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Abstract. In this paper, a systematic approach to an exten-
sive search for topologies of cross-coupled filters with gen-
eralized Chebyshev response is presented. The technique ap-
plies graph theory to find unique, nonisomorphic filter con-
figurations, and tests whether a specific frequency response
can be realized in a given set of topologies. The results of
the search are then stored in a database of possible filter
configurations.
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1. Introduction
Cross-coupled resonator filters with generalized

Chebyshev response are currently one of the most com-
monly used filtering devices, and can be found in almost
all high frequency communications systems. One advantage
of this type of filter is the possibility of increasing the se-
lectivity and/or equalizing the group delay response of the
filter by introducing transmission zeros. The number and
type (purely imaginary or complex pair) of transmission ze-
ros that can be implemented in the design depends on the
scheme of couplings between resonators—that is, on the
filter topology. For certain types of topologies (e.g. those
consisting of groups such as triplets or quadruplets, canoni-
cal filters [1], cul-de-sac [2] or extended-box configurations
[3]), filtering properties such as type and maximum number
of transmission zeros are well known. At the same time,
new filter configurations continue to appear in the litera-
ture, some showing new resonator arrangements [4]-[14],
[23], [24]. In any case, the catalog of filter topologies that
can implement a certain type of frequency response is far
from being complete, and adding new configurations to this
catalog is of interest to filter designers.

In this paper, an approach to a systematic search for
new filter topologies is presented. The technique begins with
the generation of a set of unique candidate topologies for

filters of a given order N. For each candidate topology,
an extensive search for realizable responses is then per-
formed. Finally, the topologies that can realize a particular
type of generalized Chebyshev filtering response are stored
in a database in the form of pairs (topology, type of realiz-
able response). The database can be easily filtered by im-
posing various criteria on the requested filter topology, such
as number of couplings, planarity, presence of source-load
coupling. Then for a given electric specification, a database
query can be executed to quickly find the topologies that can
realize the desired response and a coupling matrix can be
synthesized for each of these topologies. The results can
also be filtered by additional criteria, like the number of cou-
plings needed to realize the filter. For a filter designer, such
a database provides a set of optional configurations, from
which the designer can choose one to suit particular require-
ments in the best possible way, taking into account, for ex-
ample, resonator arrangement or the number of couplings
and the values of the computed coupling coefficients. This
also enables one to compare different coupling schemes and
select the optimal solution for given technology of filter im-
plementation.

It should be noted that the functionality of the database
is much different to (and to a certain extent complementary
to) that offered by a package such as Dedale-HF [28]. For
a given coupling topology and a given filtering characteris-
tic, Dedale-HF can compute all possible coupling matrices
that will realize the prescribed response. However, this can
currently only be done for a relatively small set of known
topologies. The present approach aims to find topologies
with at least one solution, for a given number and position of
transmission zeros, in the form of a coupling matrix. Once
a new topology has been found, one can apply the techniques
of Groebner bases [15] that are used by Dedale-HF to find all
alternative solutions.

2. Generation of Candidate Topologies
The first step in constructing the catalog is to prepare

the set of candidate topologies. The topology of the Nth-
order cross-coupled filter can be presented in the form of
a symmetric adjacency matrix P of size (N+2×N+2) [26],
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whose nonzero elements pi, j (i, j = 2 . . .N + 2, i 6= j) cor-
respond to nonzero couplings between resonators i and j,
and p1, j = p j,1, pi,N+2 = pN+2,i (i, j = 2 . . .N + 1) corre-
spond to one or more couplings between the source/load and
resonators. Finally, the element p(1,N+2) = p(N+2,1) corre-
sponds to the direct source-load coupling. It should be noted
that different adjacency matrices do not necessarily imply
different topologies. For example, let us look at two matri-
ces P1 and P2 that define the topology of a third-order filter
(only the upper triangular elements are shown):

P1 =


0 1 0 0 0

0 1 1 0
0 1 0

0 1
0

 ,P2 =


0 0 0 1 0

0 1 1 0
0 1 1

0 0
0

 .

