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Abstract

This paper presents results of investigations on a three-dimensional (3-D) isotropic periodic beam. The beam
can represent a vibroacoustic isolator of optimised dynamic characteristics in the case of its longitudinal,
flexural and torsional behaviour. The optimisation process concerned both the widths as well as the positions
of particular frequency band gaps that are present in the frequency spectrum of the beam. Since the dynamic
behaviour of the beam is directly related to its geometry, through an optimisation process of the beam
geometry, desired dynamic characteristics of the beam were successfully obtained. For the purpose of the
optimisation process a new numerical model of the beam, based on the spectral finite element method in
the time domain (TD-SFEM), was developed by the authors. This model enabled the authors to investigate
the beam behaviour not only in a wide frequency spectrum, but also ensured a high accuracy of the model
predictions. The accuracy of this modelling approach was checked against well-known analytical formulas.
However, in the case of the optimised geometry of the beam for the verification of the correctness of the
modelling approach a commercial finite element method (FEM) package was used. Finally, based on the
results of numerical predictions and optimised geometry of the beam a sample for experimental verification
was prepared. Experimental measurements were carried out by the authors by the application of one-
dimensional (1-D) laser Doppler scanning vibrometry (LDSV). The results of experimental measurements
obtained by the authors confirmed the correctness of the numerical predictions, showing a high degree of
correspondence.
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1. Introduction

For many decades now periodic structures have been remaining the area of great scientific interest [1–10].
During that time unusual properties of periodic structures have been investigated using various methods and
techniques. They have been studied not only analytically by such methods as the plane expansion method
(PEM) [1–5] or the transfer matrix method (TMM) [6, 7], but also experimentally [1, 3–7] or numerically
thanks to the application of sophisticated computational tools based on the classical finite element method
(FEM) [8–11], to mention only the most common ones.

Periodic structures, in a similar way to periodic metamaterials [12–14], exhibit the same unusual dynamic
behaviour thanks to the periodicity of their structures [15] that is attributed to their cellular arrangement.
The source of this periodicity may come from periodic variations of material properties within their cells
(density or elastic modulus) and/or variations in the cell geometry (cross-section or presence of certain
geometrical features). It should be noted that in the case of periodic structures, periodic variations of their
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February 14, 2024

Postprint of: Żak A., Krawczuk M., Redlarski G., Doliński Ł., Koziel S., A three-dimensional periodic beam for vibroacoustic 
isolation purposes, Mechanical Systems and Signal Processing, Vol. 130 (2019), pp. 524-544, DOI: 10.1016/j.ymssp.2019.05.033

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ymssp.2019.05.033
https://creativecommons.org/licenses/by-nc-nd/4.0/


structural properties within the cells in macro-scale influences their observable dynamic behaviour at the
same scale. The periodicity of periodic structures manifests itself in the presence of so-called frequency band
gaps in their frequency spectra, which indicate frequency regions within which no energy can be transmitted
through these structures [6–11]. This feature may lead to many interesting, potential applications of periodic
structures, mainly in vibroacoustics.

One such application for periodic structures is vibroacoustic isolation or filtering of propagating vibroa-
coustic signals in given frequency bands. It should be noted that in order to achieve desired isolation or
filtering properties periodic structures must be precisely designed. This process usually includes certain
optimisation procedures [16] that lead to the predefined widths as well as the positions of particular fre-
quency band gaps. In this manner various types of propagating vibroacoustic signals (longitudinal, flexural
or torsional) within periodic structures can be selectively isolated or filtered out depending on the needs of
particular applications.

It should be noted that analytical investigations of periodic structures have usually been limited one-
dimensional (1-D) or two-dimensional (2-D) structures of simple geometries and boundary conditions. Con-
trary to this the FEM seems free of these limitations and appears as a tool capable to tackle problems of
complex three-dimensional (3-D) geometries, arbitrary boundary conditions as well as material properties.

In the current work a 3-D isotropic, periodic beam is investigated by the authors for vibroacoustic
isolation purposes. The 3-D nature of the beam geometry results in the propagation of three types of
vibroacoustic signals within the beam, which are: longitudinal, flexural and torsional elastic waves. Since
the dynamic behaviour of the beam is directly related to its geometry, through an optimisation process of
the beam geometry, desired dynamic characteristics of the beam were successfully obtained. For this reason
dynamic characteristics for each type of vibroacoustic signal of the beam were considered and investigated by
the authors. Based on these characteristics both the widths and the positions of particular frequency band
gaps, that are present in the frequency spectrum of the beam, were precisely tailored to certain predefined,
desired requirements.

