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In this paper a computational methodology leading to the development of a new class of FEs, based on the 
application of continuous and smooth approximation polynomials, being splines, has been presented. Application 
of the splines as appropriately defined piecewise elemental shape functions led the authors to the formulation of 
a new approach for FEM, named as spFEM, where contrary to the well-known NURBS approach, the boundaries 
of spFEs are well-defined, exactly as it is in the case of the traditional FEM.

The current approach has been computationally verified by the authors it terms of high frequency dynamics 
including such problems as: spectra of natural frequencies, modes of natural vibrations as well as wave 
propagation problems, especially in the aspect of high frequency responses, all in the case of selected problems 
involving one- and two-mode theories of 1-D structural elements. The applicability of the proposed approach has 
been evaluated and compared, in terms of calculated dynamic responses, with the results obtained by the use of 
well-established FEM approaches: classical FEM as well as TD-SFEM.

In all cases investigated by the authors the proposed spFEM approach turned out to be the most accurate 
approach, free from the main drawback of the other tested FEM approaches thanks to the class of differentiability 
of approximation polynomials, which guarantees the absence of frequency band gaps in calculated spectra of 
natural frequencies. A direct consequence of this feature of the proposed approach is that a larger part of the 
calculated spectra of natural frequency, the same as modes of natural vibrations, can effectively be used for more 
accurate calculations of dynamic reposes even in the case of multi-mode theories. This in contrast to the other 
tested FEM approaches.
1. Introduction

Wave propagation problems present a serious computational chal-

lenge, especially in the context of damage detection [1]. It should be 
noted that numerous computational techniques may be used for that 
purpose, but with no doubts the most popular one remains the finite 
element method (FEM) [2–4]. As a numerical technique FEM [5–7] is 
characterised by its great flexibility, which allows researches to analyse 
various problems not only in complex engineering structures in terms 
of their geometry (1-D, 2-D and 3-D) and material properties (isotropic, 
orthotropic or fully anisotropic), but also lends itself to tackling steady-

state or transient linear and non-linear problems.

However, the very nature of damage detection by the use of guided 
elastic waves in engineering structures and by the application of FEM 
requires that traditional finite element (FE) numerical models must 
comprise many degrees of freedom (DOFs), reaching millions or even 
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more. Moreover, the characteristic dimensions of FEs must be of the 
same or lower order than the characteristic dimension of the damage 
that is modelled, and also must be smaller than the shortest waves that 
may result from numerical computations. The huge numerical models, 
associated with such discretisation requirements of computational do-

mains, must fulfil extra conditions of regular mesh shapes in order to 
prevent the effect of undesired and/or artificial numerical anisotropy. 
Additionally, it should be pointed out that during numerical computa-

tions these huge numerical models must be solved numerically many 
times (once on each time step during linear analysis and iteratively a 
number of times on each time step during non-linear analysis) in order 
to achieve the final solution.

Despite the fact of its indisputable advantages FEM is not free of dis-

advantages. In the classical FEM the variation of unknown quantities 
within FEs is described by the use of certain approximation functions, 
which are known as shape functions. Typically, shape functions are rep-
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resented by polynomials of certain degrees. In the case of the classical 
FEM they are approximation polynomials of the first or second degree, 
while in the case of more specialised FEM approaches (adaptive FEM 
or the Time-domain Spectral Finite Element Method, TD-SFEM) the de-

gree of approximation polynomials may be as high as six, eight or even 
higher [8–10]. It should be underlined that in the case of the classical 
FEM, derivatives of the approximation shape functions remain continu-

ous within FEs, but they are discontinuous between adjacent FEs, which 
directly leads to the discontinuity of the strain/stress field between 
these FEs. This feature remains unimportant in static and low frequency 
dynamic problems solved by FEM. However, in high frequency dy-

namics involving wave propagation problems, the discontinuity of the 
stress/strain field between adjacent FEs may lead to numerous numer-

ical issues due to the presence of frequency band gaps in calculated 
spectra of natural frequencies. Their presence may have a significant 
impact on the accuracy of numerical results, or which can even lead to 
false results and observations based on them [11,12]. This may be ad-

ditionally magnified and exacerbated by the requirement of dense and 
regular discretisation of computational domains, where discontinuities 
of approximation polynomials, together with not perfectly smooth ge-

ometry, may play a very important role.

Under these circumstances it seems natural to look at such approx-

imation shape functions that could help to minimise all the undesired 
features of typical FE shape functions previously mentioned. A good 
candidate for such functions seem spline functions, which are in fact 
approximation polynomials characterised by continuity and smooth-

ness [13–15]. The most popular technique used here seems the method 
employing B-spline functions, also knowns as Non-uniform Rational 
B-splines (NURBS) [16–18]. However, in comparison to FEM, the ap-

proaches based on B-splines suffer from one main disadvantage, which 
is the lack of well-defined elements. They are based on so-called patches

rather than typical elements, which in FEM are well localised in space. 
The lack of this feature makes these B-spline approaches rather dif-

ficult to adopt directly in the case of various numerical techniques 
employed in FEM, for example, for damage modelling [19] understood 
as structural discontinuities or structural joints [20]. Apart from that 
very often discretisation points within so-called knot vectors may posses 
nodes that stay outside of computational domains [21–23], which addi-

tionally makes the discretisation process complex and difficult.

All the modelling features above mentioned, related to the dis-

cussed types of computational approaches: FEM, TD-SFEM, B-splines 
and spFEM, are summarised in Table 1.

The idea presented in this work is the authors’ attempt to com-

bine together the flexibility of FEM, as one of the most popular tools 
used nowadays in research and engineering practice, with the unques-

tionable numerical advantages of spline-based approximation, as it is 
presented in Table 1. In the current paper this is achieved in the fol-

lowing steps. First of all a general method used to obtain appropriate 
1-D approximation polynomials is presented, which are spline-based 
elemental shape functions. Next, the spline-based shape functions are 
employed to build characteristic elemental stiffness and inertia matri-

ces in the case of one- and two-mode theories of 1-D structural elements. 
The results of comparative analysis, discussed by the authors, concern 
high frequency dynamics of rod and beam responses including: spectra 
of natural frequencies (through the application of the Bloch theorem), 
modes of natural vibrations, dispersion curves as well as wave propa-

gation. They aim to underline the benefits of the spFEM approach in 
comparison with three alternative types of computational approaches, 
mainly: FEM, TD-SFEM and B-splines.

2. Spline-based elemental shape functions

It is very convenient to derive shape functions for a new class of 
spline-based finite elements (spFEs) starting from a simple case of a 
1-D element of length 𝑙, defined in the local coordinate system of the 
element 𝑥. In general, it is assumed that the element has 2 nodes. The 
15
Table 1

A concise summary of selected typical modelling features of discussed types of 
computational approaches.

Feature FEM TD-SFEM B-splines spFEM

Well-defined elements yes yes no yes

Continuous displacement fields yes yes yes yes

Continuous strain/stress fields no no yes yes

Gapless frequency spectra no no yes yes

Ease of joint modelling yes yes no yes

Ease of damage modelling yes yes no yes

Fig. 1. A concept of a 1-D spline-based finite element (spFE) in the local co-

ordinate system 𝑥.

total number of DOFs in each node is directly dependent on the degree 
of approximation polynomials used as shape functions: 1 DOF in each 
node for linear approximation polynomials (𝑝 = 1), 2 DOFs in each node 
for quadratic approximation polynomials (𝑝 = 2), 3 DOFs in each node 
for cubic approximation polynomials (𝑝 = 3), etc. It should be noted that 
in the current formulation nodal DOFs represent not only the unknown 
function 𝑓 (𝑥), but also its first and higher-order spatial derivatives.

A general procedure, directly adopted from FEM, leading to the de-

termination of spline-based elemental shape functions, is presented by 
the authors in detail for cubic approximation polynomials. This proce-

dure can be easily modified in order to incorporate additional element 
features like: internal damage in the form of a fatigue crack or a step 
change in material properties – see Section 5. In the current case the 
element has 2 nodes and 3 DOFs per node, while nodal DOFs repre-

sent values 𝑞1, 𝑞2 of the unknown function 𝑓 (𝑥) as well as their spatial 
derivatives in respect of 𝑥: first derivatives 𝑞′

1, 𝑞′
2 and second deriva-

tives 𝑞′′
1 , 𝑞′′

2 . Additionally, it is assumed that the unknown function 𝑓 (𝑥)
within the element can be expressed by a set of piecewise spline ap-

proximation polynomials of degree 𝑝 = 3, as presented in Fig. 1.

The unknown function 𝑓 (𝑥) can be presented in the local co-ordinate 
system 𝑥 in the following form:

𝑓 (𝑥) =
⎧⎪⎨⎪⎩

𝑓1(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3, if − 𝑙

2 ≤ 𝑥 < − 𝑙

6
𝑓2(𝑥) = 𝑎4 + 𝑎5𝑥 + 𝑎6𝑥2 + 𝑎7𝑥3, if − 𝑙

6 ≤ 𝑥 < + 𝑙

6
𝑓3(𝑥) = 𝑎8 + 𝑎9𝑥 + 𝑎10𝑥2 + 𝑎11𝑥3, if + 𝑙

6 ≤ 𝑥 ≤ + 𝑙

2

(1)

where 𝑎0, … , 𝑎11 are 12 unknown coefficients, which can be easily eval-

uated based on 6 nodal conditions and 6 continuity conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪

𝑓1(−
𝑙

2 ) = 𝑞1, 𝑓1(−
𝑙

6 ) − 𝑓2(−
𝑙

6 ) = 0
𝑓 ′
1(−

𝑙

2 ) = 𝑞′
1, 𝑓 ′

1(−
𝑙

6 ) − 𝑓 ′
2(−

𝑙

6 ) = 0
𝑓 ′′
1 (−

𝑙

2 ) = 𝑞′′
1 , 𝑓 ′′

1 (−
𝑙

6 ) − 𝑓 ′′
2 (−

𝑙

6 ) = 0
𝑓3(+

𝑙

2 ) = 𝑞2, 𝑓2(+
𝑙

6 ) − 𝑓3(+
𝑙

6 ) = 0
𝑓 ′
3(+

𝑙

2 ) = 𝑞′
2, 𝑓 ′

2(+
𝑙

6 ) − 𝑓 ′
3(+

𝑙

6 ) = 0
𝑓 ′′(+ 𝑙 ) = 𝑞′′, 𝑓 ′′(+ 𝑙 ) − 𝑓 ′′(+ 𝑙 ) = 0

(2)
⎩ 3 2 2 2 6 3 6
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Fig. 2. Piecewise 1-D spline-based elemental shape functions 𝑁
𝑗

𝑖
(𝜉) of degree 𝑝 = 3, associated with nodal DOFs: displacements 𝑞1 and 𝑞2 (left), rotations 𝑞′

1 and 𝑞′
2

(middle), rotation derivatives 𝑞′′
1 and 𝑞′′

2 (right), in the local normalised co-ordinate system of the element 𝜉, obtained in the case of the unit element length 𝑙 = 1 m.
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These 12 conditions allow one to build a system of algebraic equa-

tions in the form of the matrix 𝐀 necessary to find the 12 unknown 
coefficients 𝑎0, … , 𝑎11 as:

𝐚 =𝐀−1 ⋅𝐛 (3)

where the column vectors 𝐚 and 𝐛 have the following forms:

𝐚 = {𝑎0,… , 𝑎11}⊺, 𝐛 = {𝑞1, 𝑞′
1, 𝑞′′

1 ,0,0,0,0,0,0, 𝑞2, 𝑞′
2, 𝑞′′

2 }
⊺ (4)

In the final step, knowing that the 12 coefficients 𝑎0, … , 𝑎11 are 
simultaneously dependent on all nodal quantities and their first and 
second derivatives, after simple mathematical manipulations and rear-

rangements of terms, piecewise spline-based elemental shape functions 
𝐍(𝑥) can be presented as [6]:

𝑓 (𝑥) =𝐍(𝑥)⋅𝐪 or 𝑓 (𝑥) =𝐍(𝜉(𝑥))⋅𝐪 (5)

where the column nodal vector 𝐪 has the form of 𝐪={𝑞1, 𝑞′
1, 𝑞′′

1 , 𝑞2, 𝑞′
2, 𝑞′′

2 }
⊺

and where:

𝐍(𝑥) =
⎧⎪⎨⎪⎩
𝐍1(𝑥), if − 𝑙

2 ≤ 𝑥 < − 𝑙

6
𝐍2(𝑥), if − 𝑙

6 ≤ 𝑥 < + 𝑙

6
𝐍3(𝑥), if + 𝑙

6 ≤ 𝑥 ≤ + 𝑙

2

or 𝐍(𝜉) =
⎧⎪⎨⎪⎩
𝐍1(𝜉), if −1 ≤ 𝜉 < −1

3
𝐍2(𝜉), if −1

3 ≤ 𝜉 < +1
3

𝐍3(𝜉), if +1
3 ≤ 𝜉 ≤ +1

(6)

with a new variable 𝜉 introduced as 𝜉 = 2
𝑙

𝑥.

