed [27,48,49]. However, these solutions are more complicated, and their application
often requires intervention in the internal inverter construction.
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Considering the sine-wave filter topology as it is presented in Figure 10, inductance
LS forms a resonant circuit with filter capacitance CS, whose resonant frequency fr is given
as follows [5]:

fr =
1

2π
√

LSCs
(11)

Filter parameters must be selected to meet the following requirements:

fout � fr � fsw, (12)
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where fout is a fundamental output frequency and fsw is a switching frequency resulting
from the carrier frequency. If the resonant frequency fr is significantly lower than frequency
fsw, additional damping resistors do not have to be applied because some damping is
achieved by the loss in the filter inductor LS core. From Equation (11)’s results, inductance
LS should be large to reduce capacitance CS; however, its maximum value is limited by a
permissible fundamental frequency voltage drop (it should be less than 5%). The proposed
sine-wave filter design methods are usually based on analysis of inverter transistors’
switching frequency; nevertheless, methods basing on the analysis of the motor impedance
are also described [5]. A typical value of inductance LS varies from hundreds of µH to
several mH, and the value of capacitance CS reaches several µF.

Comparing with motor chokes, the cost of sine-wave filters is higher. Moreover,
implementation of a sine-wave filter requires modification of a motor control algorithm
due to the introduction of an additional phase shift between voltages and motor currents
by the filter [50]. It should also be noted that the application of sine-wave filters results
in additional power loss generation on filter elements, which may be significantly higher
than reported for other solutions [5,51].

The main task of the du/dt chokes installed between the motor and inverter is the
reduction in du/dt voltage gradients affecting the motor. The inductance of the du/dt
chokes is significantly lower than that of motor chokes or sine-wave filters, and it ranges
from a single µH to hundreds of µH. If wires connecting the inverter and motor are long
(more than 10 m), application of specially dedicated du/dt filters is also proposed [6,7].
Such filters are composed of a passive LC filter and an overvoltage reduction circuit [52]
(Figure 11). Values of inductance LDT and capacitance CDT are lower than in sine-wave
filters, which results in a lower cost and smaller dimensions. Application of du/dt filters
enables a reduction in the du/dt gradient of less than 400 V/µS and limiting overvoltage
to 1.3·UDC [52,53]. However, practical implementation of du/dt filters requires access to
both DC link buses of the inverter, which, in many commercial devices, cannot be ensured.
Hence, in comparison with other simpler solutions, the usability of du/dt filters is limited.
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In order to reduce common-mode current values, common-mode (CM) chokes in-
stalled between the motor and inverter are widely used (Figure 12a) [8]. A CM choke
introduces additional impedance in the common-mode disturbance currents’ flow loop
between the motor and a common-mode voltage source UCM (inverter), which results in a
reduction in CM (Figure 12b). Three-phase CM chokes are composed of three symmetrical
windings wound on a common core—usually, toroidal cores are used (Figure 12c) [54].
The mutual inductance between each winding is identical. For symmetrical three-phase
currents flowing between the motor and inverter, a resultant flux in a CM choke core is
zero; hence, in that case, CM choke impedance may be neglected [8]. As a result, CM
chokes do not take part in differential-mode disturbance reduction. The CM choke param-
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eters should be fitted to avoid saturation of the core by the current flowing through the
windings [3,55]. It should also be noted that the problem of CM choke design is still actual,
and it is discussed in many papers [3,17,54].
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4. Experimental Results

The effectiveness of the most popular selected solutions basing on alternative ap-
plication of a motor choke, a du/dt choke, a CM choke and a sine-wave filter (in the
configuration presented in Figure 10) was verified experimentally in a laboratory setup
with a 7.5 kW induction motor type Sg132 M4 fed by a commercial inverter, Parker AC10
10G-44-0170-BF (7.5 kW, 17A, 3 × 400 V). The parameters of the used chokes and filter
were fitted to the motor and inverter requirements according to procedures described in
application notes and the available literature [8].