For the purpose of the optimisation process a new numerical model of the beam, based on the spectral
finite element method in the time domain (TD-SFEM), was developed by the authors providing smooth
and continuous variation of the beam geometry. This model enabled the authors to investigate the beam
behaviour not only in a wide frequency spectrum, but also ensured a high accuracy of the model predictions.
The accuracy of this modelling approach was also checked against well-known analytical formulas. However,
in the case of the optimised geometry of the beam used to verify the correctness of the modelling approach a
commercial FEM package was also used. Finally, based on the results of numerical predictions and optimised
geometry of the beam a sample for experimental verification was prepared. Experimental measurements
were carried out by the authors by the application of 1-D laser Doppler scanning vibrometry (LDSV). The
results of experimental measurements obtained by the authors confirmed the correctness of the numerical
predictions, showing a high degree of correspondence.

The results presented in this paper also indicate the capabilities offered by numerical modelling and
optimisation methods that can be successfully employed in order to design periodic structures of predefined
dynamic properties, i.e. the widths and the positions of frequency band gaps in their vibration spectra.

2. Problem description

All results presented in this work concern a 3-D isotropic, periodic and axisymmetrical beam, which is
schematically presented in Fig. 1. It was assumed that the periodic beam was divided into N = 40 identical
cells of a continuously varying radius R(x) in the range between R1 = 5 mm and R2 = 50 mm, where x
denotes a coordinate measured along the length of the beam. The total length of the beam was L = 1000
mm, therefore the length of a particular cell was L/N = 25 mm. Additionally, it was assumed that each
cell was subdivided into s = 5 segments equal in length.

The variation of the radius R(x) within the i-th segment is described by a radius function ri(ξ), which
is defined as a smooth polynomial p(ξ) of degree n = 5, defined as follows:

p(ξ) = ri(ξ) = ri(1− 10ξ3 + 15ξ4 − 6ξ5) + ri+1(10ξ3 − 15ξ4 + 6ξ5), i = 1, . . . , s, ξ ∈< 0, 1 > (1)
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Figure 1: The concept of geometry of a 3-D isotropic, periodic and axisymmetrical beam.

where now ξ is a non-dimensional coordinate measured along each i-th segment. Certain boundary conditions
at the the beginning (ξ = 0) and the end (ξ = 1) of the i-th segment were used in order to define the
polynomial p(ξ). These included polynomial values p(0) = ri and p(1) = ri+1, as well as the values of its
two derivatives p′(0) = p′′(0) = p′(1) = p′′(1) = 0, respectively. The variation of the polynomial p(ξ) and its
derivatives p′(ξ), p′′(ξ) and p′′′(ξ) within the i-th segment are presented in Fig. 2. They were normalised
with respect to their maxima for the values of ri = 1 mm and ri+1 = 4 mm.
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Figure 2: Typical variation of the polynomial p(ξ) (a) and its derivatives p′(ξ) (b), p′′(ξ) (c) as well as p′′′(ξ) (d) within the
i-th segment of a cell, for the values of ri = 1 mm and ri+1 = 4 mm.

It can be clearly seen from Fig. 2 that the polynomial p(ξ) is a smooth polynomial up to its 3-rd
derivative, and it remains continuous between each segment of the cell, as p′(0) = p′(1), p′′(0) = p′′(1) and
p′′′(0) = p′′′(1). For this reason the variation of the radius R(x) is also smooth, not only along each cell, but
also along the whole beam length. As a consequence of the beam periodicity it can be found that r1 = rs.

It was assumed that the beam was made out of an aluminium alloy of the following material properties:
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Young’s modulus E = 67.5 MPa, Poisson’s ratio ν = 0.33, mass density ρ = 2700 kg/m3.
A very important aspect of the current consideration is the type of boundary conditions of the beam,

which the authors assumed as free rather than periodic. This means than both ends of the beam remained
free and a certain influence of the finite length of the beam could be observed during the current analysis.
It can be found in the available literature [17] that this influence may be practically neglected for the total
number of cells within a structure N ≫ 1. In practice the number of cells N equal to 100 turns out to be
sufficient. For smaller numbers of cells N this influence may be observable. However, in the case of the
beam under investigation, consisting of 40 cells, and the selected type of boundary conditions, this influence
remained unnoticed.