In fact, such a transformation of variables is equivalent to represen-

tation of the element under consideration in a form typical of FEM, in 
the local normalised co-ordinate system of the element 𝜉. This greatly 
helps not only to simplify notation [5–7], but also to simplify all subse-

quent computations [1] based on the application of the piecewise 1-D 
spline-based shape functions. As a result it can be written that:

𝐍1(𝜉) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ 7
16 −

27
16 𝜉 − 27

16 𝜉2 − 9
16 𝜉3

+ 𝑙

8 −
5𝑙

8 𝜉 − 9𝑙

8 𝜉2 − 3𝑙

8 𝜉3

+ 𝑙2

96 +
3𝑙2

32 𝜉 + 7𝑙2

32 𝜉2 + 11𝑙2

96 𝜉3

+ 9
16 +

27
16 𝜉 + 27

16 𝜉2 + 9
16 𝜉3

− 3𝑙

16 −
9𝑙

16 𝜉 − 9𝑙

16 𝜉2 − 3𝑙

16 𝜉3

+ 𝑙2

48 +
𝑙2

16 𝜉 + 𝑙2

16 𝜉2 + 𝑙2

48 𝜉3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊺

, if− 1 ≤ 𝜉 < −1
3 (7)

𝐍2(𝜉) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1
2 −

9
8 𝜉 + 9

8 𝜉3

+ 23𝑙

144 −
5𝑙

16 𝜉 − 3𝑙

16 𝜉2 + 9𝑙

16 𝜉3

+ 5𝑙2

288 −
𝑙2

32 𝜉 − 𝑙2

32 𝜉2 + 7𝑙2

96 𝜉3

+ 1
2 +

9
8 𝜉 − 9

8 𝜉3

− 23𝑙

144 −
5𝑙

16 𝜉 + 3𝑙

16 𝜉2 + 9𝑙

16 𝜉3

+ 52
288 +

𝑙2

32 𝜉 − 𝑙2

32 𝜉2 − 7𝑙2

96 𝜉3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊺

, if− 1
3 ≤ 𝜉 < +1

3 (8)
16
𝐍3(𝜉) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ 9
16 −

27
16 𝜉 + 27

16 𝜉2 − 9
16 𝜉3

+ 3𝑙

16 −
9𝑙

16 𝜉 + 9𝑙

16 𝜉2 − 3𝑙

16 𝜉3

+ 𝑙2

48 −
𝑙2

16 𝜉 + 𝑙2

16 𝜉2 − 𝑙2

48 𝜉3

+ 7
16 +

27
16 𝜉 − 27

16 𝜉2 + 9
16 𝜉3

− 𝑙

8 −
5𝑙

8 𝜉 + 9𝑙

8 𝜉2 − 3𝑙

8 𝜉3

+ 𝑙2

96 +
3𝑙2

32 𝜉 + 7𝑙2

32 𝜉2 + 11𝑙2

96 𝜉3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊺

, if+ 1
3 ≤ 𝜉 ≤ +1 (9)

The variation of the piecewise 1-D spline-based elemental shape 
functions 𝑁

𝑗

𝑖
(𝜉), (where 𝑖 = 1, … , 6 and 𝑗 = 1, … , 3), as a function on the 

non-dimensional variable 𝜉, is shown in Fig. 2. It is presented for appro-

priate ranges of the non-dimensional variable 𝜉, i.e. for 𝜉 ∈ ⟨−1, −1
3 ⟩, for 

𝜉 ∈ ⟨−1
3 , +1

3 ⟩ and for 𝜉 ∈ ⟨+1
3 , +1⟩, as well as assuming the unit length 

of the element 𝑙 = 1 m.

It can be seen from Fig. 2 that the piecewise 1-D spline-based shape 
functions of the element 𝑁

𝑗

𝑖
(𝜉) remain continuous and smooth within 

the element up to their second spatial derivatives. Thus, it can be con-

cluded that the shape functions 𝑁
𝑗

𝑖
(𝜉) belong to the class 𝐶2 of differ-

entiable functions. This is in contrast to the classical FEM or TD-SFEM, 
where it is only required for 1-D elemental shape functions to remain 
continuous and therefore such shape functions belong to the class 𝐶0.

Moreover, it is shown in the following paragraphs that a property of 
1-D shape functions, understood as the difference between the degree 
of approximation polynomials 𝑝 and the degree of their continuity 𝑐 be-

tween adjacent FEs, defined as 𝑑 = 𝑝 − 𝑐 −1, plays a very important role. 
It turns out that it has a great influence on the quality of computed 
dynamic responses in the case of high frequency dynamic responses, 
especially in the context of wave propagation problems. It should be 
emphasised here that based on the 2 nodes and associated nodal DOFs 
1-D Hermite approximation polynomials of degree 𝑝 = 5 could be built, 
instead of the piecewise 1-D spline-based approximation polynomials of 
degree 𝑝 = 3. However, it is shown later that the application of Hermite 
approximation polynomials to high frequency dynamic problems is lim-

ited due to some undesired numerical properties, which can be directly 
associated with the parameter 𝑑.

A general procedure described above and employed to determine 
of the piecewise 1-D spline-based elemental shape functions for cu-

bic approximation polynomials can be directly adopted and used for 
other degrees of approximation polynomials, such as: linear, quadratic 
or higher. The result of its application is presented in Fig. 3, where 
piecewise 1-D spline-based elemental shape functions 𝑁

𝑗

𝑖
(𝜉), associated 

only with nodal displacement DOFs, are shown for the degrees of ap-

proximation polynomials 𝑝 = 1, 𝑝 = 2 as well as 𝑝 = 3.

In order to compare the results obtained with other types of 1-D 
elemental shape functions already mentioned, similar results to these 
presented in Fig. 3 were obtained for the classical FEM approach as 
well as piecewise B-splines. They are presented in Fig. 4 and Fig. 5, 
respectively and are summarised in Table 2.
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Fig. 3. Piecewise 1-D spline-based elemental shape functions 𝑁
𝑗

𝑖
(𝜉) associated with nodal displacement DOFs for approximation polynomials of degree: 𝑝 = 1 (left), 

𝑝 = 2 (middle), 𝑝 = 3 (right), in the local normalised co-ordinate system of the element 𝜉, obtained in the case of the unit length of the element 𝑙 = 1 m.

Fig. 4. 1-D classical elemental shape functions 𝑁
𝑗

𝑖
(𝜉) associated with nodal displacement DOFs for approximation polynomials of degree: 𝑝 = 1 (left), 𝑝 = 2 (middle), 

𝑝 = 3 (right), in the local normalised co-ordinate system of the element 𝜉.

Fig. 5. Piecewise 1-D B-spline elemental shape functions 𝑁
𝑗

𝑖
(𝜉) associated with nodal displacement DOFs for approximation polynomials of degree: 𝑝 = 1 (left), 𝑝 = 2

(middle), 𝑝 = 3 (right), in the local co-ordinate system associated with one knot interval 𝜉 ∈ ⟨𝜉𝑘 , 𝜉𝑘+1⟩.

Table 2

Additional modelling features of discussed types of computational approaches.

Feature FEM TD-SFEM B-splines spFEM

Local continuity of solution typically up to 𝐶1 no limit no limit typically up to 𝐶2†

Global continuity of solution 𝐶0 𝐶0 𝐶0‡ the same as local

Support of approx. polynomials local local several knot intervals local

† Due to computation complexity.
‡ Depends on boundary conditions.
17

http://mostwiedzy.pl


A. Żak and W. Waszkowiak Computers and Mathematics with Applications 104 (2021) 14–33

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

It can be clearly seen that all three approaches, i.e. spline-based, 
classical FEM and B-spline are identical in the case of linear approxima-

tion polynomials, when 𝑝 = 1, and for higher degrees of approximation 
polynomials they tend to differ. For quadratic approximation polyno-

mials 1-D elemental shape functions have similar variations in the case 
of the classical FEM and B-spline approaches, however they change sig-

nificantly for cubic approximation polynomials. This is not the case for 
the piecewise 1-D spline-based elemental shape functions, where only 
slight differences between quadratic and cubic approximation polyno-

mials are visible.

Moreover, it can be noted that in the case of the classical FEM an 
increase in the degree of approximation polynomials 𝑝, used for 1-D ele-

mental shape functions, and based on equidistant distribution of nodes, 
leads to undesired oscillations of these polynomials close to the ele-

ment ends [24]. This is well known as Runge’s phenomenon and can 
be avoided only for specialised TD-SFEM node distributions, which are 
known in the literature as Chebyshev or Lobatto distribution of nodes 
[1]. For this reason the classical FEM approach is typically based on 
the use of linear or quadratic elemental shape functions. This problem 
is not present for the piecewise B-spline elemental shape functions, but 
this is possible at the additional cost of an increase of B-spline function 
support onto neighbouring knots. As a consequence the definition of an 
element, similar to this known in FEM or TD-SFEM, is impossible.

These two problems described above are not present in the current 
spline-based approach, where an increase in the degree of approxima-

tion polynomials 𝑝 is possible thanks to additional elemental DOFs, 
which are not explicitly associated with any internal nodal informa-

tion (extra nodes), as in the case of FEM or TD-SFEM. In contrast, they 
are associated with spatial derivatives of nodal quantities at two ele-

ment nodes. This helps not only to avoid Runge’s phenomenon, but also 
allows for keeping the shape function support within one FE.

A much more important property of piecewise 1-D spline-based ele-

mental shape functions is the class of their continuity, which has a direct 
influence on important features of numerical solutions. It should be said 
that in FEM or TD-SFEM the class of continuity of 1-D elemental shape 
functions can be arbitrary, depending only on the number of element 
nodes, providing the distribution of nodes within FEs is appropriate to 
avoid Runge’s phenomenon. Unfortunately a high class of continuity 
provided locally on the element level is not maintained globally, since 
the stress/strain fields between adjacent FEs are discontinuous. This 
may lead to some undesired properties of FE discrete numerical mod-

els such as the presence of frequency band gaps in natural frequency 
spectra, which on the other hand may significantly influence calculated 
numerical dynamic responses. This problem should not be present in 
the case of the B-spline approach. However, due to the type of support 
typical for B-splines (including several knot intervals) and numerical 
features of B-splines, multiple knots are used in order to bring approxi-

mation functions closer to control points of interpolation at the ends of 
the region of interest. Such a repetition of knots results in a decrease in 
the class of continuity at the multiple knots down to the class 𝐶 𝑝−𝑚−1, 
where 𝑝 is the degree of approximation polynomials used in B-splines 
and 𝑚 is the knot multiplicity. As a consequence also in this case the 
same class of continuity of numerical solutions cannot be maintained 
in the entire region of interest. However, this problem does not exist 
when the piecewise 1-D spline-based elemental shape functions are em-

ployed, where the class of continuity is maintained in the entire region 
of interest thanks to the use of higher order DOFs at element nodes, 
which are first and higher-order spatial derivatives.

Such a formulation of the 1-D piecewise spline-based elemental 
shape functions, as described above, can be easily employed for the 
definition of 1-D spFEs such as rods and beams. This can be achieved 
according to the well-known general FEM procedures [5–7], which are 
commonly used to calculate elemental characteristic stiffness 𝐊 and in-

ertia 𝐌 matrices:

𝐊 =∭ 𝐁⊺⋅𝐃⋅𝐁 𝑑 𝑉 , 𝐌 = 𝜌∭ 𝐍⊺⋅𝐍 𝑑 𝑉 (10)
𝑉 𝑉

18
Fig. 6. Geometry of a structural bar element.

where 𝐁 = 𝚪𝐍 is known as the matrix of relationships between strains 
and displacements, 𝚪 denotes a linear differentiation operator, while 
𝐃 is the matrix of elastic coefficients [1]. Additionally, 𝜌 is material 
density and 𝑉 is the FE volume.

The applicability of the 1-D piecewise spline-based elemental shape 
functions is demonstrated in the following paragraphs of this paper and 
concerns such dynamic characteristics as natural frequencies and modes 
vibrations together with wave propagation responses.

3. Periodic properties of FE discrete numerical models

The immanent property of the classical (displacement) formulation 
of FEM is the discontinuity of the stress/strain fields between adjacent 
FEs. Because of this, regardless of their finite dimensions and types of 
boundary conditions or mesh densities, FE discrete numerical models 
may be considered as representing structures of properties typical to 
periodic structures. This can be easily observed in the case of 1-D struc-

tures, however, for 2-D or 3-D structures the same kind of behaviour 
may be found, which is reinforced by their higher dimensions. Periodic 
properties of FE discrete numerical models may manifest themselves in 
a particularly strong manner in problems involving the analysis of prop-

agation of elastic waves. This is a direct consequence of the fact that this 
type of analysis requires very dense and very regular meshes of FEs [1].

3.1. Bloch theorem and its consequences

The Bloch theorem in a powerful analytical tool that enables one to 
investigate the dynamic properties and behaviour of periodic structures 
[25] in nano-, micro- as well as in macro-scales – see Appendix A. Most 
commonly it is used to study the behaviour of electrons in various crys-

tals, however, its application is much more general. The Bloch theorem 
can be employed to study wave propagation phenomena in periodic 
media or structures [11,12,26]. For example, in periodic dielectric ma-

terials the Bloch theorem can be used to analyse photonic crystals or in 
periodic media to analyse phononic crystals [27].

The application of the Bloch reduction technique is demonstrated in 
the case of investigation of longitudinal modes of natural vibrations of a 
1-D periodic bar – see Appendix B. For this analysis it was assumed that 
the bar under investigation presented in Fig. 6, of periodic boundary 
conditions, has the following geometrical dimensions: length 𝐿 = 2000
mm and radius 𝑅 = 20 mm, as well as the following material proper-

ties: elastic modulus 𝐸 = 67.5 GPa, Poisson’s ratio 𝜈 = 0.33 and material 
density 𝜌 = 2700 kg/m3.

In this particular case it was additionally assumed that the bar con-

sists of 𝑀 = 200 periodic cells having the length 𝑙 = 10 mm, which are 
characterised by two different phase velocities: 𝑐𝑝|1 = 5 km/s over the 
cell length 𝑙1 = 8 mm, and 𝑐𝑝|2 = 2.5 km/s over the cell length 𝑙2 = 2 mm 
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Fig. 7. Natural frequencies 𝑓𝑛 of longitudinal modes of natural vibrations of a 1-D periodic bar of step changes in the elastic modulus, consisting 𝑀 = 200 cells, as 
a function of the ratio 𝑙∕𝜆𝑛 : in the reduced zone (left), in the extended zone (middle), with frequency band gaps indicated in white. Analytical solution obtained by 
the use of the Bloch theorem [25,27]. A resulting dispersion curve for the phase velocity 𝑐𝑝|𝑛 as a function of the ratio 𝑙∕𝜆𝑛 (right).

Fig. 8. Natural frequencies 𝑓𝑛 of longitudinal modes of natural vibrations of a 1-D periodic bar of step changes in the elastic modulus, consisting 𝑀 = 200 cells, as 
a function of the ratio 𝑙∕𝜆𝑛: in the reduced zone (left), in the extended zone (middle), with frequency band gaps indicated in white. Numerical results obtained by 
the use of Bloch reduction [29] and spFEM, according to the classical rod theory, for a unit cell modelled by 5 rod spFEs and approximation polynomials of degree 
𝑝 = 2. A resulting dispersion curve for the phase velocity 𝑐𝑝|𝑛 as the ratio 𝑙∕𝜆𝑛 (right).

