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Abstract - Considered has been the phenomenon of hydraulic jump formed as a result of 

circular jet impingement on the horizontal surface .The horizontal spreading of liquid is 

induced mainly by action of inertia forces. In the case of supercritical conditions of film flow 

the phenomenon of hydraulic jump may appear. Postulated model includes in the analysis 

dissipation effects present in the flow which lead to formation of the hydraulic jump. The 

model is derived from the analysis of Bernoulli equation. Some preliminary analysis on the 

formation of the type I and type II hydraulic jump, i.e. featuring formation of one or two 

eddies, has also been given. Presented model was compared with available data base of 

experimental results. Satisfactory consistency has been achieved. 

1. Introduction

Jets impinging on horizontal surfaces can be used to cleanse metal surfaces, induce 

atomisation and effect high heat and mass transfer in the industry. Spreading of a film formed 

in such a way may experience a sudden change of the film thickness, i.e. the hydraulic jump, 

accompanied by a significant loss of energy and production of turbulence. During such 

change the flow changes from supercritical condition to subcritical condition with a sudden of 
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the liquid height and a decrease in velocity of liquid. In some cases also entrainment of air is 

present as a result of effects of turbulent mixing and buoyancy, Waniewski et al. (2001). 

Precise knowledge of liquid film depth before and after the jump enables determination of 

accurate rates of heat which can be removed from surfaces. It is apparent that the heat transfer 

is much more efficient in the case of thin films or highly turbulent thick films and our efforts 

should aim at such a configuration of nozzles cooling the surface which would eliminate the 

issue of increased film thickness for laminar or low turbulence cases of film. 

The formation of the thin layer and the circular jump was first noticed and described 

by Lord Rayleigh (1914) who considered inviscid flow along a channel of constant breadth. 

The speed ahead of the hydraulic jump was assumed uniform. Wilson (1964) extended that 

theory slightly by assumption of the flow in the thin layer being radial and strongly influenced 

by viscosity, whereas the principles of momentum and continuity at the jump location were 

similar as in the theory due to Rayleigh. Such theory for a long time served as a benchmark 

for testing other models of hydraulic jump. A very interesting research into the understanding 

of the hydraulic jump was carried out by Ishigai et al. (1977) who studied the problem both 

theoretically and experimentally. He classified the hydraulic jump in relation to the Froude 

number before the jump as smooth (Fr<2), S-shaped (2<Fr<7), round and narrow (7<Fr<15) 

and unstable entraining air (Fr>15). It has also been noticed that the mean location of 

hydraulic jump could be calculated from the principle of momentum conservation. Craik et al. 

(1981) experimentally detected the regions of “reversed flow” just after the occurrence of the 

hydraulic jump. Such reversed flow region was also detected by Nakoryakov et al. (1978). 

The eddy changed its dimensions with regard to the flow conditions, namely the upstream 

Froude and Reynolds numbers. The dimension of the eddy shortened as the outer depth of the 

film increased. In the study by Craik et al. (1981) the equations of motion were integrated 

across the thin liquid layer to solve for the velocity and height of the liquid film. Bowles and 

Smith (1992) carried out numerical study in which the conclusion was made that hydraulic 
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jumps are governed by a free interaction predominantly between surface tension and viscosity 

upstream and then further downstream between gravitational pressure gradient and viscosity. 

The latter was claimed vital in controlling these jumps. Liu and Lienhard V (1993) concluded 

that the radial position of the jump, which was elaborated by various researchers have not 

been confirmed to a satisfactory extent with experimental data available to date. On the basis 

of momentum balance the classical theory by Raleigh, reproduced by Massey (1989), arrived 

at a relation for the change of the film depth before and after the jump in the form: 

 )811(5.0/ 2

112 Frhh ++−=  (1) 

That study was one of the first to track theoretically the occurrence of one and two eddies 

formed after the hydraulic jump. Therefore two types of eddies were distinguished and the 