(1)

Despite the different appearance, both matrices repre-
sent the same filter configuration, shown in Fig. 1. The dif-
ference comes from the different numbering of the nodes,
but from the point of view of filter realization, the structures
represent the same device. This observation implies that, in
order to create a catalog of filter topologies, one must be able
to generate a set of unique adjacency matrices which cannot
be transformed into each another by a node renumbering.
This problem can be readily solved using graph theory.

Matrix P can be regarded as an adjacency matrix of
undirected, nonweighted, connected graph with Q = N + 2
nodes (with two vertex labels, one for source/load and one
for the resonators) and edges representing couplings. The
problem of finding a set of unique topology candidates may
be expressed in the language of graph theory as finding non-
isomorphic graphs1 with a given number of vertices and
edges. The set must be composed of all possible noniso-
morphic arrangements of resonators and couplings between
them.
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Fig. 1. Two isomorphic filter configurations with different adja-
cency matrix P.

Q K
4 6
5 21
6 112
7 853
8 11 117
9 261 080
10 11 716 571

Tab. 1. Number of nonisomorphic connected graphs with Q =
N +2 unlabeled nodes.

The procedure for selecting unique topology candi-
dates is as follows: At first, the set of K nonisomorphic

graphs with Q = N + 2 nodes is created. This is a prob-
lem of a combinatorial nature, and the size of this set grows
rapidly as the number of vertices (nodes) increases, as shown
in Tab. 2. In Fig. 2a), all six nonisomorphic graphs with
4 nodes (N = 2) are presented. Since two nodes must be
used as source and load, these 6 configurations form an ini-
tial set of second-order filter candidates.

Looking at this set, it can be seen that in the first step
the graphs with exactly N+1 edges can be removed, as they
represent the inline and tree-like topologies which do not
have cross-couplings.

At this stage, we can also define which nodes act as
the source and the load, and which are regular resonators.
This can be done by labeling graph vertices. Vertex label-
ing increases the number of possible combinations. Note
that, for a graph with N +2 nodes, one obtains (N+2)!

2(N!) possi-
ble combinations of source-load position, and each candidate
topology has to be considered for different combinations of
load/source location. This gives an augmented set, and the
resulting graphs are further processed to remove isomorphic
graphs from the set.

To illustrate this, all candidates that can be labeled
by the described procedure for second-order filters (4-node
graphs) are shown in Fig. 2b. It can be seen that labeling
(adding source/load) increases the set of unique topologies
from 4 to 10. Tab. 2 gives the total number of unique topolo-
gies with source/load for an increasing filter order N.

It can be seen that the count grows very rapidly, and
so during the construction phase various additional require-
ments can be imposed on the set in order to reduce the total
number of topology candidates:

• Limiting the number of couplings allowed by restrict-
ing the number of graph edges M that control the max-
imum number of interresonator couplings. Topologies
with too many cross-couplings are not interesting from
the practical viewpoint;

• Limiting the maximum number of couplings from
source/load to resonators;

• Removing all candidates with source (load) connected
only to load (source);

• Removing all candidates with direct source-load con-
nection (optional for high-order filters);

• Eliminating nonplanar filter topologies.

These restrictions can be applied by postprocessing the
generated topology candidates. In the case of the topology
candidates of second order filters shown in Fig. 2b), one
topology was removed from the set at this stage – namely, the
one that has source (load) connected only to load (source).
As a result, for a second-order cross-coupled filter, there are
9 possible resonator and coupling arrangements, as shown in
Fig. 2c.

1Two graphs are nonisomorphic if they contain the same number of nodes (vertices) and cannot be transformed into each other by renumbering the nodes
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a)

b)

c)

Fig. 2. Example graphs for second-order filter candidate dataset
construction: a) initial set of nonisomorphic graphs with
4 nodes, b) basic set of 10 nonisomorphic candidates af-
ter adding labels and removing in-line and star topolo-
gies, c) final set of 9 nonisomorphic candidates for filter
topology (the topology with source(load) connected only
to load(source) was removed). White circle: source/load,
black circle: resonators.