Fig. 9. Natural frequencies 𝑓𝑛 of longitudinal modes of natural vibrations of a 1-D periodic bar of step changes in the elastic modulus, consisting 𝑀 = 200 cells, as 
a function of the ratio 𝑙∕𝜆𝑛: in the reduced zone (left), in the extended zone (middle), with frequency band gaps indicated in white. Numerical results obtained by 
the use Bloch reduction [29] and FEM, according to the classical rod theory, for a unit cell modelled by 5 rod FEs and approximation polynomials of degree 𝑝 = 2. A 
resulting dispersion curve for the phase velocity 𝑐𝑝|𝑛 as a function of the ratio 𝑙∕𝜆𝑛 (right).
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(elastic modulus reduced 4 times). The results of analytical calculations 
obtained by the application of the Bloch theorem are presented in Fig. 7. 
Corresponding results of numerical calculations obtained by the appli-

cation of spFEM and FEM are presented in Fig. 8 and Fig. 9. In these 
two cases 𝑁 = 5 rod spFEs or FEs were used, defined according to the 
classical rod theory [28], for the degree of approximation polynomials 
𝑝 = 2. The total number of DOFs of the resulting FE discrete numerical 
models was constant and equal to 10 for both approaches.

It can be clearly seen from Fig. 7 that periodic properties of the bar 
(discontinuity of elastic modulus within a cell) manifest themselves as 
the presence of frequency band gaps in the spectrum of natural fre-
19
quencies 𝑓𝑛. The symbols 𝑐𝑝|𝑛 and 𝜆𝑛 in this and the following figures 
denote the phase velocity and the wavelength associated with the 𝑛-th 
mode of natural vibrations, since 𝑐𝑝|𝑛 = 𝑓𝑛 𝜆𝑛 with 𝑛 = 1, … , DOFs. Their 
widths are closely correlated with the intensity of periodicity, which in 
the current case is dependent on the ratio 𝑐𝑝|1∕𝑐𝑝|2 as well as 𝑙1∕𝑙2. Ad-

ditionally, the number of the frequency band gaps is directly dependent 
on the number of cells 𝑀 . It is evident that discontinuities in the spec-

trum of natural frequencies must result in observable discontinuities in 
the resulting dispersion curve for the phase velocity 𝑐𝑝|𝑛 (right), which 
are clearly indicated by phase velocity jumps. They correspond to the 
forbidden frequency bands, in which elastic waves cannot propagate 
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Fig. 10. Dispersion curves for the phase velocity 𝑐𝑝|𝑛 of longitudinal modes of natural vibrations of a 1-D periodic bar consisting 𝑀 = 200 cells, as a function of 
the ratio 𝑙∕𝜆𝑛. Numerical results obtained by the use of Bloch reduction [29] and spFEM (left), FEM (middle), according to the classical rod theory, for a unit cell 
modelled by 5 rod spFEs/FEs and approximation polynomials of degree 𝑝 = 2. A resulting curve for the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 as a function of the 
ratio 𝑙∕𝜆𝑛 (right).
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within the bar. Moreover, the resulting dispersion curve is non-linear 
and thus must lead to signal dispersion, which has it source in the pe-

riodic properties of the bar, despite the non-dispersive character of the 
applied rod theory.

In the case of the same bar modelled numerically by the use of 
spFEM and FEM the observed behaviour is similar, however, a strong 
influence of the numerical properties of FE discrete numerical models 
under investigation appears in the upper part of the natural frequency 
spectra. In general, this influence is smaller and leads to smaller numer-

ical errors in the case of spFEM. It can be seen from the results presented 
in Fig. 8 that the position and the widths of numerically predicted fre-

quency band gaps tend to differ with an increase in natural frequencies 
𝑓𝑛, when compared with the analytical results presented in Fig. 7. This 
behaviour is due to the limited number of DOFs of each FE discrete nu-

merical model and the degree of approximation polynomials 𝑝. In the 
case of FEM the observed differences are bigger, as seen in Fig. 9, and 
have their source not only in the FE discrete numerical model used for 
calculations, but also in the inherent discontinuity of the stress/strain 
fields between adjacent FEs, typical for FEM – please refer to Table 1

and Table 2.

Moreover, it is evident from Fig. 8 and Fig. 9 that the natural fre-

quencies 𝑓𝑛 calculated numerically agree very well with the analytical 
ones up to 1 MHz. From this point on the modelling error increases. It 
is expected that this error must have its source in periodic properties 
of numerical models themselves rather than in the material properties 
of the bar under investigation. Here, the modelling error, understood 
as the relative natural frequency error 𝜖𝑛 as well as the average natural 
frequency error 𝜖𝑛, are defined in the following manner:

𝜖𝑛 =
𝑓𝑛 − 𝑓𝑛

𝑓𝑛

× 100%, 𝜖𝑛 = 1
𝑛

𝑛∑
𝑖=1

𝜖𝑛 𝑛 = 1,… , 𝑀 ×DOFs (11)

where 𝑓𝑛 denotes the value of the 𝑛-th natural frequency calculated 
numerically by a selected computational approach (FEM, TD-SFEM or 
spFEM, etc.), while 𝑓𝑛 is its value calculated analytically by the appli-

cation of the Bloch theorem. It is worth to note at this point that the 
relative natural frequency error 𝜖𝑛 and the relative phase velocity error 
𝛿𝑐𝑝|𝑛 are identical, since:

𝜖𝑛 =
𝑓𝑛 − 𝑓𝑛

𝑓𝑛

× 100% =
𝑓𝑛 𝜆𝑛 − 𝑓𝑛 𝜆𝑛

𝑓𝑛 𝜆𝑛

× 100% =
𝑐𝑝|𝑛 − 𝑐𝑝|𝑛

𝑐𝑝|𝑛

× 100% = 𝛿𝑐𝑝|𝑛

(12)

where in a similar fashion as previously 𝑐𝑝|𝑛 denotes the value the phase 
velocity associated with the 𝑛-th natural frequency calculated numeri-

cally, while 𝑐𝑝|𝑛 is its value calculated analytically. The same applies to 
the average phase velocity error 𝛿𝑐𝑝|𝑛.

Corresponding results are presented in Fig. 10 and confirm that the 
relative error of the phase velocity 𝛿𝑐𝑝|𝑛 is significantly smaller in the 
20
Table 3

The average error of the phase velocity 𝛿𝑐𝑝|𝑛 of longitudinal modes of natural 
vibrations of a 1-D periodic bar consisting 𝑀 = 200 cells, as a function of the 
ratio 𝑙∕𝜆𝑛. Numerical results by spFEM/FEM, according to the classical rod the-

ory, obtained by the use of Bloch reduction [29] for a unit cell modelled by 5 
rod spFEs/FEs and approximation polynomials of degree 𝑝 = 2.

Ratio

𝑙∕𝜆𝑛

Range of 
wavelengths

spFEM

𝛿𝑐𝑝|𝑛

FEM 
𝛿𝑐𝑝|𝑛

0 to 1 𝜆𝑛 ≥ 𝑙 0.0% 0.1%

0 to 2 𝜆𝑛 ≥ 𝑙∕2 0.2% 0.6%

0 to 3 𝜆𝑛 ≥ 𝑙∕3 0.5% 3.7%

0 to 4 𝜆𝑛 ≥ 𝑙∕4 1.4% 9.4%

0 to 5 𝜆𝑛 ≥ 𝑙∕5 4.1% 16.4%

case of spFEM than in the case of FEM. For spFEM this error stays well 
below 5% up to the value of the ratio 𝑙∕𝜆𝑛 smaller than 3 (for wave-

lengths 𝜆𝑛 ≥ 𝑙∕3), which is 60% of its total variation range. In the case 
of FEM this range is shorter and reaches the value of the ratio 𝑙∕𝜆𝑛

smaller than 2 (for wavelengths 𝜆𝑛 ≥ 𝑙∕2). For higher values of the ra-

tio 𝑙∕𝜆𝑛 both numerical approaches are characterised by greater values 
of the relative errors of the phase velocity 𝛿𝑐𝑝|𝑛, with peak values of 
24% for spFEM and 54% for FEM, respectively. The average error of 
the phase velocity 𝛿𝑐𝑝|𝑛 is smaller and equal to 4.1% for spFEM and 
16.4% for FEM in the whole range of the ratio 𝑙∕𝜆𝑛. These values are 
significantly smaller when only a part of this range is considered. For 
example, for the value of the ratio 𝑙∕𝜆𝑛 smaller than 2.5 (for wave-

lengths 𝜆𝑛 ≥ 2𝑙∕5) the resulting average error of the phase velocity 𝛿𝑐𝑝|𝑛

is equal to 0.4% for spFEM and 1.3% for FEM. It can be said that in the 
current analysis concerning two equivalent FE discrete numerical mod-

els of the bar, both modelling errors in the case of FEM are much greater 
than its corresponding values obtained for spFEM, as it is summarised 
by the results presented in Table 3 concerning the average error of the 
phase velocity 𝛿𝑐𝑝|𝑛.

It should be realised that the modelling errors discussed above have 
a significant impact not only on calculated numerically spectra of natu-

ral frequencies, but also on corresponding modes of natural vibrations. 
At this place it is worth to stop for a moment and look at a particular so-

lution to the equation of motion in the case of excitations due to initial 
displacements and/or initial velocities:

𝐌⋅�̈�(𝑡) +𝐂⋅�̇�(𝑡) +𝐊⋅𝐪(𝑡) = 0, 𝐪(0) = 𝐪0, �̇�(0) = �̇�0 (13)

where 𝐪(𝑡) is the displacement vector, (∙̇) and (∙̈) denote the first and 
second derivatives with respect of time 𝑡, while 𝐊, 𝐌 and 𝐂 are the 
stiffness, inertia and damping matrices, respectively [1].

In such a case the resulting response of a structure is a sum of all 
modes of natural vibrations and the solution to the equation of motion 
(13) can be expressed in a very well-know form:
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Fig. 11. Natural frequencies 𝑓𝑛 (left), the relative natural frequency error 𝜖𝑛 (middle) and the correlation coefficient 𝜌𝑛 (right) for longitudinal modes of natural 
vibrations of a 1-D non-periodic aluminium bar, as a function of the ratio 𝐿∕𝜆𝑛 . Numerical results obtained by the use of TD-SFEM and spFEM, according to the 
classical rod theory in the case of the bar of fixed ends, modelled by 𝑁 = 100∕166 SFEs/spFEs and approximation polynomials of degree 𝑝 = 5 (TD-SFEM) and 𝑝 = 3
(spFEM).
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𝐪(𝑡) =
∑

𝑛

𝜒𝑛𝐪𝑛 𝑒𝑖𝜔𝑛 𝑡 (14)

where 𝜒𝑛 is a complex amplitude of the 𝑛-th mode of natural vibra-

tions 𝐪𝑛 resulting from given initial conditions and associated with the 
angular natural frequency 𝜔𝑛 = 2𝜋 𝑓𝑛, while 𝑖 is the imaginary unit. In 
should be emphasised that in the case of impulse excitations the sum 
from Eq. (14) must comprise all numerically calculated modes 𝐪𝑛 and 
frequencies 𝑓𝑛 of natural vibrations, therefore 𝑛 = 1, 2, … , DOFs.

Based on the form of solution given by Eq. (14) it can be seen im-

mediately that accurate numerical calculation of modes and frequencies 
of natural vibrations is a vital aspect of numerical analysis, especially 
in the context of wave propagation problems. For this reason numer-

ical misrepresentation of calculated modes and frequencies of natural 
vibration may lead to errors, which can significantly influence or falsify 
calculated dynamic responses or even prevent the process of their calcu-

lation. Therefore it is very important to examine the values of modelling 
errors and their influence on calculated dynamic responses in the case 
of FE discrete numerical models, which may be considered as represent-

ing structures of properties typical to periodic structures.

4. Natural frequency spectra and wave propagation problems

4.1. Longitudinal behaviour of one-dimensional structures

4.1.1. One-mode classical rod theory

The phenomenon described in Section 3.1 is demonstrated by the 
results of numerical calculations presented in Fig. 11. They are related 
to the same bar, but having no structural periodic properties, i.e. when 
𝑐𝑝|1 = 𝑐𝑝|2 = 𝑐𝑝 = 5 km/s. Thus, the total number of cells is the bar many 
be assumed as identical to the number of FEs. In this case the bar of 
fixed ends was modelled by 𝑁 = 100∕166 rod SFEs/spFEMs (DOFs = 
499/497), defined according to the classical rod theory – see Appendix 
C. In the first step the analysis carried out was related to the frequen-

cies and modes of natural vibrations of the bar of fixed ends and for 
the degrees of approximation polynomials 𝑝 = 5 and Chebyshev node 
distribution (TD-SFEM) and 𝑝 = 3 (spFEM).

The results presented in Fig. 11 confirm that the FE discrete numer-

ical model based on TD-SFEM and used in this analysis exhibits certain 
properties of periodic nature, in contrast to the model based on spFEM. 
This time it turns out that each SFE used can be assumed to represent 
one cell of a periodic system, so the resulting model periodicity is equal 
to the number of SFEs employed. As a consequence of this the calcu-

lated spectrum of natural frequencies of the bar is divided into 𝑝 = 5
segments separated by 𝑑 = 4 frequency band gaps, where 𝑑 = 𝑝 − 𝑐 − 1, 
with 𝑐 = 0 denoting the class of differentiability of approximation poly-

nomials, as presented in Table 4.

At this place it should be noted that depending on the type of compu-

tational approach the ratio 𝑙∕𝜆𝑛 is directly dependent on the bar division 
21
Table 4

The influence of the type of approximation polynomials, their degree 𝑝 and 
class of differentiability 𝑐, on the number of frequency band gaps 𝑑 within 
the calculated natural frequency spectrum, for various types of one-mode FEM 
approaches.