“traditional” one was named “type I” and “the roller”, the another eddy which appeared just 

beneath the surface - “type II” respectively, see fig. 1. Up to date none of the studies were 

able to provide explanation for the formation of the roller eddy. Numerical studies of Yokoi 

and Xiao (1999) showed that transition from type I to type II is associated with an increase in 

pressure beneath the surface in the region after the hydraulic jump. They found that there is an 

immediate increase of pressure after the jump due to interaction between the surface tension 

and the main flow. This increase in pressure needs to balance the surface tension and the 

driving flow to produce steady jump. They concluded also that the type II jump tends to occur 

when the depth of the film after the jump is greater than 0.5mm, whereas the type I develops 

in cases of smaller depths. The results of their numerical simulations also show that the radius 

of the jump decreases with increasing kinematic viscosity of liquid, which is consistent with 

experimental evidence, see for example Bohr et al. (1996). Modelling of dissipation effects 

was, amongst the others, introduced by Hewakanamby and Zimmerman (2001). The energy 

dissipation was attributed to small eddies. Yokoi and Xiao (2002) in their numerical 

examination of the hydraulic jump managed to reproduce both types of jump. The transition 
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between the two was due to pressure increase beneath the jump. The roller is formed as a 

result of a proper pressure pattern. 

The phenomenon of hydraulic jump is a very important issue in the case when heat 

transfer on a body, where the liquid jet impinges, is considered. Beyond the hydraulic jump 

the intensity of heat transfer abruptly deteriorates. Therefore knowledge on such phenomenon 

and ability to predict its location is of paramount importance in the design of surface cooling 

processes. The hydraulic jump is formed at a location where the balance between forces 

resulting from momentum change in thinner and thicker liquid layers and forces stemming 

from hydrostatic thrust of thicker liquid layer and surface tension force is obeyed. Presented 

below is a simple model enabling determination of liquid film thickness before and after 

hydraulic jump as well as its radial position. The model is derived from the analysis of the 

Bernoulli equation rather then of the momentum equation. The results obtained using the 

model are based on the existence of a single or two eddies formed at the location of hydraulic 

jump.  

 

2. Model of hydraulic jump 

 

Let’s consider a liquid jet impinging on a horizontal plane. The spreading of liquid takes place 

by means of action of inertia forces. As mentioned earlier the hydraulic jump occurs in places 

where the flow suddenly changes from supercritical one (Froude number, Fr > 1) into 

subcritical one (Fr<1).  

 

Phenomenon of hydraulic jump features a sudden change of liquid film thickness. According 

to existing theories, the critical flow conditions, in the case of thin films, correspond to a 

value of Froude number of one, i.e. when the mean velocity of liquid and propagation velocity 

of disturbances on a flat liquid surface are equal. The hydraulic jump seems to be analogical 
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to the phenomenon of a shock wave in gas flow, when the flow conditions change from 

supercritical (Mach number, Ma>1) into subcritical conditions (Ma<1). In the subsequent 

considerations a case will be considered where the value of Froude number at inlet will 

exceed unity, so that favourable conditions for the occurrence of hydraulic jump will be 

present. 

The postulated model of hydraulic jump is based on the analysis of Bernoulli energy 

equation for a viscous liquid, which includes energy losses present due to a sudden flow 

expansion beyond the jump as well as the presence of one or two eddies following the change 

of film thickness. The Bernoulli equation for an averaged streamline, as in Fig. 1, yields: 
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 (2) 

Symbols appearing in equation (2) have been explained in Fig. 1. In the considered case we 

are dealing with a free surface flow and therefore p1=p2, H1=h1/2 and  H2=h2/2. Incorporating 

the latter we obtain from (2): 
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On the other hand the continuity equation for radially spreading outwards film yields:  
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Additionally examined were losses due to friction with the wall at the location of hydraulic 

jump, but they proved to be an order of magnitude lower than the ones modelled in the study.  

Equations (3) and (4) describe the phenomenon of hydraulic jump. Losses of mechanical 

energy, hexp, present during the hydraulic jump, are modelled in a similar way as pressure 

losses in a channel where sudden change of cross-section of the channel takes place and 

therefore are named the expansion losses. Such losses can be estimated from formulas 
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presented in numerous textbooks on fluid mechanics, where such topics are considered, for 

example Douglas et al. (1998): 

 guuh 2/)( 2

21exp
−=  (5) 

Moreover, as stems from examination of experimental data as well as numerical calculations, 

beyond the location where the sudden change of the film thickness there is formed a strong 

one eddy or two eddies, schematically presented in Fig. 1 and 2, which contribute to further 

energy losses. The sketch showing the geometry of a model for the case of one eddy is 

presented in Fig. 2a, whereas the case of two eddies is considered in Fig. 2b. Head losses 

caused by rotation of liquid between two locations within the eddy, namely r1 and r2 are: 
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In relation (6) ω denotes the eddy vorticity. Assuming r1=0 and averaging the pressure change 

in the limits of the mean radius of the eddy curvature we obtain: 
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 (7) 