Q N K
4 2 10
5 3 83
6 4 836
7 5 11 144
8 6 230 176

Tab. 2. Number of nonisomorphic topology candidates for Nth
order filters (graphs with Q = N + 2 nodes), labeled
without restriction on filter topology

3. Definition of Response Types
The graph-theory methodology presented in the previ-

ous section yields a set of topology candidates. The next
step is to determine whether the desired frequency response
can be realized by any of these candidates. The low-pass
prototype response of the generalized Chebyshev coupled-
resonator filter is defined by the filter order, return loss level,
and the set of transmission zeros (their number; their type,
whether real, imaginary, or complex; their symmetry with
respect to the center frequency; and their position with re-
spect to passband, whether above or below). For a given
filter order and topology, the number and type of realizable
transmission zeros is one of the most important features. For
instance, as far as the location of TZs with respect to center
frequency is concerned, two variants of transmission zeros
can be investigated:

• Asymmetric purely imaginary zeros at s = jω0i
(counted as NT Z

asym);

• Symmetric pairs of purely imaginary zeros at s = jω0i
and s =− jω0i (counted as NT Z

sym).

The total number of transmission zeros is equal to
NT Z

Total = NT Z
asym + 2NT Z

sym, and for symmetric responses
NT Z

asym = 0. The admittance parameter y21(s) of the Nth-order
coupled-resonator filter described by the coupling matrix M,
of size (N +2)× (N +2), can be computed as

y21(s) = j [−M−ωW ]−1
(N+2,1) (2)

where W is a matrix similar to the identity matrix with w11
and wN+2,N+2 equal to zero. The zeros of y21 can therefore
be computed as the eigenvalues λi of the generalized eigen-
problem in the following form [17], [18]

M̂x−λŴx = 0 (3)

where the matrices M̂ and Ŵ are created from the matrices
M and W by removing the last row and the first column.
The problem is real-valued and asymmetric, and Ŵ is singu-
lar. For a given topology (nonzero pattern of M) the max-
imum number of finite eigenvalues is constant, and the po-
sition of the eigenvalues depends on values of nonzero mi j
elements. If a single solution of the coupling-matrix syn-
thesis for a given set of zeros (eigenvalues), positions, and
types is found, then it is clear that a continuum of other loca-
tions can also be realized due to the continuity of the eigen-
values with respect to the elements mi j. The existence of
continuum does not imply that it cover the whole ω axis.
There might be up to N disjoint continuous sections. With
this observation, it seems sufficient to test a filter configura-
tion for various combinations of discrete transmission zeros.

Let us consider two types of transmission zeros:

• Purely imaginary zeros that can be located above or be-
low the passband;

• Pairs of symmetrically located transmission zeros.

By limiting the number of purely imaginary zeros to
3, up to 5 different transmission characteristics can be ob-
tained, as shown in Tab. 3. Only one characteristic is sym-
metric with respect to the center frequency. For asymmetric
responses, the upper and lower band TZs can also be differ-
entiated.

NT Z
Total NT Z

asym NT Z
sym

1 1 0
2 2 0
2 0 1
3 3 0
3 1 1

Tab. 3. Example filter prototypes for filters with up to 3 trans-
mission zeros with different numbers of purely imagi-
nary transmission zeros NT Z .

4. Topology Validation
To test if a candidate filter topology can realize a given

type of response, a trial synthesis of the coupling matrix
must be performed. If the synthesis succeeds, the topol-
ogy is accepted. To perform the trial, a robust technique of
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coupling-matrix synthesis must be applied. Classical tech-
niques based on rotations [1] are not suitable for this pur-
pose, as it would be very difficult, if not impossible, to find
the desired rotation sequence for all possible configurations
generated by the procedure described in Sec. 2. Another
technique for coupling-matrix synthesis based on multivari-
ate polynomial systems [15] involves a polynomial equation
that is very expensive to solve numerically. It is therefore
not suitable in the case where tens of thousands of (topol-
ogy, response) pairs are being processed. For this reason,
techniques based on fast optimization algorithms are more
suitable here. In particular, the author’s experience suggests
that techniques involving eigenvalue optimization [17], [18],
[19] perform remarkably well in terms of speed and conver-
gence, and for this reason they have been chosen for test-
ing. The trial synthesis is first performed using analytical
gradients [20], and if the procedure fails to converge within
a prescribed number of iterations, an additional global op-
timization based on a particle swarm algorithm and using
a zero-pole goal function [21] is performed.