4.1. Common-Mode Impedance Characteristics

Installation of a filter or chokes between the inverter and motor affects the impedance
of the common-mode disturbances’ main propagation path. The common-mode impedance
ZC frequency characteristics of a circuit composed of a cable, motor and chokes or a
filter were obtained using the impedance analyzer Keysight E4990A in the configuration
presented in Figure 13. Frequency characteristics ZC(f) were measured between the short-
circuited input terminal ABC and a PE protective wire. Two cables of the same type
(four wires, non-shielded) but different lengths (1 m and 10 m) were applied during the
performed test.
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affect the impedance ZC(f) characteristics in the frequency range up to 500 kHz regardless 
of the cable length (Figure 15). A left shift in resonant frequencies is noticed at a higher 
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total loop inductance. Using the motor choke (3RTM LD = 3.8 mH/18A, Trafeco) results in 
a noticeable increase in the ZC impedance value in the frequency range from 300 kHz to 2 
MHz (Figure 16). It is worth mentioning that this effect is less visible for a longer cable 
(Figure 16b). Moreover, additional resonance at the frequency of 300 kHz is also excited 

Figure 13. A common-mode impedance ZC measurement setup.

At the first step, a motor common-mode impedance characteristic was measured. As
it is presented in Figure 14a, the impact of motor capacitive components is distinguishable
in almost the full considered range of frequencies, with a dominant impact of capacitance
CPE between the stator windings and grounded motor frame in a range of frequencies up
to 50 kHz. An impact of cable parasitic components is especially recognized at a higher
frequency range (more than 2 MHz), and it increases with the cable length, which results
in the appearance of additional resonances (Figure 14b,c).
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cable.

The application of the du/dt choke LDT = 0.31 mH type 3RTU-21 (Trafeco) does not
affect the impedance ZC(f) characteristics in the frequency range up to 500 kHz regardless
of the cable length (Figure 15). A left shift in resonant frequencies is noticed at a higher
frequency, which results from the additional du/dt choke inductance implemented in the
total loop inductance. Using the motor choke (3RTM LD = 3.8 mH/18A, Trafeco) results in
a noticeable increase in the ZC impedance value in the frequency range from 300 kHz to
2 MHz (Figure 16). It is worth mentioning that this effect is less visible for a longer cable
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(Figure 16b). Moreover, additional resonance at the frequency of 300 kHz is also excited
for both considered cables’ lengths. Similar results are noticed when the sine-wave filter
composed of an inductor LS = 3.8 mH and a capacitor CS = 15 µF is applied (Figure 17). For
a 10 m cable, a decrease in resonant frequencies from 50 to 20 kHz and from 90 to 60 kHz is
observed, which results from the interaction between the impedances of the filter, motor
and cable parasitic components (Figure 17b).
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Figure 17. Measured impedance ZC(f) frequency characteristics: (a) motor + sine-wave filter (LS = 3.8 mH, CS = 15 uF) +
1 m cable; (b) motor + sine-wave filter (LS = 3.8 mH, CS = 15 uF) + 10 m cable.

The highest impact on the ZC(f) characteristic is noticed when a CM choke (LC = 0.72 mH)
is applied (Figure 18). A distinct common-mode impedance value increase is observed
for a frequency higher than 200 kHz; however, this effect is determined by the cable
parameters, and it is significantly weakened if the cable length grows. Moreover, the CM
choke impedance excites additional resonance with a frequency between 200 and 500 kHz
(depending on the cable length), which is especially visible when a 1 m cable is used
(Figure 18a).
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sulated clutch. Star-connected capacitors Cd (3 × 680 pF) were used to measure a com-
mon-mode voltage uN_PE affecting motor windings. Additionally, a measurement of a 
phase voltage uC_PE referred to as the PE ground potential was also performed. 

The Tektronix DPO4034 oscilloscope equipped with the high-voltage differential 
probe P5205A (100 MHz) and the current probe TCP2020 (50 MHz) was used to record 
voltage and current waveforms. Tests were performed under two different cable lengths 
(1 m and 10 m) and different configurations of filters and chokes installed between the 
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Figure 18. Measured impedance ZC(f) frequency characteristics: (a) motor + CM choke (LC = 0.72 mH) + 1 m cable; (b)
motor + CM choke (LC = 0.72 mH) + 10 m cable.