Type of approach Type of approx. polynomials 𝑝 𝑐 𝑑 = 𝑝 − 𝑐 − 1

Classical FEM Lagrange [6,30] 1 0 0

2 0 1

TD-SFEM Chebyshev/Lobatto [1,30] 3 0 2

4 0 3

5 0 4

⋮ ⋮ ⋮

Specialised FEM Hermite [31] 3 1 1

5 2 2

spFEM spline [13,14] 1 0 0

2 1 0

3 2 0

⋮ ⋮ ⋮

𝑝 – degree of approximation polynomials.
𝑐 – class of differentiability of approximation polynomials.
𝑑 – number of frequency band gaps in natural frequency spectrum.

into FEs since 𝑙 = 𝐿∕𝑁 . This is true even if the total number of DOFs of 
resulting FE discrete numerical models under comparison are kept the 
same. For this reason this ratio is replaced by a more universal mea-

sure, which is the ratio 𝐿∕𝜆𝑛. This ratio not only relates the wavelength 
𝜆𝑙 , associated with the 𝑛-th mode of natural vibration of the bar, to its 
total length 𝐿, but is equal to the mode number 𝑛 itself. In the case of 
the periodic boundary conditions and the analysis extending to 𝑚 zones 
this fact can be explained through the following simple relations:

𝑘𝑛 = 2𝜋

𝑙

𝑛

𝑁
→

2𝜋

𝜆𝑛

= 2𝜋

𝐿
𝑛 →

𝐿

𝜆𝑛

= 𝑛, 𝑛 = 0,±1,±2… ,±𝑚𝑁

2
(15)

It is also seen in Fig. 11 that the frequency band gaps associated with 
higher natural frequencies 𝑓𝑛, or the values of the ratio 𝐿∕𝜆𝑛 higher 
than 400 (for wavelengths 𝜆𝑛 ≤ 𝐿∕400), lead to quite significant mod-

elling errors in the case of TD-SFEM. However, the errors from the lower 
part of the natural frequency spectrum can also play a significant role 
in the problems related to wave propagation. This is well seen in the 
case of the correlation coefficient 𝜌𝑛, defined below, which exhibits a 
small discontinuity for the value of the ratio 𝐿∕𝜆𝑛 equal to 200 (for 
wavelengths 𝜆𝑛 = 𝐿∕200).

Based on Table 4 it can be assumed that the presence of frequency 
band gaps within calculated spectra of natural frequencies can be elim-

inated only in the case of approximation polynomials, for which their 
class of differentiability 𝑐 is one degree smaller than their degree 𝑝, i.e. 
when 𝑐 = 𝑝 − 1. It is also clearly seen that this is achieved in the case of 
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Fig. 12. Dispersion curve for the phase velocity 𝑐𝑝|𝑛 for longitudinal modes of natural vibrations of a 1-D non-periodic bar, as a function of the natural frequency 
𝑓𝑛 (left), with frequency band gaps indicated in white. Non-dimensional patterns of longitudinal waves in the bar for two different carrier frequencies 𝑓𝑐 = 150 kHz 
(middle) and 𝑓𝑐 = 250 kHz (right). Numerical results obtained by the use of TD-SFEM and spFEM, according to the classical rod theory in the case of the bar of fixed 
ends, modelled by 𝑁 = 100∕166 SFEs/spFEs and for approximation polynomials of degree 𝑝 = 5 (TD-SFEM) and 𝑝 = 3 (spFEM).
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FEM only for 𝑝 = 1. However, in the case of spFEM this can be achieved 
for any degree of approximation polynomials 𝑝. Additionally, it should 
be added that the latter approach is characterised by much greater ac-

curacy.

It can be checked that additional degrees of freedom that guarantee 
a higher order of differentiability of approximation polynomials, which 
ensures the continuity of the stress/strain fields between adjacent FEs, 
as in the case of Hermite approximation polynomials, is not a neces-

sary condition to guaranty the elimination of undesired frequency band 
gaps and division of the calculated frequency spectra into discontinued 
segments.

The presence of unnoticeable frequency band gaps in the lower part 
of the spectrum of natural frequencies 𝑓𝑛 of the bar under consideration 
has profound effects in the case of wave propagation analysis, as shown 
in Fig. 12. These results were obtained for the same numerical models 
of the bar. The dynamic responses of the bar in the time domain were 
calculated by the application of a higher accuracy central difference 
method [32]. In general, the total time of analysis 𝑇 varied depending 
on the case. It was divided into 214 time steps and chosen so that the 
signal propagating within the bar as elastic waves could fully reflect 
from the right end of the bar, reaching the bar centre. The final position 
of the front and end of the wave packet at the end of the analysis, 
calculated analytically, was denoted as 𝑙1 and 𝑙2, respectively.

According to the applied rod theory the phase and group velocities 
of elastic waves propagating in the bar are the same, i.e. 𝑐𝑝 = 𝑐𝑔 = 5
km/s, which means that no signal dispersion should be observed during 
the analysis. As a source of excitation a force signal 𝐹𝑥(𝑡) was chosen 
having the form of a sine wave of 12 pulses and amplitude 1 N, modu-

lated by the Hann window. Two different carrier frequencies of the ex-

citation were selected as 𝑓𝑐 = 150 kHz as well as 𝑓𝑐 = 250 kHz, with cor-

responding modulation frequencies 𝑓𝑚 = 12.5 kHz and 𝑓𝑚 = 20.83 kHz. 
For clarity, the results obtained are presented in Fig. 12 in a non-

dimensional form, as related to their peak values 𝑞𝑝 of the displacement 
response at the excitation point 𝑥 = 0.

It is clear from Fig. 12 that the dynamic responses of the bar calcu-

lated for the carrier frequency 𝑓𝑐 = 150 kHz are clear of any undesirable 
behaviour for both numerical approaches, which lead to the same nu-

merical results. In contrast, the dynamic responses of the bar calculated 
for the carrier frequency 𝑓𝑐 = 250 kHz in the case of TD-SFEM reveal 
some undesired behaviour manifesting in strong signal distortion as 
well as some dispersion. This has its origin in the periodicity of the 
FE discrete numerical model of the bar. However, it should also be 
noted that according to the results presented in Fig. 11 (middle), no 
significant relative natural frequency error 𝜖𝑛 in the natural frequency 
spectrum can be seen within this frequency range, up to the value of 
the ratio 𝐿∕𝜆𝑛 smaller than 300 (for wavelengths 𝜆𝑛 ≥ 𝐿∕300). It turns 
out the observed behaviour is closely related to the model inability to 
22
properly recover the modes on natural vibrations within the frequency 
range of interest rather than the natural frequencies, as seen in Fig. 11

(right) in the case of the correlation coefficient 𝜌𝑛 .

These results explain the presence of the strong signal distortion 
visible, despite the fact that there are no evident frequency band gaps 
around the higher carrier frequency of 𝑓𝑐 = 250 kHz in the spectrum of 
natural frequencies 𝑓𝑛 or the dispersion curve for the phase velocity 𝑐𝑝|𝑛. 
It is evident that in this case the correlation coefficient 𝜌𝑛 has a small 
drop in its value just around the value of the ratio 𝐿∕𝜆𝑛 equal 200 (for 
wavelengths 𝜆 ≈ 𝐿∕200), which corresponds to the carrier frequency 𝑓𝑐 . 
Based on [33] the authors used the correlation coefficient 𝜌𝑛 defined as:

𝜌𝑛(𝐩𝑛 , �̂�𝑛) =
1

𝑁

𝑁∑
𝑖=1

(
𝑝𝑛,𝑖 − 𝜇

𝜎

)(
�̂�𝑛,𝑖 − �̂�

�̂�

)
, 𝑛 = 1,2,… , DOFs (16)

where 𝐩𝑛 is a FFT-based power spectral density associated with the 
modal displacement vector 𝐪𝑛 for the 𝑛-th mode of natural vibrations 
calculated numerically, �̂�𝑛 associated with the modal displacement vec-

tor calculated analytically, with 𝜇 and 𝜎 being the mean value and the 
standard deviation of 𝐩𝑛, with �̂� and �̂� being the mean value and the 
standard deviation of �̂�𝑛. It should be added that calculation of the 
correlation coefficient 𝜌𝑛 was based on a number of points, evenly dis-

tributed along the bar, at least 100 times greater than total number of 
DOFs of FE discrete numerical models.

The observation made is well supported by the distribution of the 
relative error of mode representation 𝜖′

𝑛
, understood as the relative error 

of modal displacements calculated along the bar at the same points 
based on the application of the Hilbert transform (signal envelope), and 
expressed as follows:

𝜖′
𝑛
=

|𝐻(𝐪𝑛)|− |𝐻(�̂�𝑛)||𝐻(�̂�𝑛)| × 100%, 𝑛 = 1,… , DOFs (17)

where as before 𝐪𝑛 is the modal displacement vector associated with the 
𝑛-th natural frequency calculated numerically, �̂�𝑛 is its value calculated 
analytically, while 𝐻(∙) denotes the Hilbert transform.

The distribution of the relative error of mode representation 𝜖′
𝑛
, 

presented in Fig. 13, indicates clearly that around the higher carrier 
frequency 𝑓𝑐 = 250 kHz calculated modal responses of the bar are based 
on significantly distorted modes of natural vibrations in the case of 
TD-SFEM (middle). This is caused by the nearby frequency band gap, 
which is associated just with mode #200 (for the value of the ratio 
𝐿∕𝜆 ≈ 200 or wavelengths 𝜆 ≈ 𝐿∕200). In the case of the lower carrier 
frequency 𝑓𝑐 = 150 kHz (for the value of the ratio 𝐿∕𝜆 ≈ 120 or wave-

lengths 𝜆 ≈ 𝐿∕120) kHz, this problem in not seen.

The behaviour described above fully supports the statement that the 
usable part of the frequency spectrum of the bar under consideration, 
which guarantees high accuracy of computational results in the case of 
TD-SFEM, ends just before the values of the ratio 𝐿∕𝜆𝑛 equal to 200 (for 
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Fig. 13. Correlation coefficient 𝜌𝑛 for longitudinal modes of natural vibrations of a 1-D non-periodic bar, as a function of the ratio 𝑙∕𝜆𝑛 (left). Distributions of the 
relative error of mode representation 𝜖′

𝑛
along the bar. Numerical results obtained by the use of TD-SFEM (middle) and spFEM (right), according to the classical rod 

theory in the case of the bar of fixed ends, modelled by 𝑁 = 100∕166 SFEs/spFEs and for approximation polynomials of degree 𝑝 = 5 (TD-SFEM) and 𝑝 = 3 (spFEM).

Fig. 14. Natural frequencies 𝑓𝑛 (left), the relative natural frequency error 𝜖𝑛 (middle) and the correlation coefficient 𝜌𝑛 (right) of flexural modes of natural vibrations 
of a 1-D non-periodic aluminium bar, as a function of the ratio 𝐿∕𝜆𝑛 . Numerical results obtained by the use of FEM and spFEM, according to the classical beam 
theory in the case of the bar of simply-supported ends, modelled by 𝑁 = 375∕250 FEs/spFEs and for approximation polynomials of degree 𝑝 = 3 (FEM) and 𝑝 = 3
(spFEM).
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wavelengths 𝜆𝑛 ≥ 𝐿∕200). This comprises the first 200 frequencies and 
modes of natural vibrations, which effectively reduces this spectrum to 
40% of its total span. It can be mentioned that then the correlation co-

efficient 𝜌𝑛 drops down to 97%. Despite the fact that this drop seems 
relatively small, it has a significant impact on calculated dynamical re-

sponses in the case of the excitation frequencies from the vicinity of the 
frequencies associated with the ratio 𝐿∕𝜆𝑛 approximately equal to 200 
(for wavelengths 𝜆 ≈ 𝐿∕200).

However, in the case of the bar modelled by spFEM and the use 
of the spline-based elemental shape functions, this problem is not ob-

served. The continuity of the shape functions and their first and second 
derivatives leads to a smooth spectrum of natural frequencies of the bar, 
which is free of any frequency band gaps – in this case 𝑑 = 𝑝 − 𝑐 − 1 = 0. 
It is not only that the spectrum of natural frequencies calculated by the 
use of spFEM is smooth, but calculated natural frequencies of the bar 
are characterised by small values of the relative natural frequency error 
𝜖𝑛, which reaches only 4.13%, as it can be seen from Fig. 11 (left). This 
value is very low in comparison to the corresponding results obtained 
for TD-SFEM, were the maximum value of this error 𝜖𝑛 reaches 75.5%.

It is also visible from Fig. 12 that the dynamic responses of the 
bar, calculated for the same carrier frequencies 𝑓𝑐 = 150 kHz and 
𝑓𝑐 = 250 kHz, are clear of any undesirable behaviour in the case of 
spFEM. The behaviour observed has this time its source in the ability of 
the FE discrete numerical model to properly recover the modes of natu-

ral vibrations within the frequency range of interest, as seen in Fig. 11

(right). Moreover, in the case of spFEM this range extends nearly to the 
entire spectrum of natural frequencies 𝑓𝑛 and is limited only by a drop 
in the correlation coefficient 𝜌𝑛 at the end of this spectrum. For practical 
purposes it can be assumed that the value of the correlation coefficient 
𝜌𝑛 should not be smaller than 97%. In the case of spFEM such an as-
23
sumption effectively reduces the usable part of the natural frequency 
spectrum to 78.5% of its total span.

4.2. Flexural behaviour of one-dimensional structures

4.2.1. One-mode Bernoulli-Euler beam theory

Taking into account the result presented and discussed previously, 
the authors decided to focus their attention on two similar types of 
FEs approaches. In the first case the classical FEM approach was used, 
for which Hermite approximation polynomials of degree 𝑝 = 3 were 
employed. In the second case spFEM was used and spline-based approx-

imation polynomials of the same degree 𝑝 = 3 were employed, which 
provide not only the continuity of the unknown displacement functions 
and their first derivatives, but also their second derivatives.

The results shown in Fig. 14 are related to the flexural behaviour 
of the aluminium bar under investigation, modelled according to the 
classical beam theory [30] – see Appendix D. Both computational ap-

proaches are considered, i.e. FEM and spFEM. In this case the bar of 
simply-supported ends was modelled by 𝑁 = 375∕250 classical beam 
FEs/spFEMs (DOFs = 750/749). It should be noted here that in the 
current case as a source of excitation a transverse force signal 𝐹𝑦(𝑡) was 
chosen, as presented in Fig. 6, having the same form as before. Addi-

tionally, it is known that in the specialised FEM approach, thanks to 
the use of the approximation polynomials in the form of Hermite poly-

nomials of degree 𝑝 = 3, the continuity of the unknown displacement 
functions and their first derivatives is provided, i.e. the stress/strain 
fields between adjacent FEs remains continuous, in a similar manner as 
in the case of spFEM.