3. Numerical model

Based on the above description of a 3-D isotropic, periodic and axisymmetrical beam a suitable numerical
model was built by the authors. This model enabled the authors to study the dynamic behaviour of the
beam in terms of its natural vibration responses in a wide range of natural frequencies. Subsequently the
numerical model developed by the authors was used as a base for a certain optimisation procedure, through
which desired dynamic characteristics of the beam were successfully obtained.

3.1. Description of the spectral finite elements

As a modelling technique the spectral finite element method in the time-domain (TD-SFEM) was selected
by the authors [18]. It was assumed that the beam was divided into a number of spectral finite elements
(SFEs). Three types of beam natural vibration responses were analysed, these being: longitudinal, flexural
and torsional vibrations. Due to the axial symmetry of the beam (no geometrical coupling) these three types
of natural vibrations could be analysed independently [19].

Figure 3: A 6-node spectral finite element used for modelling natural vibration responses of a 3-D isotropic, periodic and
axisymmetrical beam, based on Chebyshev node distribution, in the global x (left) and local-normalised ξ (right) coordinate
systems.

Independently of the type of beam vibrational responses, 6-node SFEs based on Chebyshev node distri-
bution were used [20]. The coordinates of their nodes were defined in the local coordinate system ξ of the
element as the roots of the following polynomial expression, as presented in Fig. 3:

T c
n(ξ) ≡ (1− ξ2)Un−2(ξ) = 0, |ξ| ≤ 1 (2)

where Un−2(ξ) is a Chebyshev polynomial of the second kind and degree n − 2, while T c
n(ξ) is a complete

Chebyshev polynomial of degree n. In this case the coordinates of the element nodes ξi can be calculated
from the relation:

ξj = − cosβj , βj =
π(j − 1)

n
, j = 1, . . . , n+ 1 (3)
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leading to the following values: 
ξ1 = −ξ6 = −1.0

ξ2 = −ξ5 = 1
4 (−1−

√
5) ∼= −0.80901699

ξ3 = −ξ4 = 1
4 (+1−

√
5) ∼= −0.30901699

(4)

On the specified set of nodes ξj , in the local-normalised coordinate system of the element ξ, elemental
shape functions can be built [18]. An interpolation function f(ξ) supported on the element nodes ξj can be
defined in the following way:

f(x) =

n+1∑
j=1

Nj(ξ)fj , |x| ≤ l

2
, ξ =

2x

l
(5)

where now Nj(ξ) denotes 1-D shape functions of the element, fj are unknown nodal values, while l is the
length of a single SFE.

In the current case 1-D shape functions of the element Nj(ξ) of degree n = 5, equal to the degree of the
polynomial p(ξ) describing the variation of the radius function ri(ξ) within each segment of the beam, were
chosen. They are presented in Fig. 4. Since the geometry of the beam is described by polynomials of the
same degree as elemental independent variables by the 1-D shape functions, the current definition of SFEs
used by the authors reflects the definition of isoparametric SFEs.
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Figure 4: 1-D shape functions Nj(ξ) of degree n = 5 of the element based on Chebyshev node distribution, in the local-
normalised coordinate system ξ.

3.2. Displacement and strain fields

Due to the axial symmetry of the beam under consideration its natural vibration responses can be inves-
tigated as uncoupled. As a result of this symmetry also the displacement fields associated with longitudinal,
flexural and torsional behaviour of the beam can be defined independently [19]. Such an approach enables
the authors to simplify significantly the requirements of the current analysis without any loss of quality of
simulation results [18].

It was assumed by the authors that the displacement fields under consideration were based on the
McLaurin expansions up to order 5 of the unknown functions of displacement components: axial ux, radial
ur and tangential uθ, in the cylindrical coordinate system xrθ rather than in the Cartesian coordinate system
xyz. They were assumed to be dependent on spatial coordinates x, y and z as well as time t. It should be
noted here that depending on the type of the displacement field certain elements of these expansions may
vanish, as also does their dependence on certain spatial coordinates. Typical distributions of axial ux, radial
ur and tangential uθ displacement components within the cross-section of the beam under investigation, in
the case of longitudinal, flexural and torsional behaviour, are shown in Fig. 5.
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Taking into account the points mentioned above the three displacement fields can be presented in the
following manner as [21, 22]:

■ 6-mode theory of longitudinal behaviour [23]:
ux(x, r, t) = ϕ0(x, t) + r2ϕ2(x, t) + r4ϕ4(x, t)

ur(x, r, t) = rψ1(x, t) + r3ψ3(x, t) + r5ψ5(x, t)

uθ(x, r, t) = 0

(6)

where the displacement components ux, ur and uθ are independent of the coordinate θ due to the axial
symmetry of the beam with respect to the x-axis. As a result of this the displacement component uθ must
also vanish.