At this stage, the procedure tries for each candidate
topology to synthesize the coupling matrix with different
types of response. In our work, responses with up to 6 trans-
mission zeros were investigated. The search is composed of
a series of trial coupling-matrix syntheses, starting from the
most complex responses (with the highest number of trans-
mission zeros) and progressing to the simplest (one asym-
metric TZ). When the coupling-matrix synthesis succeeds
for an assumed response (number of TZs), then the candi-
date is saved for further processing and the search process is
restarted for the next candidate.

To speed up the database construction, the number of
searches for realizable responses can be limited by incorpo-
rating a minimum path rule [2] or by the technique described
in [25]. This allows one to estimate the maximum number of
realizable transmission zeros for a given topology, thus lim-
iting the number of response types that need to be checked.
During synthesis, some of the couplings can be set to zero by
the optimization procedure. When this occurs, the topology
is discarded and the processing of the next candidate begins.

5. Final Caveats
The goal of the proposed methodology is to look for

and create a catalog of the topologies of microwave cross-
coupled bandpass filters. Two issues related to the proposed
approach must be noted:

• During the trial synthesis, it was assumed that the trans-
mission zeros are located close to the passband. This is
a reasonable assumption, it is filters with high selec-
tivity that we are interested in. As described in Sec-
tion 3, using the continuity of eigenvalues, a certain
continuum of other locations of TZs can also be real-

ized. However, the opposite is not true – if the can-
didate topology does not realize transmission zeros at
a given set of test locations ω0i, this does not imply that
other zeros locations are not realizable. To the author’s
knowledge, the problem of whether an arbitrary topol-
ogy can produce finite TZs of a particular type and at
particular locations is still open.

• Despite the fact that a very robust technique was se-
lected for the coupling-matrix synthesis, the conver-
gence of the optimization method cannot be guar-
anteed. In consequence, there might appear cases in
which the topology (which in theory is able to realize
a given response) is missed during the search, due to
the failure of the optimization technique. To minimize
this risk, the optimization is performed a few times us-
ing different starting points.

With these remarks, it is noted that the proposed search
does not ensure that all possible topologies are found, but it
does allow the creation of a rather broad catalog of the filter
topologies currently available.

6. Results
To date, a set of 27920 topology candidates for fil-

ters with orders from 2 to 6 has been processed using the
technique outlined in the preceding sections. To create the
candidates, the graph tools included in the nauty [27] soft-
ware package were used. Statistical information about the
numbers of graphs processed at each stage of this procedure
is shown in Tab. 4. For practical reasons, it was assumed
that source-load can be coupled to at most 2 resonators, and
that direct source-load couplings are allowed. Note, that for
N > 3, some of the candidate topologies correspond to non-
planar graphs2. Such nonplanar graphs are shown in Fig. 3
for fourth-order filters.

Fig. 3. All possible nonplanar topology candidates processed for
fourth-order filters.

In the context of filter design, a nonplanar topology
would lead to a device in which at least one coupling is
crossed with another – such a crossing is usually difficult
to realize when all resonators are in the same plane, but may
be possible when the three-dimensional arrangement of res-
onators is allowed, like in the case of multi-layer LTCC and
LCP packaging technology.

Currently, the database contains 7401 unique, noniso-
morphic topologies. It took several weeks to generate such
a dataset using parallel processing techniques, but once cre-
ated it can be search in seconds. To give the reader some
indication of the database’s contents, all the topologies of
second and third-order filters found are shown in Tab. 5 and

2Nonplanar graphs are those that cannot be drawn in the plane in such a way that no edges cross each other.
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Tab. 6. Additionally in Tab. 7, the count of unique, noniso-
morphic topologies found for different filter orders is shown.
In Fig. 4, the response of third-order filters with 2 TZs be-
low the passband is shown, along with one selected topology
(out of six) found that realizes the response. In this case, the
corresponding coupling matrix is:

M =


0 0 0 1.1062 0
0 0.7534 0.7295 0.8544 0
0 0.7295 −0.0337 −0.8057 1.0926

1.1062 0.8544 −0.8057 −0.2893 0.1733
0 0 1.0926 0.1733 0

 . (4)

This topology allows two transmission zeros below the
passband with a single negative cross-coupling to be real-
ized, with the couplings from source/load to the resonators
are all positive. The same response can be realized with the
“extended-doublet” coupling scheme [12], which was also
found using the technique (shown as the last topology in
Tab. 6, in the category of two asymmetric zeros).