As in the case of the longitudinal behaviour of the bar discussed in 
Section 4.1, the results presented in Fig. 14 confirm that the FE discrete 
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Fig. 15. A dispersion curve for the phase velocity 𝑐𝑝|𝑛 of flexural modes of natural vibrations of a 1-D non-periodic bar, as a function of the natural frequency 𝑓𝑛

(left), with a frequency band gap indicated in white. Non-dimensional patterns of flexural waves in the bar for two different carrier frequencies 𝑓𝑐 = 150 kHz (middle) 
and 𝑓𝑐 = 250 kHz (right). Numerical results obtained by the use of FEM and spFEM, according to the classical beam in the case of the bar of simply-supported ends, 
modelled by 𝑁 = 375∕250 FEs/spFEs and for approximation polynomials of degree 𝑝 = 3 (FEM) and 𝑝 = 3 (spFEM).

Fig. 16. The relative error of the phase velocity 𝛿𝑐𝑝|𝑛 of flexural modes of natural vibrations of a 1-D non-periodic bar, as a function of the natural frequency 𝑓𝑛 (left). 
Distributions of the relative error of mode representation 𝜖′

𝑛
along the bar. Numerical results obtained by the use of FEM, according to the classical beam theory in 

the case of the bar of simply-supported ends, modelled by 𝑁 = 375∕250 FEs/spFEs and for approximation polynomials of degree 𝑝 = 3 (FEM) and 𝑝 = 3 (spFEM).
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numerical model used for FEM in this analysis also exhibits properties of 
periodic nature. As before the resulting model periodicity is correlated 
to the number of FEs employed. As a consequence of this, according 
to Table 4, the calculated spectrum of natural frequencies of the bar 
must be divided into 𝑝 = 2 segments separated by 𝑑 = 1 frequency band 
gaps, where 𝑑 = 𝑝 − 𝑐 − 1 with 𝑐 = 1 being the class of differentiability 
of approximation polynomials. It is also seen that the presence of the 
frequency band gap can have a significant influence on numerical er-

rors associated with higher natural frequencies 𝑓𝑛, however, the errors 
from the lower part of the natural frequency spectrum again can play a 
significant role in the problems related to wave propagation.

According to the applied beam theory the phase and group veloc-

ities of elastic waves propagating in the bar are different, i.e. 𝑐𝑝 ≠ 𝑐𝑔 , 
which means that some signal dispersion should be observed during the 
analysis. As a source of excitation the same force signal 𝐹𝑥(𝑡) was cho-

sen and the same values of carrier frequencies of the excitation were 
selected as 𝑓𝑐 = 150 kHz as well as 𝑓𝑐 = 250 kHz, with corresponding 
modulation frequencies 𝑓𝑚 = 12.5 kHz and 𝑓𝑚 = 20.83 kHz. For clarity, 
the results obtained are presented in Fig. 15 in a non-dimensional form, 
as related to their peak value 𝑞𝑝 of the acceleration response at the ex-

citation point 𝑥 = 0.

It is clear from Fig. 15 (middle) that the dynamic responses of the 
bar calculated for the carrier frequency 𝑓𝑐 = 150 kHz (left) are clear of 
any undesirable behaviour. However, the dynamic responses of the bar 
calculated for the carrier frequency 𝑓𝑐 = 250 kHz (right) reveal some un-

desired behaviour manifesting in an increased propagation speed, slight 
signal distortion as well as some dispersion, which again has its origin 
in the periodicity of the FE numerical model itself. However, it should 
also be noted that according to the results presented in Fig. 14 (mid-
24
dle), only small errors in the spectrum of natural frequencies 𝑓𝑛 can be 
seen for the values of the ratio 𝐿∕𝜆𝑛 smaller than 375 (for wavelengths 
𝜆 ≥ 𝐿∕375). It turns out this time that the observed behaviour is closely 
related not to the model inability to properly recover the modes on nat-

ural vibrations within the frequency range of interest, but primarily to 
the relative error of the phase velocity 𝛿𝑐𝑝|𝑛, which increases up to 3% 
towards the frequency band gap near the value of the ratio 𝐿∕𝜆𝑛 equal 
375, as seen in Fig. 14 (middle).

This is also confirmed by the results presented in Fig. 16, which 
concern the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 and the distribution 
of relative errors of mode representation 𝜖′

𝑛
. It can be seen that their 

values near the carrier frequency 𝑓𝑐 = 150 kHz and 𝑓𝑐 = 250 kHz are 
very small and as such should not be considered as responsible for the 
observed behaviour.

Based on the results presented in Fig. 16 (left) it can be concluded 
that within the range of natural frequencies 𝑓𝑛 up to the carrier fre-

quency 𝑓𝑐 = 250 kHz the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 re-

mains small, not exceeding 0.6%. However, this is not the case for the 
error related to the group velocity 𝑐𝑔|𝑛, corresponding to the 𝑛-th mode 
of natural vibration, which can be calculated from a simple relation 
[34]:

𝑐𝑔|𝑛 =
𝑑 𝜔𝑛

𝑑 𝑘𝑛

, 𝑐𝑝|𝑛 =
𝜔𝑛

𝑘𝑛

, 𝑐𝑔|𝑛 =
𝑑(𝑘𝑛 𝑐𝑝|𝑛)

𝑑 𝑘𝑛

= 𝑐𝑝|𝑛 + 𝑘𝑛

𝑑 𝑐𝑝|𝑛

𝑑 𝑘𝑛

, 𝑛 = 1,… , DOFs

(18)

It can be immediately seen from Eq. (18) that the relative error of 
the group velocity 𝛿𝑐𝑔|𝑛, associated with the 𝑛-th mode of natural vibra-

tions, increases with wave numbers 𝑘𝑛 and can be much greater than 
the corresponding relative error of the phase velocity 𝛿𝑐𝑝|𝑛, as long as 
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A. Żak and W. Waszkowiak Computers and Mathematics with Applications 104 (2021) 14–33

Table 5

The relative errors of the phase 𝛿𝑐𝑝|𝑛 and group 𝛿𝑐𝑔|𝑛 velocities as a function of the coefficient 
𝑘 together with signal energy content 𝐸, calculated in the case of the signal carrier frequency 
𝑓𝑐 = 150 kHz and modulation frequency 𝑓𝑐 = 12.5 kHz. Numerical results obtained by the use of 
FEM, according to the classical beam theory in the case of the bar of simply-supported ends, 
modelled by 𝑁 = 375 FEs and for approximation polynomials of degree 𝑝 = 3.

𝑘 𝑓𝑐 − 𝑘𝑓𝑚 ≈ 𝑓𝑛1
𝑓𝑐 + 𝑘𝑓𝑚 ≈ 𝑓𝑛2

𝑛1 𝑛2 𝛿𝑐𝑝|𝑛1
𝛿𝑐𝑝|𝑛2

𝛿𝑐𝑔|𝑛1
𝛿𝑐𝑔|𝑛2

𝐸

[–] [kHz] [kHz] [–] [–] [%] [%] [%] [%] [%]

1 137.5 162.5 124 142 0.08 0.13 0.33 0.57 79.1

2 125.0 175.0 114 152 0.05 0.17 0.23 0.75 97.3

3 112.5 187.5 105 161 0.04 0.21 0.17 0.94 98.9

4 100.0 200.0 96 171 0.03 0.27 0.12 1.18 99.4

5 87.5 212.5 87 180 0.02 0.32 0.08 1.44 99.6

Table 6

The relative errors of the phase 𝛿𝑐𝑝|𝑛 and group 𝛿𝑐𝑔|𝑛 velocities as a function of the coefficient 
𝑘 together with signal energy content 𝐸, calculated in the case of the signal carrier frequency 
𝑓𝑐 = 250 kHz and modulation frequency 𝑓𝑐 = 20.8 kHz. Numerical results obtained by the use of 
FEM, according to the classical beam theory in the case of the bar of simply-supported ends, 
modelled by 𝑁 = 375 FEs and for approximation polynomials of degree 𝑝 = 3.

𝑘 𝑓𝑐 − 𝑘𝑓𝑚 ≈ 𝑓𝑛1
𝑓𝑐 + 𝑘𝑓𝑚 ≈ 𝑓𝑛2

𝑛1 𝑛2 𝛿𝑐𝑝|𝑛1
𝛿𝑐𝑝|𝑛2

𝛿𝑐𝑔|𝑛1
𝛿𝑐𝑔|𝑛2

𝐸

[–] [kHz] [kHz] [–] [–] [%] [%] [%] [%] [%]

1 229.2 270.8 192 225 0.41 0.75 1.85 3.32 77.6

2 208.3 291.7 177 241 0.30 0.96 1.35 4.26 97.3

3 187.5 312.5 161 258 0.21 1.23 0.94 5.41 98.9

4 166.7 333.3 146 275 0.15 1.52 0.64 6.60 99.4

5 145.8 354.2 130 290 0.09 1.84 0.40 7.83 99.6
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𝑑 𝑐𝑝|𝑛∕𝑑 𝑘𝑛 > 0. This condition is fulfilled in the case of the results pre-

sented in Fig. 16, what is summarised in Table 5 and Table 6.

Despite the fact that the majority of the excitation signal energy falls 
into a relatively narrow window of frequencies 𝑓𝑐 ± 2𝑓𝑚, as shown in 
[1], the spectrum of excited frequencies is in fact broader and can be 
assumed to cover a wider frequency range. In the context of the results 
presented in Table 5 and Table 6 it becomes obvious that the entire en-

ergy 𝐸 of the propagating signal must extend onto a wider window of 
frequencies. In the case of the factor 𝑘 = 2 the signal energy 𝐸 with the 
range of frequencies 𝑓𝑐 ± 2𝑓𝑚 reaches 97.3%, while in the case of the 
factor 𝑘 = 5 the signal energy 𝐸 within the range of frequencies 𝑓𝑐 ±5𝑓𝑚

reaches 99.6%. It turns out that the modelling error expressed in terms 
of the relative error of the group velocity 𝛿𝑐𝑔|𝑛, in an increased win-

dow of frequencies, helps to explain the behaviour of the propagating 
flexural waves in the bar.

The results presented in Table 6 show that the relative error of the 
group velocity 𝛿𝑐𝑔|𝑛 is more than four times greater than the relative 
error of the phase velocity 𝛿𝑐𝑝|𝑛. It increases up to 4.26% for the fac-

tor 𝑘 = 2, while it reaches 7.83% for the factor 𝑘 = 5. Bearing in mind 
that the group velocity 𝑐𝑔 exceeds 5 km/s in the case of all values of 
the factor 𝑘, the relative error of the group velocity 𝛿𝑐𝑔|𝑛 = 5%. This cor-

responds to the distance of 0.15 m, which is nearly 40% of the total 
length of the propagating wave packet, expressed in terms of the final 
position of the front and end of the wave packet at the end of the anal-

ysis, calculated analytically and denoted as 𝑙1 and 𝑙2. This observation 
well corresponds to the results presented in Fig. 15.

In a similar manner as in the case of the longitudinal behaviour 
of the bar, the behaviour described above fully supports the statement 
that the usable part of the frequency spectrum of the bar under consid-

eration, which guarantees high accuracy of computational results, ends 
just before the first frequency band gap. This comprises the first 365 
frequencies and modes of natural vibrations, which effectively reduces 
the usable part of the calculated spectrum to 48.7% of its total span.

As before, also in the case of the analysis of flexural behaviour of 
the aluminium bar under investigation modelled by spFEs, the problems 
arising from the periodic nature of the FE discrete numerical model, re-

sulting from the discontinuity of the shape functions, are not present. 
The continuity of the spline-based elemental shape functions and their 
first and second derivatives leads to a smooth spectrum of natural fre-
25
quencies 𝑓𝑛, which is free of any frequency band gaps, since in this case 
𝑑 = 𝑝 −𝑐−1 = 0. This is well illustrated by the results presented in Fig. 14

(left). It is not only that the spectrum of natural frequencies calculated 
by the use of 250 spFEs is smooth, but calculated natural frequencies 
of the bar are characterised by small values of the relative natural fre-

quency error 𝜖𝑛, which reaches 6.40% for the ratio 𝐿∕𝜆𝑛 ≈ 650, as it can 
be seen from Fig. 14 (middle). This value is very low in comparison to 
the corresponding results obtained for FEM, were the maximum value 
of this error reaches 28.8% in the same region.

It is also visible from Fig. 16 (right) that the dynamic responses of 
the bar, calculated for the same carrier frequencies 𝑓𝑐 = 150 kHz and 
𝑓𝑐 = 250 kHz, are clear of any undesirable behaviour. Again, this is con-

trary to the case of the bar modelled by FEM. The behaviour observed 
has the same source in the ability of the FE discrete numerical model to 
properly recover the modes on natural vibrations within the frequency 
range of interest, as seen in Fig. 14 (right). Moreover, this range extends 
nearly to the entire frequency spectrum and is limited only by a drop in 
the correlation coefficient 𝜌𝑛 near the end of the spectrum. For practical 
purposes it can be assumed that the value of the correlation coefficient 
𝜌𝑛 should not be smaller than 97%, which value corresponds to the ra-

tio 𝐿∕𝜆𝑛 equal to 686. This effectively reduces the usable spectrum to 
91.5% of its total span.

4.2.2. Two-mode Timoshenko beam theory

It is interesting to see how the periodic properties of a FE discrete nu-

merical model influence calculated dynamic characteristics in the case 
of a multi-mode theory. The results presented in this paragraph are 
related to the analysis of dynamic characteristics and propagation of 
elastic waves in the same bar, but when a two-mode Timoshenko beam 
theory is applied – see Appendix E. The application of TD-SFEM and 
spFEM are investigated in the case of the bar of simply-supported ends 
modelled by 𝑁 = 100∕166 SFEs/spFEM (DOFS = 1000/966). The FEs 
employed in the current computations were defined according to the 
Timoshenko beam theory [30], for the degree of approximation poly-

nomials 𝑝 = 5 and Chebyshev node distribution (TD-SFEM) as well as 
𝑝 = 3 (spFEM).