■ 8-mode theory of flexural behaviour [24]:
ux(x, r, θ, t) = [rϕ1(x, t) + r3ϕ3(x, t) + r5ϕ5(x, t)] sin θ

ur(x, r, θ, t) = [ψ0(x, t) + r2ψ2(x, t) + r4ψ4(x, t)] sin θ

uθ(x, r, θ, t) = [ψ0(x, t) + r2ϑ2(x, t) + r4ϑ4(x, t)] cos θ

(7)

where the form of the displacement field corresponds to bending in the xy-plane, while the factors sin θ and
cos θ associate the current displacement field with the fundamental branch of solutions [21, 22], this branch
being the most important in practical applications.

■ 3-mode theory of torsional behaviour :
ux(x, r, t) = 0

ur(x, r, t) = 0

uθ(x, r, t) = rϑ1(x, t) + r3ϑ3(x, t) + r5ϑ5(x, t)

(8)

where the displacement components ux, ur and uθ are independent of the coordinates x and y due to the
purely torsional nature of the displacement field. As a result of this the displacement components ux and
ur must also vanish.

Figure 5: Distribution of axial ux, radial ur and tangential uθ displacement components within the circular cross-section of a
beam element in the case of longitudinal, flexural and torsional behaviour.

Assuming small strains within the beam the corresponding strain fields can be determined in the cylin-
drical coordinate system xrθ, based on the well-known formulae [19], as:
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■ 6-mode theory of longitudinal behaviour [23]:

ϵxx =
∂ux
∂x

= ϕ′0(x, t) + r2ϕ′2(x, t) + r4ϕ′4(x, t)

ϵrr =
∂ur
∂r

= ψ1(x, t) + 3r2ψ3(x, t) + 5r4ψ5(x, t)

ϵθθ =
ur
r

= ψ1(x) + r2ψ3(x) + r4ψ5(x)

γxr =
∂ux
∂r

+
∂ur
∂x

= 2rϕ2(x, t) + 4r3ϕ4(x, t) + rψ′
1(x, t) + r3ψ′

3(x, t) + r5ψ′
5(x, t)

(9)

where the strain components γrθ and γθx vanish due to the axial symmetry with respect to the x-axis.

■ 8-mode theory of flexural behaviour [24]:

ϵxx =
∂ux
∂x

= [rϕ1(x, t) + r3ϕ3(x, t) + r5ϕ5(x, t)] sin θ

ϵrr =
∂ur
∂r

= [2rψ2(x, t) + 4r3ψ4(x, t)] sin θ

ϵθθ =
ur
r

+
1

r

uθ
∂θ

= [rψ2(x, t) + r3ψ4(x, t)− rϑ2(x, t)− r3ϑ4(x, t)] sin θ

γxr =
∂ux
∂r

+
∂ur
∂x

= [ϕ1(x, t) + 3r3ϕ3(x, t) + 5r4ϕ5(x, t) + ψ′
0(x, t) + r3ψ′

2(x, t) + r4ψ′
4(x, t)] sin θ

γrθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
= [rψ2(x, t) + r3ψ4(x, t) + rϑ2(x, t) + r3ϑ4(x, t)] cos θ

γθx =
∂uθ
∂x

+
1

r

∂ux
∂θ

= [ϕ1(x, t) + r2ϕ3(x, t) + r4ϕ5(x, t) + ψ′
0(x, t) + r2ϑ′2(x, t) + r4ϑ′4(x, t)] cos θ

(10)

■ 3-mode theory of torsional behaviour :
γrθ =

∂uθ
∂r
− uθ

r
= 2r2ϑ3(x, t) + 4r4ϑ5(x, t)

γθx =
∂uθ
∂x

= rϑ′1(x, t) + r3ϑ′3(x, t) + r5ϑ′5(x, t)

(11)

where the remaining strain components vanish due to the purely torsional nature of the displacement field.