4.2. Voltage and Current Waveforms

The laboratory setup for experimental tests is presented in Figure 19. The Parker AC10
10G-44-0170-BF (7.5 kW, 17A, 3 × 400 V) inverter was loaded by a 7.5 kW induction motor
equipped with hybrid bearings with ceramic rolling elements. Measurement of the motor
shaft voltage uSH and shaft current iSH was ensured by using the shaft brush mounted on
the motor frame [20]. The motor was loaded by an induction generator, and insulation
between the motor and generator was performed by the installation of an insulated clutch.
Star-connected capacitors Cd (3 × 680 pF) were used to measure a common-mode voltage
uN_PE affecting motor windings. Additionally, a measurement of a phase voltage uC_PE
referred to as the PE ground potential was also performed.
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The Tektronix DPO4034 oscilloscope equipped with the high-voltage differential probe
P5205A (100 MHz) and the current probe TCP2020 (50 MHz) was used to record voltage
and current waveforms. Tests were performed under two different cable lengths (1 m and
10 m) and different configurations of filters and chokes installed between the motor and
inverter. Configurations with a 3.8 mH motor choke, a 0.72 mH CM choke, a 0.31 mH
du/dt choke, a 3.8 mH/15 µF sine-wave filter and a 3.8 mH/15 µF sine-wave filter with a
0.72 mH CM choke were taken into account.
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Figure 19. Laboratory setup for experimental tests: (a) scheme; (b) a photo of an experimental setup in a configuration 
with a motor choke. 
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leakage ground current iPE flowing in a PE protective ground wire) may be achieved by 
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used, the value of derivative duC_PE/dt significantly exceeded 5 kV/µs regardless of the 
cable length (Table 2). It is worth mentioning that gradient duC_PE/dt is lower for a longer 
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reduced to below 1.3 kV/us) is also noted when only the CM choke is used; however, the 
effectiveness of the CM choke decreases if the cable length increases. The sine-wave filter 
and the du/dt choke ensure a comparable level of du/dt reduction, with the duC_PE/dt value 
limited to 1.6 kV/us (Figure 20). When the motor choke was applied, the lowest level of 
du/dt gradient reduction was observed (duC_PE/dt reduced to 2.5 kV/us). 

  

Figure 19. Laboratory setup for experimental tests: (a) scheme; (b) a photo of an experimental setup in a configuration with
a motor choke.

From Equation (3), it can be derived that common-mode voltage uN_PE levels, as well
as the duN_PE/dt gradient, are determined by phase voltages uA_PE, uB_PE and uC_PE referring
to the PE ground potential. As a result, a reduction in gradient duN_PE/dt (which limits the
leakage ground current iPE flowing in a PE protective ground wire) may be achieved by the
limitation of derivatives duA_PE/dt, duC_PE/dt and duC_PE/dt. If no countermeasures were
used, the value of derivative duC_PE/dt significantly exceeded 5 kV/µs regardless of the
cable length (Table 2). It is worth mentioning that gradient duC_PE/dt is lower for a longer
cable, which is caused by the additional inductances introduced between the motor and
inverter by a longer cable. Application of the CM choke with the sine-wave filter results in
the highest reduction in gradient duC_PE/dt (duC_PE/dt << 1 kV/us). A good effect (duC_PE/dt
reduced to below 1.3 kV/us) is also noted when only the CM choke is used; however, the
effectiveness of the CM choke decreases if the cable length increases. The sine-wave filter
and the du/dt choke ensure a comparable level of du/dt reduction, with the duC_PE/dt value
limited to 1.6 kV/us (Figure 20). When the motor choke was applied, the lowest level of
du/dt gradient reduction was observed (duC_PE/dt reduced to 2.5 kV/us).
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Table 2. Common-mode impedance model parameters of a 7.5 kW motor with hybrid bearings 6308-2RS (ZCS Ceramit).

Configuration |duA_PE/dt| (kv/µs) UAB(max)/UDC (–) IPE(max) (A) ISH(max) (mA) |uN_PE/UDC| (–)

cable length: 1 m 10 m 1 m 10 m 1 m 10 m 1 m 10 m 1 m 10 m
inverter 7.08 5.57 1.45 2.05 3.75 3.37 158 146 1/2 1/2

inverter + motor choke (LD
= 3.8 mH) 2.62 2.42 1.44 1.47 2.23 2.08 132 60 1/2 1/2

inverter + du/dt choke
(LDT = 0.31 mH) 1.27 1.04 1.43 1.46 1.45 1.73 70 86 1/2 1/2

inverter + sine-wave filter
(LS = 3.8 mH, CS = 15 µF) 1.57 1.33 1.12 1.16 1.91 1.73 105 95 1/2 1/2

inverter + CM choke (LC =
0.72 mH) 1.09 1.28 2.10 2.16 0.28 0.825 112 98 1/2 1/2

inverter + sine-wave filter +
CM choke (LS = 0.31 mH,
CS = 15 µF, LC = 0.72 mH)