In relation (8) R stands for the mean eddy radius. That is also related to the curvature of the 

free surface at the location of the jump, as seen from Fig. 1. In the model the eddy occupies 

half of the film depth after the jump and divides it into four imaginary layers, ones without the 

eddy on top and bottom of the film after the jump and the other two layers occupied by the 

eddy with diameter R. In order to complete our considerations of head losses due to presence 

of eddies we need to determine the vorticity resulting from the presence of the single eddy. 

The rotation of the eddy with respect to its centroid can be approximated using the velocity 

difference acting on two sides of the eddy. In such a case the vorticity reads: 

 ( ) Ruu /
21

−=  (8) 
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Generally the radius of eddy is a function of the film depth and parameter: p which models 

the unknown eddy size, and can be expressed as Rh2/p. Parameter p requires more detailed 

experimental evidence to be examined. Surveyed literature did not show any data related to 

that topic. Therefore in the present study it has been studied as a parameter. Substitution of (8) 

into (7) returns the head loss due to the presence of the eddy: 

 ( ) ( )pguuh
ed

82/
2

21
−=  (9) 

Finally, the total losses due to the flow expansion and the presence of one eddy yield: 
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In the paper were assumed two values of parameter p, namely p1=4 and p2=8, corresponding 

in such a way to the division of the film after the jump into respective layers, see Fig. 2. Such 

a division corresponds also to one or two eddies, respectively. In case of two eddies it is easy 

to show, on the basis of condition of same head losses for a single and two eddies that p2=2p1. 

In relation (11) k=(1+1/(8p)). Introducing (10) and (4) into (3) we can obtain a relation in 

which the film thickness before and after the hydraulic jump are related through the definition 

of the Froude number:  
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Relation (11), when losses due to eddy are not considered, i.e. k=1 reduces to: 

 11112 2/2/ Frghuhh ==  (12) 

Such relation should be compared with the traditional relation for the change of film depth 

(1). Relations (1) and (12) give similar results for large values of Froude number (discrepancy 

less then 2%.. At values of Fr<10 discrepancies are more pronounced and if necessary (1) can 

be used. In order to find a specific relation for localisation of the hydraulic jump we require 
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additional information about relation of film depth before and after the jump. To do that let’s 

compare difference in hydrostatic pressure due to hydraulic jump with the pressure difference 

resulting from surface tension, which sustains that pressure difference: 

 Rghh /)( 12  =−  (13) 

In (13) R denotes the jump curvature radius. Such radius can be estimated and examination of 

literature shows that it amounts to more or less of half of the film thickness beyond the jump. 

Hence: 

 ( )ghh  /2)( 12 =−  (14) 

In the case of laminar film flow the film thickness before the jump can be estimated from the 

distance from stagnation point, Mikielewicz and Mikielewicz (2004). In the case of 

developing flow, assuming inviscid flow in films and (4), as well as that nozzle velocity is 

equal to undisturbed velocity in film ud=u1 we obtain: 

 ( )rdh 8/2

1 =  (15) 

A good approximation of film thickness is r=d/2 in (15), Mikielewicz (2004), which leads to: 

 constdh == 4/1  (16) 

A more general relation for film thickness before the jump stems from account of viscous and 

inertia forces in momentum equation, Mikielewicz and Mikielewicz (2004): 
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where /Re dudd = . Utilising (14) we can derive the relation for Froude number: 
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where  /,/ gdWegduFr dd == . 
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Making use of (16) leads to relation describing the location of hydraulic jump in the form: 
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On the other hand implementation of (18) leads to the following relation for hydraulic jump: 
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where: ( ) 2.0
5Re/6/2 Wea = . 

 

3. Calculations 

 

Considered has been supercritical flow of liquid film (Fr>1). In calculations a value of the 

parameter p, describing the eddy size, was chosen to be p=4 and 8, influencing in such a way 

value of h2/h1. Such a choice of values of parameter p were corresponding to the presence of 1 

or 2 eddies. In Fig. 3 presented are experimental data from literature due to Craik et al. 