3.3. Dispersion curves

Dispersion curves carry very important information about the frequency behaviour of each theory con-
sidered by the authors. But most of all they help to determine the range of applications of each theory
and agreement with known analytical solutions. In the case of the displacement fields presented in the
previous section, associated with the theories of longitudinal, flexural and torsional behaviours of the beam,
the dispersion curves can be evaluated by the use of Hamilton’s principle [25]. Based on given displacement
fields the virtual work W , related to the deformation and motion of the beam, may be expressed in terms
of the strain energy U , the kinetic energy T as well as the work of some external forces We as:∫ t2

t1

δWdt =

∫ t2

t1

(δWe + δT − δU)dt = 0 (12)

with an additional assumption made only for the purpose of the current considerations, of a constant cross-
section of the beam, defined by the radius a.

Application of Hamilton’s principle at this point leads to a set of equations of motion that can be derived
for each displacement field component, as presented in [23, 24].

Next, by assuming that only harmonic waves can propagate within the beam the equations of motion can
be transformed from a set of partial differential equations, defined in the time domain for each displacement
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component, to a set of linear homogeneous equations defined in the frequency domain, but for the amplitudes
of each displacement component. This system can then be solved only when its determinant vanishes, which
leads directly to a characteristic polynomial equation. The roots of the characteristic polynomial define
dispersion relations between the wave number k and the angular frequency ω of particular modes of these
waves.

The dispersion curves for each theory discussed in this paper were obtained by the application of Math-
ematica package [26], for all required analytical manipulations, while for necessary numerical calculations
related to the evaluation of the dispersion curves the authors employed MATLAB package [27].

The above mentioned procedure is discussed below in more detail for the case of the 3-mode theory of
torsional behaviour of the beam from the previous section of the paper given by Eqs. (8). The kinetic energy
T and the strain energy U of the beam can be evaluated from:

T =
1

2

∫
V

T̃ dV =
1

2

∫
V

ρ u̇2θdV

U =
1

2

∫
V

ŨdV =
1

2

∫
V

(γrθτrθ + γθxτθx)dV

(13)

where ρ is the beam material density and V its volume: T̃ = ρ[aϑ̇1(x, t) + a3ϑ̇3(x, t) + a5ϑ̇5(x, t)]2

Ũ = µa2[ϑ′1(x, t) + a2ϑ′3(x, t) + a4ϑ′5(x, t)]2 + 4µa4[ϑ′3(x, t) + 2a2ϑ′5(x, t)]2
(14)

where the symbol □̇ = ∂
∂t□ denotes a time derivative.

The application of Hamilton’s principle and integration by parts of Eqs. (13) leads to equations of
motion associated with the 3-mode theory of torsional behaviour. These equations can written as a set of
two following partial differential equations:

A1(x, t) + 2
3a

2A3(x, t) + 1
2a

4A5(x, t) = 0

A1(x, t) + 3
4a

2A3(x, t) + 3
5a

4A5(x, t) = 4µϑ3(x, t) + 6µa2ϑ5(x, t)

A1(x, t) + 4
5a

2A3(x, t) + 2
3a

4A5(x, t) = 8µϑ3(x, t) + 64
5 a

4µϑ5(x, t)

(15)

where µ is the shear modulus and A1(x, t), A3(x, t) and A5(x, t) are auxiliary functions expressed as follows:
A1(x, t) = c2sϑ

′′
1(x, t)− ϑ̈1(x, t)

A3(x, t) = c2sϑ
′′
3(x, t)− ϑ̈3(x, t)

A5(x, t) = c2sϑ
′′
5(x, t)− ϑ̈5(x, t)

(16)

where cs is the speed of shear elastic waves within a 3-D unbounded medium [25].
Equations (15) describe the beam motion according to the 3-mode theory of torsional behaviour and

they couple spacial changes of the components ϑ1, ϑ3 and ϑ5 of the tangential displacement uθ with changes
in time t. However, in order to obtain the dispersion curves, which express changes of the phase cp and
group cg velocities as a function of the angular frequency ω or the frequency f = ω

2π , for the three modes of
elastic torsional waves associated with the 3-mode theory of torsional behaviour of the beam, the equations
of motion (15) must be transformed from the time domain t into the frequency domain ω. For that purpose
it is convenient to assume that the components ϑ1, ϑ3 and ϑ5 can be expressed as solutions of the equations
of motion: 

ϑ1(x, t) = ⟨ϑ1⟩ exp[−i(kx− ωt)]