0.12 0.09 1.12 1.13 0.25 0.43 80 40 1/2 1/2
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Besides the reduction in the du/dt gradient, an impact of the considered solutions on 
the uC_PE voltage spectrum is also perceptible. In comparison with other solutions, the 
most significant reduction (of about 25 dBµV) in the uC_PE voltage spectrum was noticed 
when the CM choke in a configuration with the sine-wave filter was applied (Figure 
21i,j). For this configuration, a spectrum limitation was achieved in a range of frequencies 
higher than 150 kHz regardless of the cable length. If only the CM choke is used, the 
spectrum is deteriorated due to the appearance of a peak at the frequency of 1.5 MHz, 
which is about 16 dBµV higher than the one noticed in the configuration with a single 
inverter (Figure 21g,h). For the rest of the considered solutions, the level of spectrum 
suppression is comparable. 

Experimental waveforms of the line-to-line voltage uAB and current iA measured at 
motor terminals are presented in Figures 22 and 23. High du/dt values in connection with 
high-frequency wave reflections result in overvoltage spikes’ excitation, whose value 
may exceed twice that of the DC voltage supplying the inverter (Table 2, Figures 22a and 
23a). Hence, a reduction in the du/dt gradient of voltages affecting the motor windings 
causes a limitation in the overvoltage spikes’ maximal value and decreases insulation 
voltage stress. Application of the motor chokes or the du/dt chokes does not completely 
suppress overvoltage spikes, and only a slight reduction in their maximal values is no-
ticed, wherein this effect is more pronounced with a longer cable (Table 2). A complete 

Figure 20. Experimental waveforms of voltage uC_PE recorded in a configuration with a single
inverter and in the configuration of an inverter with a 0.31 mH du/dt choke (10 m cable).

Besides the reduction in the du/dt gradient, an impact of the considered solutions on
the uC_PE voltage spectrum is also perceptible. In comparison with other solutions, the
most significant reduction (of about 25 dBµV) in the uC_PE voltage spectrum was noticed
when the CM choke in a configuration with the sine-wave filter was applied (Figure 21i,j).
For this configuration, a spectrum limitation was achieved in a range of frequencies higher
than 150 kHz regardless of the cable length. If only the CM choke is used, the spectrum
is deteriorated due to the appearance of a peak at the frequency of 1.5 MHz, which is
about 16 dBµV higher than the one noticed in the configuration with a single inverter
(Figure 21g,h). For the rest of the considered solutions, the level of spectrum suppression is
comparable.

Experimental waveforms of the line-to-line voltage uAB and current iA measured at
motor terminals are presented in Figures 22 and 23. High du/dt values in connection with
high-frequency wave reflections result in overvoltage spikes’ excitation, whose value may
exceed twice that of the DC voltage supplying the inverter (Table 2, Figures 22a and 23a).
Hence, a reduction in the du/dt gradient of voltages affecting the motor windings causes
a limitation in the overvoltage spikes’ maximal value and decreases insulation voltage
stress. Application of the motor chokes or the du/dt chokes does not completely suppress
overvoltage spikes, and only a slight reduction in their maximal values is noticed, wherein
this effect is more pronounced with a longer cable (Table 2). A complete limitation of the
overvoltage spikes is noticed when sine-wave filters are applied (Figures 22d,f and 23d,f).
Using the sine-wave filters brings the voltage waveforms to a near sinusoidal shape
without significant overvoltage spikes. Smoothing of voltage waveforms also enables
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an improvement in the motor current shape. It should also be noted that using the CM
choke does not suppress overvoltage spikes from line-to-line voltage waveforms despite
the reduction in the du/dt gradient of phase-to-ground voltages. For the differential-mode
disturbances, the impedance of the CM choke is small; hence, its influence on differential-
mode disturbance reduction is negligible. As a result, the CM choke should be used in a
configuration with other solutions (e.g., sine-wave filter) to improve the supply conditions
of a motor fed by an inverter (Figures 22f and 23f).
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Figure 22. Experimental waveforms of line-to-line voltage uAB and current iA measured at motor terminals in a configu-
ration with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke 
with sine-wave filter. 