Filter order N Count Planar Nonplanar
2 9 9 0
3 45 45 0
4 295 292 3
5 2314 2233 81
6 25257 22202 3055

Tab. 4. Number of topology candidates processed.

Zeros Topology

One zero

One pair

Two zeros

Tab. 5. Possible topologies of second-order filters found.

Zeros Topology

One zero

One zero pair

Two asym. zeros

Three asym. zeros

Tab. 6. Possible topologies of third-order filters with up to
2 couplings from source/load to resonator found.

Filter order N Count
2 7
3 18
4 106
5 671
6 6599

Tab. 7. Number of nonisomorphic topologies found.

Fig. 4. Frequency response of the third-order filter with 2 purely
imaginary TZs at − j1.8, − j4, and a possible coupling
scheme.

Response type Count
2 pairs 29

1 pair, 2 asym. 4
4 asym. 164

Total 197

Tab. 8. Number of topologies found for fifth-order filters with
4 purely imaginary TZs.

Higher-order filters offer a plethora of topologies. In
order to present some early results, we selected a fifth-order
filter with 4 asymmetric purely imaginary transmission ze-
ros (see Fig. 5). Over 160 nonisomorphic topologies were
found (see Tab. 8). A few possible configurations are shown
in Fig. 6. A possible coupling matrix synthesized for the
topology from Fig. 6e) and h) are shown in (5) and (6). It
should be noted that many of the topologies found would
be difficult to realize as physical filters, for example due to
the high load of some resonators by a few strong couplings.
However, some of them could provide a successful design.

Comparing the results presented here with coupling
schemes available in Dedale-HF, it is worth noticing that the
latter does not offer any topology that can realize a fifth-
order asymmetric response with 4 TZs, while a few such
topologies have been shown in this paper. However, the tech-
niques implemented in Dedale-HF [15] could be used to find
multiple solutions of the coupling-matrix synthesis problem
for topologies found using the approach proposed here.
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Fig. 5. Frequency response of the fifth-order filter with 4 purely
imaginary TZs at − j1.3, − j1.8, j1.2 and j1.5.
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M1 =



0 0.9957 0 0 0 0 0
0.9957 0.0005 −0.0809 0.8008 0 0 0.1458

0 −0.0809 0.0245 −0.4431 0.7416 0 0.9849
0 0.8008 −0.4431 −0.0282 0.1837 0.5257 0
0 0 0.7416 0.1837 0.1326 0.8039 0
0 0 0 0.5257 0.8039 −0.2754 0
0 0.1458 0.9849 0 0 0 0


(5)

M2 =



0 0 0 0.9199 0 0.3810 0
0 −0.1483 0 −0.7255 0.7255 0 0
0 0 0.8056 0 0 0.6607 0

0.9199 −0.7255 0 −0.2907 −0.3850 0.3976 0
0 0.7255 0 −0.3850 −0.2907 0.3976 0.9199

0.3810 0 0.6607 0.3976 0.3976 −0.2219 0.3810
0 0 0 0 0.9199 0.3810 0


(6)

a) b) c) d)

e) f) g) h)

Fig. 6. 8 selected topologies found that can realize the response
of Fig. 5.

7. Conclusion
In this paper, a novel systematic approach for ex-

haustively searching for new cross-coupled resonator filter
topologies has been presented. So far, 7401 unique topolo-
gies for filters up to order 6 have been found and stored in
a searchable database. Further work will be focused on the
detailed analysis of the database records with the aim of se-
lecting practically useful coupling schemes and their physi-
cal filter realizations.
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