In a similar manner as in the case of previously discussed one-mode 
theories, it is expected now that for TD-SFEM the calculated spectrum 
of natural frequencies 𝑓𝑛 of the bar should be divided into 𝑝 = 5 seg-
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Fig. 17. Natural frequencies 𝑓𝑛 (left), the relative natural frequency error 𝜖𝑛 (middle) and the correlation coefficient 𝜌𝑛 (right) of flexural modes of natural vibrations 
of a 1-D non-periodic aluminium bar, as a function of the ratio 𝐿∕𝜆𝑛 . Numerical results obtained by the use of TD-SFEM and spFEM, according to the Timoshenko 
beam theory in the case of the bar of simply-supported ends, modelled by 𝑁 = 100∕66 SFEs/spFEs and for approximation polynomials of degree 𝑝 = 5 (TD-FEM) and 
𝑝 = 3 (spFEM).
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ments separated by a number of frequency band gaps, which is directly 
correlated with the degree of approximation polynomials 𝑝 and their 
class of differentiability 𝑐, as presented in Table 4. However, due to the 
two-mode nature of the applied beam theory this should be applicable 
independently to each of the modes available, i.e. the flexural F-mode 
and the shear S-mode. As a result of this the number of frequency band 
gaps 𝑑, in the calculated spectrum of natural frequencies of the bar, can 
be doubled. What is more, a couple interaction of the two modes may 
result in the appearance of new frequency band gaps. Also in this case 
for numerical computation as a source of excitation a pure transverse 
force signal 𝐹𝑦(𝑡) was chosen, as presented in Fig. 6, having the same 
form as before.

The appearance of new frequency band gaps in the spectrum of nat-

ural frequencies of the bar is well illustrated by the results of numerical 
calculations presented in Fig. 17, which concern both modelling ap-

proaches. It can be clearly seen from Fig. 17 that in the case of TD-SFEM 
the spectrum of natural frequencies 𝑓𝑛 of the bar can be viewed as di-

vided into 𝑝 = 5 segments, but the total number of frequency band gaps 
present in the spectrum is more than 10. However, the frequency band 
gaps associated with the natural frequencies 𝑓𝑛 near 510 kHz (0.51 
MHz) form a common frequency band gap for both modes (for the ratio 
𝐿∕𝜆𝑛 equal 440 in the case of the flexural F-mode and 𝐿∕𝜆𝑛 equal 360 
in the case of the shear S-mode), while the remaining frequency band 
gaps are independent. In comparison to that the spectrum of natural 
frequencies 𝑓𝑛 of the bar, calculated based on the use of spFEM remains 
smooth for both modes and no frequency band gaps are present there.

As before the observed behaviour has a direct impact on the ac-

curacy of the FE discrete numerical models, which again can be ex-

pressed in terms of the relative natural frequency error 𝜖𝑛. It is shown 
in Fig. 17 (middle) that for TD-SFEM the relative natural frequency er-

ror 𝜖𝑛 slowly increases with the ratio 𝐿∕𝜆𝑛 and remains small for its 
values smaller than 300 (for wavelengths 𝜆𝑛 ≥ 𝐿∕300). It reaches its lo-

cal maximum values of 2.70% for the flexural F-mode, and 2.47% for 
the shear S-mode, for the value of the ratio 𝐿∕𝜆𝑛 = 290 (for wavelengths 
𝜆𝑛 = 𝐿∕290). However, the maximum value of the relative natural fre-

quency error 𝜖𝑛 reaches 76.3% for the F-mode and 74.9% for S-mode, 
26
for the value of the ratio 𝐿∕𝜆𝑛 = 485 (for wavelengths 𝜆𝑛 = 𝐿∕485). Bear-

ing in mind the results obtained in the case of one-mode classical rod 
theory, presented in Fig. 13 and Fig. 16, it can be expected that in the 
current case the presence of the frequency bad gaps in the lower part of 
the calculated spectrum may have a significant impact on both modes 
during the analysis of wave propagation.

Indeed, the results presented in Fig. 18 confirm this. Additionally, 
it should be pointed out here that because of the multi-mode nature of 
the problem both modes propagating in the bar, i.e. flexural and shear 
modes, can interact with one another, what leads to mode conversion 
[34,35]. Moreover, due to a non-linear dependence of the frequency 𝑓𝑛

from the wave number 𝑘𝑛, which is directly dependent on the mode 
number 𝑛 according to Eq. (15), some dispersion of propagating signals 
should be observed.

The presence of frequency band gaps results in a significant distor-

tion of the calculated dynamic response yet in the case of the lower 
value of the carrier frequency 𝑓𝑐 = 150 kHz. In this particular case the 
total time of analysis 𝑇 was calculated based on the speed of the flex-

ural F-mode. It is evident that in this lower frequency regime the FE 
discrete numerical model of the bar based on the TD-SFEM was un-

able to properly recreate not only the natural frequencies, but also 
associated modes of natural vibrations, based on which the presented 
responses were calculated. As a result of this the speed of both prop-

agating modes in the bar are slightly increased in the comparison to 
the analytically calculated values, which can be clearly observed in 
Fig. 18 (middle). Also associated modes of natural vibrations are dis-

torted, which manifests in a constant, not vanishing, level of vibrations 
in the beam present in front and behind the propagating wave packet. 
The observed behaviour significantly worsens for the higher value of 
the carrier frequency 𝑓𝑐 = 250 kHz, as presented in Fig. 18 (right). In 
this case the total time of analysis 𝑇 was calculated based on the speed 
of the shear S-mode.

Since a part of the frequency content of the excitation signal falls 
into frequency band gaps associated with both modes (two signifi-

cant frequency band gaps for the flexural F-mode and two significant 
frequency band gaps for the shear S-mode) in the range of natural fre-
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Fig. 18. The relative error of the phase velocity 𝛿𝑐𝑝|𝑛 of flexural modes of natural vibrations of a 1-D non-periodic aluminium bar, as a function of the natural 
frequency 𝑓𝑛 (left), with frequency band gaps indicated in white. Non-dimensional patterns of flexural waves in the bar for two different carrier frequencies 
𝑓𝑐 = 150 kHz (middle) and 𝑓𝑐 = 250 kHz (right). Numerical results obtained by the use of TD-SFEM and spFEM, according to the Timoshenko beam theory in the case 
of the bar of simply-supported ends, modelled by 𝑁 = 100∕166 SFEs/spFEs and approximation polynomials of degree 𝑝 = 5 (TD-SFEM) and 𝑝 = 3 (spFEM).
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quencies 𝑓𝑛 up to 300 kHz, the associated modes of natural vibrations 
must be greatly distorted. As a consequence the obtained wave propa-

gation patterns, based on the modes of natural vibrations in the range 
of excited frequencies, as presented in Table 6, must be polluted by the 
presence of waves trapped in the bar. These trapped waves are associ-

ated with the range of natural frequencies 𝑓𝑛 directly corresponding to 
all frequency band gaps within the range of frequencies excited by the 
excitation signal.

In contrast, the behaviour related to the use of TD-SFEM is not ob-

servable for spFEM in the case of both carrier frequencies 𝑓𝑐 = 150 kHz 
and 𝑓𝑐 = 250 kHz of the excitation. It can be seen from Fig. 18 (left) 
that the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 slowly increases for 
spFEM, which should manifest in a slightly increased wave propagation 
speed in the case of the flexural F-mode. It should be noted that the 
value of this error is relatively small and reaches at its maximum 4.5%. 
However, based on the result discussed in Section 4.2.1 concerning one-

mode Bernoulli-Euler beam theory, as well as the results presented in 
Table 6, this value of the error may have a strong influence on an in-

creased value in the wave propagation speed of the flexural F-mode. It is 
interesting to see that the highest natural frequency associated with this 
mode, for the current FE discrete numerical model, ends up at 360 kHz, 
which according to Table 6 suffice to support the flexural F-mode for 
the higher carrier frequency 𝑓𝑐 = 250 kHz of the excitation. It is also 
clearly seen from the results presented in Fig. 18 that in the case of 
spFEM the smooth spectrum of the natural frequencies 𝑓𝑛 leads to un-

polluted and clear wave propagation patterns, where the final positions 
of the front and end of the propagating wave packets associated with 
both modes fully agree with the values calculated analytically and de-

noted as 𝑙1 and 𝑙2.

5. Additional features of spFEM

In this section certain additional features of the current spFEM for-

mulation are discussed by the authors. One of the biggest advantages of

the presented approach, based on the use of piecewise 1-D spline-based 
elemental shape functions, is the ability to modify the nodal compati-
27
bility conditions, presented in Section 2 and expressed by Eq. (2), for 
selected internal nodes 𝑥𝑖.

Depending on the degree of approximation polynomials 𝑝, these con-

ditions may be successfully utilised to adopt elemental shape functions 
of a spFEM to some specific cases, such as:

• Modelling of a step change in the cross-section and/or elastic mod-

ulus of the bar:

– for longitudinal behaviour:

𝑓 ′
1(𝑥𝑖) = 𝑓 ′

2(𝑥𝑖)→ 𝐸 𝑆 𝑓 ′
1(𝑥𝑖) = (𝐸 +Δ𝐸)(𝑆 +Δ𝑆)𝑓 ′

2(𝑥𝑖) (19)

– for flexural behaviour:

𝑓 ′′
1 (𝑥𝑖) = 𝑓 ′′

2 (𝑥𝑖)→ 𝐸 𝐼 𝑓 ′
1(𝑥𝑖) = (𝐸 +Δ𝐸)(𝐼 +Δ𝐼)𝑓 ′

2(𝑥𝑖) (20)

where 𝑆 and 𝐼 are the area and the second moment of area of the 
bar cross-section, while 𝐸 is the elastic modulus of the bar material. 
Appropriate step changes in their values are denoted as: Δ𝑆, Δ𝐼

and Δ𝐸, respectively. It should be noted that Eq. (19) and Eq. (19)

result from the continuity of axial forces (longitudinal behaviour) 
or bending moments (flexural behaviour) between appropriate sec-

tions of the spFE.

• Modelling of internal damage in the form of a fatigue crack:

– for longitudinal behaviour:

𝑓1(𝑥𝑖) = 𝑓2(𝑥𝑖)→ 𝑓1(𝑥𝑖) − 𝑓2(𝑥𝑖) = 𝑐11𝐸 𝑆 𝑓 ′
1(𝑥𝑖) (21)

– for flexural behaviour:

𝑓 ′
1(𝑥𝑖) = 𝑓 ′

2(𝑥𝑖)→ 𝑓 ′
1(𝑥𝑖) − 𝑓 ′

2(𝑥𝑖) = 𝑐55𝐸 𝐼 𝑓 ′′
1 (𝑥𝑖) (22)

where additional compliance 𝑐11 = 𝑐11𝑅 and 𝑐55 = 𝑐55𝑅, with 𝑅 be-

ing the bar radius, represent the loss of bar stiffness due to the 
presence of a fatigue crack. The values of 𝑐11 and 𝑐55 can be easily 
calculated according to the laws of fracture mechanics, as pre-

sented in [36–38].
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Fig. 19. Natural frequencies 𝑓𝑛 (left), the dispersion curve for the phase velocity 𝑐𝑝|𝑛 (middle), the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 (right), of longitudinal 
modes of natural vibrations of a 1-D periodic bar of step changes in the cross-section, consisting 𝑀 = 50 cells, as a function of the ratio 𝑙∕𝜆𝑛 . Numerical results 
obtained by the use of Bloch reduction [29] for FEM and spFEM, according to the classical rod theory, for a unit cell modelled by 5 rod FEs/spFEs and approximation 
polynomials of degree 𝑝 = 2.

Fig. 20. Natural frequencies 𝑓𝑛 (left), the dispersion curve for the phase velocity 𝑐𝑝|𝑛 (middle), the relative error of the phase velocity 𝛿𝑐𝑝|𝑛 (right), of longitudinal 
modes of natural vibrations of a 1-D periodic bar of step changes in the cross-section and elastic modulus, consisting 𝑀 = 50 cells, as a function of the ratio 𝑙∕𝜆𝑛 . 
Numerical results obtained by the use of Bloch reduction [29] and FEM and spFEM, according to the classical rod theory, for a unit cell modelled by 5 rod FEs/spFEs 
and approximation polynomials of degree 𝑝 = 2.
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• Modelling of a pin joint. A pin joint can be effectively modelled in 
a straightforward manner thanks to separation of appropriate rota-

tional DOFs and their spatial derivatives, within the spFE forming a 
pin joint. This separation should take place during the assembling 
process of the characteristic stiffness 𝐊 and inertia 𝐌 matrices, 
when connectivity between particular DOFs of adjacent spFEs is 
determined. It can be noted that the behaviour of a pin joint can be 
approximated in the case of a fatigue crack described by Eq. (22), 
when the total area of the crack reaches the total area of the beam 
cross-section. This corresponds to the total loss of stiffness link-

ing selected rotational DOFs within the spFEM, which model a pin 
joint.

The modelling methods discussed above, which allow one to employ 
the additional features of the current spFEM approach, are illustrated 
below. In the first case natural frequencies 𝑓𝑛 and dispersion curves of 
the phase velocity 𝑐𝑝|𝑛 of a 1-D periodic bar of step changes in the cross-

section are investigated. The results of numerical simulation, shown in 
Fig. 19, concern the case of the bar consisting of 𝑀 = 50 cells. The 
source of the periodicity in each cell comes from the reduction in the 
bar cross-section to 25% of its original value, over the distance equal to 
20% of the cell length. The Bloch reduction [29] was used for FEM and 
spFEM discrete numerical models, built according to the classical rod 
theory, for a unit cell modelled by 𝑁 = 5 classical rod FEs/spFEs (DOFs 
= 10) and approximation polynomials of degree 𝑝 = 2.