  

Figure 22. Experimental waveforms of line-to-line voltage uAB and current iA measured at motor terminals in a configuration
with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with
sine-wave filter.
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Figure 23. Experimental waveforms of line-to-line voltage uAB and current iA measured at motor terminals in a configu-
ration with a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke 
with sine-wave filter. 

Comparative measurements of the common-mode voltage uN_PE and motor shaft 
voltage uSH were performed for the considered solutions (Figures 24 and 25). If a con-
ventional two-level inverter is used, the uN_PE voltage equals ±UDC/6 for the active vectors 
and ±UDC/2 for the zero vectors (Figures 24a and 25a). The shaft voltage uSH reflects the 
common-mode voltage waveform with the maintenance of the bearing voltage ratio, BVR 
≈ 5%, which is a typical value for induction motors. Thus, the possibility of destructive 
EDM current appearance is the highest for the inverter zero vectors, when the uSH voltage 
reaches its maximum values. The du/dt gradient of voltage uSH is slightly lower than that 
observed in uN_PE waveforms, which is caused by an impact of the motor stator windings 
or shaft motor frame impedances. The presented results of the performed measurements 
show that none of the comparative solutions ensure a significant reduction in com-
mon-mode and shaft voltage levels (Figures 24 and 25). 

Figure 23. Experimental waveforms of line-to-line voltage uAB and current iA measured at motor terminals in a configuration
with a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with
sine-wave filter.

Comparative measurements of the common-mode voltage uN_PE and motor shaft
voltage uSH were performed for the considered solutions (Figures 24 and 25). If a conven-
tional two-level inverter is used, the uN_PE voltage equals ±UDC/6 for the active vectors
and ±UDC/2 for the zero vectors (Figures 24a and 25a). The shaft voltage uSH reflects
the common-mode voltage waveform with the maintenance of the bearing voltage ratio,
BVR ≈ 5%, which is a typical value for induction motors. Thus, the possibility of de-
structive EDM current appearance is the highest for the inverter zero vectors, when the
uSH voltage reaches its maximum values. The du/dt gradient of voltage uSH is slightly
lower than that observed in uN_PE waveforms, which is caused by an impact of the motor
stator windings or shaft motor frame impedances. The presented results of the performed
measurements show that none of the comparative solutions ensure a significant reduction
in common-mode and shaft voltage levels (Figures 24 and 25).
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Figure 24. Experimental waveforms of CM voltage uN_PE and motor shaft voltage uSH measured in a 
configuration with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave fil-
ter; (e) CM choke; (f) CM choke with sine-wave filter. 

  

Figure 24. Experimental waveforms of CM voltage uN_PE and motor shaft voltage uSH measured in a configuration with a
1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with sine-wave
filter.



Energies 2021, 14, 4003 21 of 30Energies 2021, 14, 4003 21 of 29 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 25. Experimental waveforms of CM voltage uN_PE and motor shaft voltage uSH measured in a configuration with a 
10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with si-
ne-wave filter. 

It is worth mentioning that despite the sinusoidal shape of the line-to-line voltage 
measured at motor terminals, the considered sine-wave filter does not affect the uN_PE and 
uSH levels. Considering the equivalent scheme presented in Figure 26, it can be distin-
guished that the sine-wave filter inductances LS, capacitors CS and Cd and motor ground 
capacitance CPE form a resonant series circuit LC supplied by a constant DC voltage 
source. Neglecting the impact of capacitor Cd and the motor impedance ZO, it can be as-
sumed that CS >> CPE, Cp1 = Cp2 and Cp1 >> CPE; hence, the sine-wave filter capacitance CS 
does not affect the uN_PE voltage levels at a steady state. Similarly, the impact of induct-
ance LS is also omitted in common-mode voltage level forming. 

Figure 25. Experimental waveforms of CM voltage uN_PE and motor shaft voltage uSH measured in a configuration with
a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with
sine-wave filter.