ϑ3(x, t) = ⟨ϑ3⟩ exp[−i(kx− ωt)]

ϑ5(x, t) = ⟨ϑ5⟩ exp[−i(kx− ωt)]

(17)
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where i =
√
−1 is the imaginary unit and ω and k denote the angular frequency and the wave number,

respectively.
A system of three linear homogeneous equations can be obtained for each harmonic amplitude component

⟨ϑ1⟩, ⟨ϑ3⟩ and ⟨ϑ5⟩ by simple substitution of Eqs. (17) into Eqs. (15) and some simplifications:
(ω2 − c2sk2)⟨ϑ1⟩+ 2

3a
2(ω2 − c2sk2)⟨ϑ3⟩+ 1

2a
4(ω2 − c2sk2)⟨ϑ5⟩ = 0

(ω2 − c2sk2)⟨ϑ1⟩+ 3
4 [a2ω2 − c2s(a2k2 + 16

3 )]⟨ϑ3⟩+ 3
5a

2[a2ω2 − c2s(a2k2 + 10)]⟨ϑ5⟩ = 0

(ω2 − c2sk2)⟨ϑ1⟩+ 4
5 [a2ω2 − c2s(a2k2 + 10)]⟨ϑ3⟩+ 2

3a
2[a2ω2 − c2s(a2k2 + 96

5 )]⟨ϑ5⟩ = 0

(18)

This system has a non-trivial solution only when its determinant vanishes. This leads to a characteristic
polynomial equation associated with the current problem:

(ω2 − c2sk2)[a4ω4 − 2a2ω2(a2k2 + 120)c2s + (a4k4 + 240a2k2 + 5760)c4s] = 0 (19)

being a 6-th order polynomial equation with respect to the wave number k and being a function of the
angular frequency ω. Depending on the angular frequency ω this characteristic polynomial can have three
real and positive roots that represent three independent modes of elastic torsional waves that can propagate
within the beam and which are allowed by the 3-mode theory of torsional behaviour. These roots can
be calculated numerically for any chosen value of the angular frequency ω and thanks to the relationship
k = k(ω) derived above, the phase velocity cp = ω

k as well as the group velocity cg = dω
dk can be easily

calculated and plotted. The same procedure was used by the authors to calculate the dispersion curves
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/c

p
[–
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f · d [MHz·mm]

longitudinal waves analytical solution
6-mode 3-D theory

Figure 6: Dispersion curves of subsequent longitudinal modes for the group-to-phase velocity ratio cg/cp as a function of the
frequency parameter f · d, for a 6-mode theory of longitudinal behaviour of an isotropic beam.

associated with the 6-mode theory of longitudinal behaviour of the beam as well as the 8-mode theory of
flexural behaviour, presented and discussed in the previous section of the paper. The results obtained by
the authors are shown in Figs. 6–8 as a function of a frequency parameter f · d, where d = 2a is the beam
diameter.

It can be seen from Figs. 6–8 that the three theories of the beam dynamic behaviour (i.e. longitudinal,
flexural and torsional) considered by the authors agree very well with corresponding analytical solutions in
the range of the frequency parameter f·d up to 5 MHz·mm. The dispersion curves presented in Fig. 6 indicate
that in the case of the 6-mode theory of longitudinal behaviour only three modes of elastic longitudinal waves
can propagate within this range of the frequency parameter f · d. The maximal relative error between the
analytical solution and the 6-mode theory of longitudinal behaviour reaches 2% at 5 MHz·mm in the case
of the second mode. According to the dispersion curves presented in Fig. 7 the same number of modes is
available for propagation of elastic flexural waves in the case of the 8-mode theory of flexural behaviour. The
maximal relative error between the analytical solution and the 8-mode theory of flexural behaviour reaches
1% at 5 MHz·mm in the case of the third mode. Finally, in the case of the 3-mode theory of torsional
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Figure 7: Dispersion curves of subsequent flexural modes for the group-to-phase velocity ratio cg/cp as a function of the
frequency parameter f · d, for a 8-mode theory of flexural behaviour of an isotropic beam.

behaviour of the beam only one mode of elastic torsional waves can propagate within the range of the
frequency parameter f · d up to 5 MHz·mm, as shown in Fig. 8. The relative error between the analytical
solution and the 3-mode theory of torsional behaviour of the beam is practically negligible in the case of the
first mode.
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torsional waves analytical solution
3-mode 3-D theory

Figure 8: Dispersion curves of subsequent torsional modes for the group-to-phase velocity ratio cg/cp as a function of the
frequency parameter f · d, for a 3-mode theory of torsional behaviour of an isotropic beam.