(1981), Ishigai et al (1977), Liu et al. (1993), Bykuć (2004), Gumkowski (2004) compared 

with the model predictions. Good consistency has been achieved. Most of experimentral data 

collected up to date was gathered for the inlet Froude number less then 20. Only some of data 

due to Liu and Lienhard V (1993) have been established for higher values of Froude number. 

Relation (1) proves to be a good model for small values of Froude number, however that 

relation fails to reflect the experimental data for higher values of the Froude number. The 

proposed in the present work model (11) proves to be of the same quality as relation (1) in the 

case of small values of Froude number. In case of large Froude numbers the model is capable 

of predicting a non-linear behaviour of experimental data, contrary to equation (1). In Fig. 3 

the results of calculations performed using equation (11) have been presented where values of 

parameter p were selected to be respectively p1=4, one eddy, and p2=8 (two eddies). It must 
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 10 

be admitted that the calculations are very fragile to a value of parameter p. Anyway, the way 

in which parameter p is considered in the present work has some physical meaning, as it is the 

number of regions into which the film depth is divided after the jump. In case of a single eddy 

it is four layers and in case of two eddies it is eight layers, see fig. 2 a and 2b. The type II 

jump, i.e. when two eddies are present, occurs mostly at higher values of Froude which 

correspond to thicker films. A good quality of results showing the jump location compared 

against experimental data can be seen in Fig. 4. In this figure there are contained envelopes 

corresponding to respective models of film thickness distribution for different values of 

parameter p. Again it is apparent that the simple models of film thickness distribution (15), 

(16) and (17) are sufficient to be combined with the model of hydraulic jump (11) to enable 

calculation of the location of hydraulic jump. Most promising results are obtained with the 

model (15), however even in that case some further refinement would be necessary. 

 

4. Conclusions 

 

In the paper presented has been a simple model of circular hydraulic jump. The model is 

based on the solution of Bernoulli equation for a viscous fluid flow, which incorporates the 

dissipation losses due to change of film thickness as well as the presence of eddies following 

the jump, instead of the momentum equation. Film thickness before and after the jump is a 

local quantity and depends merely on Reynolds and Weber numbers. Proposed model features 

a parameter describing the size of the eddy, the parameter p. The model is very sensitive to 

selection of a value of that parameter. It results from the presented analysis that value of 

parameter p1=4 corresponds to the presence of a single eddy, whereas p2=8 corresponds to 

two eddies. Calculations performed for two cases show an envelope where all considered 

experimental data can be found. Consistency between model predictions and experimental 
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data seems satisfactory. The type II jump, occurs mostly at higher values of Froude which 

correspond to thicker films.  

 

NOMENCLATURE 

d   - nozzle diameter, (m) 

Fr = ud/(gd)0.5  - Froude number 

G   - acceleration due to gravity, (m/s2) 

h   - film thickness, (m) 

H   - head losses, (m) 

k   - parameter 

p    - pressure, (Pa), 

P   - parameter modelling unknown eddy size 

r   - radial coordinate, 

R   - mean radius of curvature of the free surface, (m) 

Res = udd/  - Reynolds number. 

Q   - volumetric flow rate, (m3/s) 

U   - velocity in film, (m/s) 

ud   - nozzle  velocity, (m/s) 

We=d(g/)0.5  - Weber number 

   - kinematic viscosity, (m2/s) 

   - liquid density, (kg/m3) 

   - surface tension, (N/m) 

   - eddy vorticity, (1/s) 

 

Subscripts 

1   - inlet, 
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2   - outlet 

d   - nozzle 

h   - location of hydraulic jump 

ed   - eddy 

exp   - expansion 

loss   - losses 

r   - radial 
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Figure captions: 

 

Fig. 1. Schematic of hydraulic jump 

Fig. 2. Schematic geometry of a model of a jump featuring: a) one eddy, b) two eddies 

Fig. 3. Froude number before the jump in function of film thickness ratio h2/h1. 

Fig. 4. Hydraulic jump location rh/d in function of Froude number before the jump Fr1. 
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Fig. 1. Schematic of hydraulic jump 

 

 

 
 

Fig. 2. Schematic geometry of a model of a jump featuring: a) one eddy 

 

 
 

Fig. 2. Schematic geometry of a model of a jump featuring: b) two eddies  
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Fig. 3. Froude number before the jump in function of film thickness ratio h2/h1. 
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Fig. 4. Hydraulic jump location rh/d in function of Froude number before the jump Fr1. 
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