It is worth mentioning that despite the sinusoidal shape of the line-to-line voltage
measured at motor terminals, the considered sine-wave filter does not affect the uN_PE
and uSH levels. Considering the equivalent scheme presented in Figure 26, it can be
distinguished that the sine-wave filter inductances LS, capacitors CS and Cd and motor
ground capacitance CPE form a resonant series circuit LC supplied by a constant DC
voltage source. Neglecting the impact of capacitor Cd and the motor impedance ZO, it
can be assumed that CS >> CPE, Cp1 = Cp2 and Cp1 >> CPE; hence, the sine-wave filter
capacitance CS does not affect the uN_PE voltage levels at a steady state. Similarly, the
impact of inductance LS is also omitted in common-mode voltage level forming.
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Figure 26. Electric drive fed by a conventional hard-switched two-level bridge voltage inverter in a configuration with a 
sine-wave filter. 

Considering the scheme presented in Figure 12b, it can be recognized that the CM 
choke inductance LC and parasitic capacitances of the wires and motor form a resonant 
circuit with a low attenuation rate. Hence, neglecting the impact of the motor windings’ 
impedance ZO and the cable parasitic components, if LC is high enough to meet the con-
dition < 12π 3 , (13) 

in uN_PE waveforms, undesirable oscillations may occur, in which maximum amplitudes 
significantly exceed UDC/2 (Figure 27). As a result, the uSH voltage maximum value is in-
creased, and hence the possibility of EDM current occurrence rises. 

 
Figure 27. Experimental waveforms of the common-mode voltage uN_PE and motor shaft voltage uSH 
of a motor fed by the AC10 10G-44-0170-BF (Parker) inverter in a configuration with a CM choke 
with increased inductance LC (LC = 28 mH). 

Comparative waveforms of the common-mode voltage uN_PE, ground leakage cur-
rent iPE and motor shaft ground current iSH are depicted in Figures 28 and 29. The ob-
served overvoltage spikes of the uN_PE voltage are caused by the common-mode current 
flowing through motor inductances, which is excited during each inverter transistor’s 
switching. The maximum values of ground currents iPE and iSH are determined by the 
du/dt gradient of the uN_PE voltage, which results in currents’ capacitive character. It 
should be noted that the highest reduction in the duN_PE/dt gradient is noted in the drive 
configuration with the CM choke; hence, this solution demonstrates the highest effec-
tiveness for a ground current reduction (Table 2). Similarly, a reduction in the iSH current 
maximum value due to a decrease in the duN_PE/dt gradient was also noted for all consid-
ered solutions. 

Figure 26. Electric drive fed by a conventional hard-switched two-level bridge voltage inverter in a configuration with a
sine-wave filter.

Considering the scheme presented in Figure 12b, it can be recognized that the CM
choke inductance LC and parasitic capacitances of the wires and motor form a resonant
circuit with a low attenuation rate. Hence, neglecting the impact of the motor windings’
impedance ZO and the cable parasitic components, if LC is high enough to meet the
condition

fsw <
1

2π
√

3LCCPE
, (13)

in uN_PE waveforms, undesirable oscillations may occur, in which maximum amplitudes
significantly exceed UDC/2 (Figure 27). As a result, the uSH voltage maximum value is
increased, and hence the possibility of EDM current occurrence rises.
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Figure 27. Experimental waveforms of the common-mode voltage uN_PE and motor shaft voltage uSH 
of a motor fed by the AC10 10G-44-0170-BF (Parker) inverter in a configuration with a CM choke 
with increased inductance LC (LC = 28 mH). 

Comparative waveforms of the common-mode voltage uN_PE, ground leakage cur-
rent iPE and motor shaft ground current iSH are depicted in Figures 28 and 29. The ob-
served overvoltage spikes of the uN_PE voltage are caused by the common-mode current 
flowing through motor inductances, which is excited during each inverter transistor’s 
switching. The maximum values of ground currents iPE and iSH are determined by the 
du/dt gradient of the uN_PE voltage, which results in currents’ capacitive character. It 
should be noted that the highest reduction in the duN_PE/dt gradient is noted in the drive 
configuration with the CM choke; hence, this solution demonstrates the highest effec-
tiveness for a ground current reduction (Table 2). Similarly, a reduction in the iSH current 
maximum value due to a decrease in the duN_PE/dt gradient was also noted for all consid-
ered solutions. 