It is clearly seen from Fig. 19 that the application of spFEM leads 
to much smaller relative errors of the phase velocity 𝛿𝑐𝑝|𝑛 than the 
application of FEM. This is true for the entire spectrum of calculated 
frequencies 𝑓𝑛 as well as the entire range of the ratio 𝑙∕𝜆𝑛. A part of this 
28
spectrum, characterised by the relative error of the phase velocity 𝛿𝑐𝑝|𝑛

(right) smaller than 5%, comprises as much as 80% of calculated natural 
frequencies 𝑓𝑛 in the case of spFEM, and only 50% of calculated natural 
frequencies 𝑓𝑛 in the case of FEM. Similar results are obtained, when 
the reduction in the bar cross-section is accompanied by a simultane-

ous reduction in the elastic modulus, also to 25% of its original value. 
The results of numerical computations for the same two modelling ap-

proaches are presented in Fig. 20. It should be mentioned here that due 
to the lack of known analytical solutions, as reference solutions the au-

thors used FEM solutions, noted as FEM∞. They were obtained for rich 
FE discrete numerical models of the bar consisting 10 times more DOFs 
than the spFEM and FEM models under investigation.

The following examples of numerical computations aim to illustrate 
the ability of the current spFEM approach in modelling fatigue cracks 
or pin joints. At the beginning the influence of the relative crack depth 
𝑎∕𝑅, in the case of an open transverse fatigue crack, on non-dimensional 
compliance 𝑐11 and 𝑐55 was investigated, as presented in Fig. 21 (left). 
Their values can be easily calculated according to formulas presented in 
[36–38] also for other types of fatigue cracks (internal, penny-shaped, 
circumferential, etc.). It should be added that the non-dimensional com-

pliance 𝑐11 is related to the loss of longitudinal stiffness of the bar due 
to the crack presence, while the non-dimensional compliance 𝑐55 to the 
loss of flexural stiffness.

It is clearly seen from Fig. 21 that the use of the compatibility condi-

tions expressed by Eq. (21) leads, as predicted, to a visible displacement 
jumps in selected longitudinal modes of natural vibrations of the bar 
as well as a decrease in associated natural frequencies. This is well il-
lustrated in the case of the fundamental 𝐪1 (middle) and the third 𝐪3
(right) modes. The amplitudes of these jumps are not only a function of 
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Fig. 21. Non-dimensional compliance 𝑐11 and 𝑐55 due to an open traverse fatigue crack [36,37], for longitudinal and flexural behaviour, as a function of the relative 
crack depth 𝑎∕𝑅 (left). The influence of the crack on the fundamental 𝐪1 (middle) and the third 𝐪3 (right) longitudinal modes of natural vibrations of a 1-D 
aluminium cracked bar, associated with displacement nodal DOFs, for the crack located at one-quarter of the bar length. Numerical results obtained by the use of 
spFEM, according to the classical rod theory in the case of the bar of fixed ends, modelled by 𝑁 = 90 spFEM (DOFs = 180) and approximation polynomials of degree 
𝑝 = 2.

Fig. 22. The influence of the crack on the fundamental 𝐪1 (left) and the third 𝐪3 (middle) flexural modes of natural vibrations of a 1-D aluminium cracked bar, 
associated with displacement nodal DOFs, for the crack located at one-quarter of the bar length. First three flexural modes of natural vibrations of a pin-joined bar 
(right). Numerical results obtained by the use of spFEM, according to the classical beam theory in the case of the bar of simply-supported ends, modelled by 𝑁 = 90
spFEM (DOFs = 269) and approximation polynomials of degree 𝑝 = 3.
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 the mode number 𝑛, but primarily a function of the relative crack depth 
𝑎∕𝑅. In the cases, when the position of the crack coincides with a modal 
node, as is for the second mode of natural vibrations, the presence of 
the crack has no influence on this mode.

In a similar manner the use of the compatibility conditions expressed 
by Eq. (22) leads, as predicted, to a visible jumps in selected flexural 
modes of natural vibrations of the bar as well as a decrease in associ-

ated natural frequencies, as shown in Fig. 22. In these cases, however, 
the jumps concern not displacements, but their spatial derivatives, i.e. 
rotations. Again, this is well illustrated in the case of the fundamental 
𝐪1 (left) and the third 𝐪3 (middle) modes. In this case it is interesting to 
see that when the relative depth of the crack 𝑎∕𝑅 tends to 2, which cor-

responds to the total loss of the flexural stiffness in the crack position, 
the observed behaviour of the bar full corresponds to the behaviour of 
the bar with a pin joint. In the regime of lower natural frequencies the 
obtained results in the case of the pin joint modelled by separation of 
appropriate rotational DOFs, or simulated by an extreme case of the 
transverse fatigue crack, are practically the same (right).

It should be added here that the modes of natural vibrations shown 
in Fig. 21 and Fig. 22 are associated only with displacement DOFs and 
similar graphs can be obtained for all remaining DOFs representing 
their higher order spatial derivatives. Moreover, the results of numerical 
computations presented in Fig. 21 and Fig. 22 have no correspond-

ing reference solutions due to many various procedures available in 
the literature, which can be used to calculate the values of the non-

dimensional compliance 𝑐11 and 𝑐55, and which would lead to slightly 
different results. If necessary FE discrete numerical models can be indi-
29
vidually tuned in this respect to fit either experimental data or results 
of full 3-D analysis.

6. Conclusions

In this paper a computational methodology leading to the develop-

ment of a new class of 1-D FEs, based on the application of continu-

ous and smooth approximation polynomials being spline functions, has 
been presented. Application of splines as appropriately defined piece-

wise elemental shape functions led the authors to the formulation of 
a new approach for FEM, named as spFEM, where in contrast to the 
well-known NURBS approach, the boundaries of spFEs are well-defined, 
exactly as it is in the case of the traditional FEM. The current numeri-

cal approach has been computationally verified by the authors it terms 
of dynamic problems including: spectra of natural frequencies, mode of 
natural vibrations and wave propagation problems, especially in the 
aspect of high frequency dynamics in the case of selected one- and 
two-mode theories of 1-D structural elements. The applicability of the 
proposed approach has been evaluated and compared, in terms of cal-

culated dynamic responses, with the results obtained by the use of other 
well-established FEM approaches.

It has been found that the well-establishes FEM approaches suffer 
from a problem associated with the discontinuity of the stress/strain 
fields between adjacent FEs, which in the case of high frequency dynam-

ics may lead to serious numerical problems resulting from the periodic 
nature of FE discrete numerical models, typical for these approaches. 
The key feature of the periodicity of such FE discrete numerical models 
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is the presence of frequency band gaps in calculated spectra of natural 
frequencies, which most prominently manifest themselves in the regime 
of high frequencies. For this reason the periodic nature of FE models is 
most strongly revealed just in the case of problems related to wave prop-

agation, as associated with high frequency dynamic responses, where 
regular and dense meshes of FEs are required for computations to guar-

antee high accuracy of the results of numerical computations.

It turns out that in the worst cases even relatively rich FE discrete 
numerical models of many DOFs may lead to wrong or falsified results. 
This is also applicable to the approaches that are traditionally associ-

ated with wave propagation problems, as is TD-SFEM. In all such and 
similar cases a careful initial analysis should be performed in order to 
ensure that sought dynamic responses remain unaffected. This can be 
achieved by the use of the Bloch theorem, as demonstrated and pre-

sented in the current work.

In all cases analysed by the authors the proposed spFEM turned out 
to be the most accurate approach. What is more spFEM proved to be free 
from the main drawback of the other tested FEM approaches, thanks 
to the class of differentiability of approximation polynomials, which 
guarantees the absence of any frequency band gaps in calculated spectra 
of natural frequencies. On the other hand, a direct consequence of this 
feature of spFEM is that a relatively large part of calculated spectra 
of natural frequencies, the same as modes of natural vibrations, can 
effectively be used for calculation of dynamic reposes even in the case 
of multi-mode theories. This has been also shown in the paper.

The numerical studies carried out by the authors concerned dynamic 
responses of simple 1-D structural elements. Despite this fact the con-

clusions presented below remain valid also for other types of structural 
elements. They are also applicable to 2-D and 3-D structural elements 
of complex geometries and material properties as long as their discrete 
numerical representations have the features typical of periodic struc-

tures, i.e. which are characterised by large numbers of FEs of the same 
or similar sizes, which is common in the case of wave propagation anal-

ysis.

The above statements can be summarised in the following way:

• FE discrete numerical models may be thought of as representing 
periodic structures.

• The periodic nature of these FE models results from the discontinu-

ity of the stress/strain fields between adjacent FEs.

• The periodicity of FE models manifests itself as the presence of 
frequency band gaps in calculated spectra of natural frequencies.

• The presence of these frequency band gaps substantially limits the 
usable part of calculated spectra of natural frequencies and may fal-

sify calculated dynamic responses, especially in the high frequency 
regimes.

• The number of frequency band gaps is directly correlated with the 
degree of approximation polynomials and the level of their differ-

entiability.

• Thanks to the appropriately defined approximation polynomials, 
as are piecewise splines, the current spFEM approach shows no 
periodic features.

• Out of the three FEM approaches tested, these being: FEM, TD-

SFEM and spFEM, only the current spFEM approach is charac-

terised by the greatest accuracy measured in terms of the agree-

ment with analytical results within the greatest part of the calcu-

lated spectrum of natural frequencies.

• It has been also demonstrated that thanks to its formulation spFEM 
approach poses extra modelling features, which makes its applica-

ble for the problems involving modelling of structural discontinu-

ities as fatigue cracks, step changes in geometrical and/or material 
properties, or structural joints.

• In all relevant cases, except these concerning extra modelling fea-

tures, the results of numerical computations obtained by the use of 
the current formulation of spFEM fully agreed with those obtained 
by the use of B-splines, as presented in [11].
30
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Appendix A. Bloch theorem

The Bloch theorem enables one to transform a solution to the wave 
equation from the level of the entire periodic structure to the level of 
a single cell representing this structure. In a 1-D case the Bloch theo-

rem can be express by a simple equation, which states that the sought 
solution 𝜓(𝑥), also known as the Bloch wave, can be represented as a 
combination of a harmonic wave 𝑒𝑖𝑘𝑥 and a certain periodic function 
𝑢(𝑥) of the same periodicity as the periodicity of the structure as:

𝜓(𝑥) = 𝑒𝑖𝑘𝑥 𝑢(𝑥) (A.1)

where 𝑘 is the wave number, 𝑖 is the imaginary unit, i.e. 𝑖2 = −1, while 
𝑥 denotes a spatial co-ordinate. Under the assumption that the entire 
structure consists of 𝑁 cells of length 𝑙 the Bloch theorem states that 
the Bloch wave 𝜓(𝑥) has the following property:

𝜓(𝑥 + 𝑙) = 𝑒𝑖𝑘(𝑥+𝑙)𝑢(𝑥 + 𝑙) = 𝑒𝑖𝑘𝑙 𝑒𝑖𝑘𝑥 𝑢(𝑥 + 𝑎) = 𝑒𝑖𝑘𝑙 𝑒𝑖𝑘𝑥 𝑢(𝑥) = 𝑒𝑖𝑘𝑙 𝜓(𝑥) (A.2)

since 𝑢(𝑥 + 𝑎) = 𝑢(𝑥) has the same periodicity as the structure.

Taking into account 𝑁 cells and noting that the total length of the 
entire periodic structure is equal to 𝐿 = 𝑙⋅𝑁 , it can be written that:

𝜓(𝑥) = 𝜓(𝑥 + 𝐿) = 𝜓(𝑥 + 𝑙⋅𝑁) = 𝑒𝑖𝑘𝑙𝑁 𝜓(𝑥) (A.3)

which is satisfied only if 𝑒𝑖𝑘𝑙𝑁 = 1. This enables one to express the wave 
number 𝑘 associated with the harmonic wave 𝑒𝑖𝑘𝑥 as:

𝑒𝑖𝑘𝑙𝑁 = 𝑒𝑖2𝜋 𝑛 → 𝑘𝑛 = 2𝜋𝑛

𝑙𝑁
, 𝑛 = 0,1,… , 𝑁 (A.4)

which on the other hand helps to express the Bloch wave in its final 
form as:

𝜓(𝑥 + 𝑙) = 𝑒
𝑖
2𝜋𝑛

𝑁 𝜓(𝑥) (A.5)

This final form of the Bloch wave states that the wave motion of the 
whole periodic structure can be successfully described from the level of 
a single cell of this structure, since a simple shift in the argument in 
the Bloch wave 𝜓(𝑥 + 𝑙) allows one to describe the wave motion of all 
adjacent cells by the very same wave itself, i.e. by 𝜓(𝑥). In this manner 
the analysis of the wave motion or natural frequency spectra can be 
carried out from the level of a single cell of the structure, but for a 
sequence of the wave numbers 𝑘𝑛, with 𝑛 = 0, 1, … , 𝑁 . This corresponds 
to the representation of the results of such analysis within the so-called 
reduced (first or Brillouin) zone of the reciprocal space [25–27] of the 
wave vector 𝑘.

However, thanks to the Bloch theorem these results can also be eas-

ily extended onto the entire reciprocal space of the wave vector 𝑘, which 
then is associated with the total length of the periodic structure 𝐿 rather 
than the length of a single cell of this structure 𝑙.

Appendix B. Bloch reduction

The Bloch reduction technique may be understood as a numerical 
implementation of the Bloch theorem. In a general case of a 1-D rod 
modelled by FEM, the analysis of its natural frequency spectrum re-

quires solution of a well-known eigenvalue problem:

(𝐊− 𝜔2𝐌)⋅𝐪= 𝟎 (B.1)

which in the case of the Bloch theorem can be formulated at the level 
of a single rod FE rather than the entire rod modelled by a number of 
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FEs. For this reason the symbols 𝐊 and 𝐌 denote the elemental stiffness 
and inertia matrices, while 𝐪 is a vector of nodal displacements with 𝟎
being a null vector.

It should be noted that the nodal displacements of the rod FE hav-

ing 𝑚 nodes may be conveniently divided into a group of internal nodal 
displacements 𝑞𝑖(𝑖 = 2, … , 𝑚 − 1) and a group of boundary nodal dis-

placements 𝑞𝑖(𝑖 = 1, 𝑚).
Application of the Bloch theorem to the boundary nodal displace-

ments 𝑞𝑖(𝑖 = 1, 𝑚) allows one to write that:

𝑞𝑚 = 𝑞1𝑒
𝑖
2𝜋𝑛

𝑁 , 𝑛 = 0,1,… , 𝑁 (B.2)

where 𝑁 is equal to the total number of FEs modelling the rod.

In this manner the original eigenvalue problem given by Eq. (B.1)

can be reduced to a new eigenvalue problem:[
𝐊𝑟(𝑛) − 𝜔2𝐌𝑟(𝑛)

]
⋅𝐪𝑟(𝑛) = 𝟎 (B.3)

where the reduced elemental stiffness 𝐊𝑟(𝑛) and inertia 𝐌𝑟(𝑛) matrices 
are expressed as:{

𝐊𝑟(𝑛) =𝐀(𝑛)⊺ ⋅𝐊⋅𝐀(𝑛)
𝐌𝑟(𝑛) =𝐀(𝑛)⊺ ⋅𝐌⋅𝐀(𝑛)

(B.4)

with the rectangular matrix 𝐀(𝑛) of size 𝑚 × (𝑚 − 1) defined in the fol-

lowing manner:{
𝐴𝑗 ,𝑗 = 1, 𝑗 = 1,2,… , 𝑚 − 1

𝐴𝑗 ,1 = 𝑒
𝑖
2𝜋𝑛

𝑁 , 𝑗 = 𝑚
(B.5)

The general procedure described above can be successfully modified 
and employed also for other types of 1-D FEs, including various rod, 
beam or bar theories, as presented by the authors [11,12,28]. It should 
be noted that in such cases the Bloch reduction technique must concern 
all available nodal DOFs of boundary nodes.

Appendix C. Classical rod theory

The simplest theory that can be employed to study the longitudinal 
behaviour of 1-D structures is the classical rod theory. In this theory, 
under the assumption of small displacements and small strains, the 
displacement field within a 1-D rod has only one non-zero axial dis-

placement component 𝑢𝑥, which can be expressed by the function 𝑢(𝑥). 
In the cylindrical co-ordinate system 𝑥𝑟𝜙 it can be formally written that 
[26]:

𝑢𝑥(𝑥, 𝑟, 𝜙) = 𝑢(𝑥) (C.1)

while the remaining radial and tangential displacement components 𝑢𝑟

and 𝑢𝜙 vanish.

As a consequence of this the strain field has also only one non-zero 
strain component, which is the axial strain 𝜖𝑥𝑥:

𝜖𝑥𝑥(𝑥, 𝑟, 𝜙) = 𝜕𝑢(𝑥)
𝜕𝑥

(C.2)

The knowledge of the displacement field and the strain field allows 
one to build the characteristic stiffness 𝐊 and inertia 𝐌 matrices for 
various FEs based on the classical rod theory. This can be easily done 
by the use of the well-known FEM procedures [5–7] as soon as the 
function 𝑢(𝑥) is replaced by a set of approximating shape functions, 
which definitions depend on the number of nodes of the FEs.

Additionally, based on the assumed forms of the displacement field 
and the strain field the strain energy and the kinetic energy can be easily 
evaluated and associated with the longitudinal wave motion. Next, by 
the use of Hamilton’s principle the equation of motion associated with 
the longitudinal behaviour of the rod can be easily obtained [26] as:

𝐸 𝑆
𝜕2𝑢(𝑥) = 𝜌𝑆

𝜕2𝑢(𝑥)
(C.3)
𝜕𝑥2 𝜕𝑡2

31
where 𝐸 is Young’s modulus of the rod material, 𝑆 is the area of rod 
cross-section, 𝜌 is the material density, while 𝑡 denotes time.

The equation of motion given by Eq. (C.3) comes as very useful for 
obtaining the dispersion curve associated with the classical rod theory 
[26]. This can be easily achieved under the assumption that solution 
to this equation of motion has the form of a harmonic wave, i.e. when 
𝑢𝑥(𝑥, 𝑡) = �̂�𝑥 𝑒𝑖(𝑘𝑥−𝜔𝑡), where �̂�𝑥 is the amplitude of this harmonic wave, 
while 𝜔 is its angular frequency.

Finally, it can be found that the phase velocity 𝑐𝑝 of the longitudinal 
waves associated with the longitudinal behaviour of the classical rod 
under consideration can be expressed by a very well-know dispersion 
relation:

𝑐𝑝 =
𝜔

𝑘
=
√

𝐸

𝜌
(C.4)

Appendix D. Bernoulli-Euler beam theory

The simplest theory that can be employed to study the flexural 
(bending) behaviour of 1-D structures is the Bernoulli-Euler beam the-

ory. In this theory, under the assumption of small displacements and 
small strains, the displacement field within a 1-D beam has three dis-

placement components: axial 𝑢𝑥, radial 𝑢𝑟 and tangential 𝑢𝜙, which can 
be expressed by one independent function 𝑤(𝑥). It should be noted that 
this form of the displacement field results from an additional assump-

tion of vanishing transverse shear strains within the beam, which is true 
for thin beams, when the length-to-thickness ratio is of the order of 20 
or more, or beams subjected to low frequency excitations. Thus, in the 
cylindrical co-ordinate system 𝑥𝑟𝜙 in can be formally written that [30]:

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑥(𝑥, 𝑟, 𝜙) = −𝑟
𝜕𝑤(𝑥)

𝜕𝑥
sin𝜙

𝑢𝑟(𝑥, 𝑟, 𝜙) = 𝑤(𝑥) sin𝜙

𝑢𝜙(𝑥, 𝑟, 𝜙) = 𝑤(𝑥) cos𝜙

(D.1)

The resulting strain field has also only one non-zero strain compo-

nent, which is the axial strain 𝜖𝑥𝑥:

𝜖𝑥𝑥(𝑥, 𝑟, 𝜙) = −𝑟
𝜕2𝑤(𝑥)

𝜕𝑥2 (D.2)

The knowledge of the displacement field and the strain field allows 
one to build the characteristic stiffness 𝐊 and inertia 𝐌 matrices for 
various FEs based on the Bernoulli-Euler beam theory. This can be easily 
done by the use of the well-known FEM procedures [5–7] as soon as the 
function 𝑤(𝑥) is replaced by a set of approximating shape functions, 
which definitions depend on the number of nodes of the FEs.

Based on the assumed forms of the displacement field and the strain 
field the strain energy and the kinetic energy can be easily evaluated 
and associated with the flexural (bending) wave motion. Next, by the 
use of Hamilton’s principle the equation of motion associated with the 
flexural (bending) behaviour of the beam can be easily obtained [30]

as:

𝐸 𝐼
𝜕4𝑤(𝑥)

𝜕𝑥4 = −𝜌𝑆
𝜕2𝑤(𝑥)

𝜕𝑡2
+ 𝜌𝐼

𝜕4𝑤(𝑥)
𝜕𝑥2𝜕𝑡2

(D.3)

where 𝐸 is Young’s modulus of the beam material, 𝑆 and 𝐼 are the 
area and the second moment of area of the beam cross-section, 𝜌 is the 
material density, while 𝑡 denotes time. It should be mentioned here that 
very often the inertial part of the equation of motion given by Eq. (D.3), 
proportional to 𝜌𝐼 , is neglected as having very small influence in the 
case of thin beams, i.e. when the assumptions of the Bernoulli-Euler 
beam theory are satisfied.

The equation of motion given by Eq. (D.3) comes as very useful 
for obtaining the dispersion curve associated with the Bernoulli-Euler 
beam theory [30]. This can be easily achieved under the assumption 
that solution to this equation of motion has the form of a harmonic 
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wave, i.e. when 𝑤(𝑥, 𝑡) = �̂�𝑒𝑖(𝑘𝑥−𝜔𝑡), where �̂� is the amplitude of this 
harmonic wave, while 𝜔 is its angular frequency.

Finally, it can be found that the phase velocity 𝑐𝑝 of the flexural 
(bending) waves associated with the flexural (bending) behaviour of 
the Bernoulli-Euler beam under consideration can be expressed by a 
very well-know dispersion relation:

𝑐𝑝 =
𝜔

𝑘
= 4

√
𝐸 𝐼

𝜌𝑆

√
𝜔 (D.4)

Appendix E. Timoshenko beam theory

An advanced theory that can be employed to study the flexural 
(bending) behaviour of 1-D structures is the Timoshenko beam theory. 
In this theory, under the assumption of small displacements and small 
strains, the displacement field within a 1-D beam has three non-zero 
displacement components: axial 𝑢𝑥, radial 𝑢𝑟 and tangential 𝑢𝜙, which 
can be expressed by two independent functions 𝑢(𝑥) and 𝑤(𝑥). In the 
case of the Timoshenko beam theory transverse shear strains do not 
vanish, which is true for thick beams or beams subjected to high fre-

quency excitations. Thus, in the cylindrical co-ordinate system 𝑥𝑟𝜙 in 
can be formally written that [30]:

⎧⎪⎨⎪⎩
𝑢𝑥(𝑥, 𝑟, 𝜙) = 𝑟𝑢(𝑥) sin𝜙

𝑢𝑟(𝑥, 𝑟, 𝜙) = 𝑤(𝑥) sin𝜙

𝑢𝜙(𝑥, 𝑟, 𝜙) = 𝑤(𝑥) cos𝜙

(E.1)

The resulting strain field has three non-zero strain components, 
which are the axial strain 𝜖𝑥𝑥 and two shear strains 𝛾𝑥𝑟 and 𝛾𝑥𝜙:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜖𝑥𝑥(𝑥, 𝑟, 𝜙) = 𝑟
𝜕𝑢(𝑥)

𝜕𝑥
sin𝜙

𝛾𝑥𝑟(𝑥, 𝑟, 𝜙) =
[

𝑢(𝑥) + 𝜕𝑤(𝑥)
𝜕𝑥

]
sin𝜙

𝛾𝑥𝜙(𝑥, 𝑟, 𝜙) =
[

𝑢(𝑥) + 𝜕𝑤(𝑥)
𝜕𝑥

]
cos𝜙

(E.2)

The knowledge of the displacement field and the strain field allows 
one to build the characteristic stiffness 𝐊 and inertia 𝐌 matrices for 
various FEs based on the Timoshenko beam theory. This can be easily 
done by the use of the well-known FEM procedures [5–7] as soon as 
the functions 𝑢(𝑥) and 𝑤(𝑥) are replaced by sets of approximating shape 
functions, which definitions depend on the number of nodes of the FEs.

Based on the assumed forms of the displacement field and the strain 
field the strain energy and the kinetic energy can be easily evaluated 
and associated with the flexural (bending) wave motion. Next, by the 
use of Hamilton’s principle the equations of motion associated with the 
flexural (bending) behaviour of the Timoshenko beam can be easily 
obtained [30] as:

⎧⎪⎪⎨⎪⎪⎩
𝐸 𝐼

𝜕2𝑢(𝑥)
𝜕𝑥2 − 𝑆 𝐺𝜅

[
𝑢(𝑥) + 𝜕𝑤(𝑥)

𝜕𝑥

]
= 𝜌𝐼

𝜕2𝑢(𝑥)
𝜕𝑡2

𝑆 𝐺𝜅

[
𝑢(𝑥) + 𝜕𝑤(𝑥)

𝜕𝑥

]
= 𝜌𝑆

𝜕2𝑤(𝑥)
𝜕𝑡2

(E.3)

where 𝐸 is Young’s modulus of the beam material, 𝑆 and 𝐼 are the area 
and the second moment of area of the beam cross-section, 𝜅 is a shear 
coefficient, 𝜌 is the material density, while 𝑡 denotes time.

The equations of motion given by Eq. (E.3) come as very useful for 
obtaining the dispersion curves associated with the Timoshenko beam 
theory [30]. This can be easily achieved under the assumption that 
solution to this equation of motion has the form of two independent har-

monic waves, i.e. when 𝑢(𝑥, 𝑡) = �̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) and 𝑤(𝑥, 𝑡) = �̂�𝑒𝑖(𝑘𝑥−𝜔𝑡), where 
�̂� and �̂� denote the amplitudes of 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡), while 𝜔 is the an-

gular frequency.

Finally, it can be found that the phase velocities 𝑐𝑝 of two indepen-

dent modes of flexural (bending) and shear waves associated with the 
32
flexural (bending) behaviour of the Timoshenko beam under consider-

ation can be expressed based on the following dispersion relation:

𝐼(𝐸 𝑘2 − 𝜌 𝜔2)(𝜅 𝐺𝑘2 − 𝜌 𝜔2) − 𝜅 𝐺𝑆 𝜌 𝜔2 = 0→ 𝑘 = 𝑘(𝜔)→ 𝑐𝑝 =
𝜔

𝑘
(E.4)
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namics of an isotropic Timoshenko periodic beam by the use of the Time-domain 
Spectral Finite Element Method, J. Sound Vib. 409 (2017) 318–335.

[13] P.M. Prenter, Splines and Variational Methods, Dover Publications, Inc., New York, 
1975.

[14] C. de Boor, A Practical Guide to Splines, Springer-Verlag New York Inc., New York, 
1978.

[15] K. Höllig, Finite Element Methods with B-Splines, SIAM, Philadelphia, 2003.

[16] D.F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan Kauff-

mann Publishers, San Francisco, 2000.

[17] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, 
NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 
194 (2005) 4135–4195.

[18] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration 
of CAD and FEA, John Wiley & Sons Ltd., Singapore, 2009.

[19] W. Ostachowicz, M. Krawczuk, Modeling for detection of degraded zones in metallic 
and composite structures, in: Encyclopedia of Structural Health Monitoring, John 
Wiley & Sons Ltd., Chichester, 2009, pp. 851–866.

[20] A.A. Shabana, A.M. Hamed, A.-N.A. Mohamed, P. Jayakumar, M.D. Letherwood, 
Limitations of B-spline geometry in the finite element/multibody system analysis, in: 
Proceedings of the 8th International Conference on Multibody Systems, Nonlinear 
Dynamics, and Control, Parts A and B, vol. 4, 2011, pp. 861–871.

[21] K. Höllig, U. Reif, J. Wipper, Weighted extended B-spline approximation of Dirichlet 
problems, SIAM J. Numer. Anal. 39 (2001) 442–462.

[22] L. Shen, Z. Liu, J.H. Wu, B-spline finite element method based on node moving 
adaptive refinement strategy, Finite Elem. Anal. Des. 91 (2014) 84–94.

[23] A. Chakraborty, B.V.R. Kumar, Weighted extended B-spline finite element analysis 
of a coupled system of general elliptic equations, Int. J. Adv. Eng. Sci. Appl. Math. 
10 (2018) 34–40.
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