Figure 27. Experimental waveforms of the common-mode voltage uN_PE and motor shaft voltage
uSH of a motor fed by the AC10 10G-44-0170-BF (Parker) inverter in a configuration with a CM choke
with increased inductance LC (LC = 28 mH).

Comparative waveforms of the common-mode voltage uN_PE, ground leakage current
iPE and motor shaft ground current iSH are depicted in Figures 28 and 29. The observed
overvoltage spikes of the uN_PE voltage are caused by the common-mode current flowing
through motor inductances, which is excited during each inverter transistor’s switching.
The maximum values of ground currents iPE and iSH are determined by the du/dt gradient
of the uN_PE voltage, which results in currents’ capacitive character. It should be noted that
the highest reduction in the duN_PE/dt gradient is noted in the drive configuration with
the CM choke; hence, this solution demonstrates the highest effectiveness for a ground
current reduction (Table 2). Similarly, a reduction in the iSH current maximum value due to
a decrease in the duN_PE/dt gradient was also noted for all considered solutions.
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Figure 28. Experimental waveforms of CM voltage uN_PE, leakage current iPE and shaft-grounding brush current iSH 
measured in a configuration with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) 
CM choke; (f) CM choke with sine-wave filter. 

  

Figure 28. Experimental waveforms of CM voltage uN_PE, leakage current iPE and shaft-grounding brush current iSH

measured in a configuration with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM
choke; (f) CM choke with sine-wave filter.
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Figure 29. Experimental waveforms of CM voltage uN_PE, leakage current iPE and shaft-grounding brush current iSH 
measured in a configuration with a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) 
CM choke; (f) CM choke with sine-wave filter. 

5. Conclusions 
In this paper, a survey of representative methods focused on the reduction in nega-

tive effects caused by a common-mode voltage influence was presented (Table 3). Basing 
on the results of the performed comparative tests, the highest effectiveness in the reduc-
tion in ground leakage currents and motor shaft-grounding currents was noticed for the 
drive configuration with a CM choke. The best improvement in motor supply conditions 
was noted when sine-wave filters were used. Applications of du/dt chokes and motor 
chokes brought moderate results. Hence, application of the configuration with a CM 
choke and a sine-wave filter may be proposed as the most reasonable solution [47]. 
However, it should be noted that the application of this configuration results in the 
highest power loss. For example, during the performed tests, at 1.5 kW of power meas-
ured at motor terminals, the obtained power loss equaled 2.7 W for the CM choke, 6.3 W 
for the du/dt choke and 53.7 W for the sine-wave filter in a configuration with a CM 

Figure 29. Experimental waveforms of CM voltage uN_PE, leakage current iPE and shaft-grounding brush current iSH

measured in a configuration with a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e)
CM choke; (f) CM choke with sine-wave filter.

5. Conclusions

In this paper, a survey of representative methods focused on the reduction in negative
effects caused by a common-mode voltage influence was presented (Table 3). Basing on
the results of the performed comparative tests, the highest effectiveness in the reduction
in ground leakage currents and motor shaft-grounding currents was noticed for the drive
configuration with a CM choke. The best improvement in motor supply conditions was
noted when sine-wave filters were used. Applications of du/dt chokes and motor chokes
brought moderate results. Hence, application of the configuration with a CM choke and a
sine-wave filter may be proposed as the most reasonable solution [47]. However, it should
be noted that the application of this configuration results in the highest power loss. For
example, during the performed tests, at 1.5 kW of power measured at motor terminals,
the obtained power loss equaled 2.7 W for the CM choke, 6.3 W for the du/dt choke and
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53.7 W for the sine-wave filter in a configuration with a CM choke. It should also be noted
that none of the tested typical commercial solutions ensure a reduction in common-mode
voltage and motor shaft voltage levels; hence, they do not significantly improve the safety
of motor bearings in terms of the possibility of EDM current occurrence.

Table 3. Main features of compared reduction methods of common-mode voltage impact in electric drives.

Technique CM Voltage
Levels

Ground
Leakage Current

Suppression

Usage
Requirements Advantages Disadvantages

Modification of
modulation

strategy
[8,30–32]

±UDC/6 [32] reported 50%
[32]

required
modification of

inverter
modulation
strategy and

control algorithms

- suppression of
ground leakage
current

- significant
reduction in uN_PE
voltage levels

- low cost

- increase in THD
of motor current

- undesirable
spikes, whose
amplitude
exceeds
±UDC/2, may be
noted in CM
voltage
waveforms when
AZVC technique
is applied

- cannot be used
with commercial
inverters, whose
control system’s
access is made
unavailable for
users with
further
modifications

Active
common noise

canceller
[34–36]

reported
reduction in

uN_PE voltage
levels more

than 90%
regardless of
the inverter
transistors’
state [36]

reported up to
90% [34]

implemented
between motor

and inverter,
access to both DC

link buses between
rectifier and

inverter is required

- high reduction in
uN_PE voltage
levels

- high suppression
of ground leakage
current

- high cost
- a high-frequency,

four-winding
transformer is
required

- high complexity
- requires access to

both DC link
buses between
rectifier and
inverter

Dual two-level
inverter
[37–39]

±UDC/3 [39] reported up to
50% [38]

required use of
dual inverter and
motor with open
stator windings

- suppression of
ground leakage
current

- reduction in uN_PE
voltage levels

- high complexity
of control system
and control
algorithms

- high cost
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Table 3. Cont.

Technique CM Voltage
Levels

Ground
Leakage Current

Suppression

Usage
Requirements Advantages Disadvantages

PQRDCLI with
two insulating

switches
[20,43]

±UDC/6 [20] reported up to
80% [20]

required
modifications of
inverter DC link
circuit, control
systems and

control algorithms

- high suppression
of ground leakage
current

- significant
reduction in uN_PE
voltage levels

- decrease in
generated
conducted
disturbances,
especially in a
range of frequency
from 0.6 to 15 MHz

- possibility of
implementation of
control methods
based on SVPWM
modulators

- high complexity
- high cost
- in comparison

with
hard-switched
inverters, energy
efficiency of
PQRDCLI is
lower at low
loads

motor choke ±UDC/2
moderate

reduction (about
40%)

applied between
motor and inverter,

no additional
modifications of

inverter topology
or control

algorithms are
needed

- simplicity
- moderate cost
- enables a

smoothing of
motor current and
reducing du/dt
voltage gradients
at the motor
terminals

- reduction in
overvoltage at
motor terminals

- no reduction in
CM voltage
levels

- large dimensions
- generation of

additional
voltage drop and
power loss

du/dt choke ±UDC/2
moderate

reduction (about
50%)

applied between
motor and inverter,

no additional
modifications of

inverter topology
or control

algorithms are
needed

- simplicity
- moderate cost
- reduction in du/dt

voltage gradients
affecting the motor

- reduction in
overvoltage at
motor terminals

- lower dimensions
than motor chokes

- no reduction in
CM voltage
levels

- dimensions
- additional power

loss and voltage
drop
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Table 3. Cont.

Technique CM Voltage
Levels

Ground
Leakage Current

Suppression

Usage
Requirements Advantages Disadvantages

sine-wave filter ±UDC/2
moderate

reduction (about
50%)

applied between
motor and inverter,

no additional
modifications of

inverter topology
are needed

- simplicity
- significant

improvement in
motor supply
conditions (near
sinusoidal profile
of motor currents
and voltage
waveforms)

- no reduction in
CM voltage
levels

- large dimensions
- generation of

high power loss
- high cost
- sometimes

modification of
motor control
algorithm is
required

CM choke ±UDC/2 high reduction
(about 80%)

applied between
motor and inverter,

no additional
modifications of

inverter topology
or control

algorithms are
needed

- simplicity
- low cost
- low power loss
- small dimensions
- significant

reduction in
ground leakage
current

- no reduction in
CM voltage
levels

- no reduction in
differential-
mode
disturbances

- no improvement
in motor supply
conditions

- complicated
design process

- if CM choke
impedance is too
much,
undesirable
oscillations may
occur in uN_PE
waveforms, in
which maximum
amplitudes
significantly
exceed UDC/2

CM choke +
sine-wave filter ±UDC/2 highest reduction

(about 90%)

applied between
motor and inverter,

no additional
modifications of

inverter topology
are needed

- simplicity
- the highest

reduction in
ground leakage
current

- significant
improvement in
motor supply
conditions

combines
disadvantages of

sine-wave filters and
CM chokes
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