4. Initial numerical computations

The results of numerical computations presented in the following section were obtained by the authors
by the use of the SFEs developed and described above. They aim to demonstrate the influence of the beam
geometry on the presence, positions and widths of the frequency band gaps in the natural frequency spectra
of the beam under investigation. For that purpose it was assumed that regardless of the type of vibrations
the beam was divided into 200 SFEs (i.e. 200 SFEs = 5 SFEs/cell × 40 cells), which resulted in 1001 nodes.

Depending on the type of analysis the number of degrees of freedom (DOF) of the numerical model
employed by the authors varied. This number was equal to 6006, 8008 and 3003 DOF in the case of the
analysis of longitudinal, flexural and torsional natural vibrations of the beam, respectively.

In order to demonstrate the influence of the cell geometry on the natural frequencies of the beam two
different calculation scenarios were considered. In the first scenario the variation of the radius ri(ξ) within
a single cell was described by the discrete values of ri = {5, 6.25, 7.5, 8.75, 10, 5} mm, as presented in Fig.
9(a). In the second scenario the magnitude of the radius variation was increased by 50%, which resulted
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(a) (b)

Figure 9: Geometry of a single cell modelled by 5 SFEs, described by the discrete values ri = {5, 6.25, 7.5, 8.75, 10, 5} mm (a),
and ri = {5, 7.5, 10, 12.5, 15, 5} mm (b), considered for numerical calculations of natural frequency spectra of a periodic beam
by the use of TD-SFEM.

in the discrete values of ri = {5, 7.5, 10, 12.5, 15, 5} mm, as presented in Fig. 9(b). It should be noted here
that the values of r1 and r6 remained unaffected and were equal to 5 mm.

0

50

100

150

200

250

300

350

f j
[k

H
z]

0 20 40 60 80 100 120 140 160 180 200

j [–]

longitudinal vibrations

ri = {5, 6.25, 7.5, 8.75, 10, 5} mm

∆f1

∆f2
∆f3
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Figure 10: Spectrum of natural frequencies associated with longitudinal vibrations of a periodic beam as a function of natural
frequency number j. Results obtained numerically by the use of TD-SFEM and based on the 6-mode theory of longitudinal
behaviour of the beam.

A typical result depicting changes in the spectrum of natural frequencies of the beam in the case of
longitudinal vibrations is presented in Fig. 10. It can be clearly seen from Fig. 11 that periodic variations of
the beam cross-section lead to visible changes in its natural frequency spectra, manifesting in the presence
of so-called frequency band gaps, despite non-periodic boundary conditions of the beam. It should be
remembered here that the free type of boundary conditions were used instead. This concerns all types of
natural vibrations: longitudinal, flexural and torsional. Moreover, it should be noted that in the current
case the spectrum of torsional natural vibrations is mostly affected by the presence of frequency band gaps
and they can be characterised by the greatest widths, which can be easily seen in Fig. 11. In this figure, for
clarity of the presentation, only the positions and widths of particular frequency band gaps are shown, for
all three types of beam natural vibrations considered.

It should be emphasised that the positions of particular frequency band gaps in the natural frequency
spectra of the beam under investigation are closely correlated with the number of cells N within the beam,
which in the current case is equal to 40. The number of cells N defines the beam periodicity. The frequency
band gaps, noted in the figures as ∆fm(m = 1, 2, 3, . . .), appear at multiples of the cell number N . Among
all frequency band gaps ∆fm(m = 1, 2, 3, . . .) the primary ones ∆f1 are characterised by the greatest widths,
except the longitudinal natural vibrations, where the greatest widths have the frequency band gaps ∆f2.
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Figure 11: Changes in the positions and widths of frequency band gaps ∆fm as a function of the frequency band gap number m,
in the case of: longitudinal (blue), flexural (red) and torsional (green) natural vibrations of a periodic beam. Results obtained
numerically by the use of TD-SFEM and based on the: 6-mode theory of longitudinal behaviour, 8-mode of flexural behaviour
as well as 3-mode of torsional behaviour of the beam, for the discrete values of ri = {5, 6.25, 7.5, 8.75, 10, 5} mm.

An increase in the magnitude of the radius variation resulted not only in widening of particular frequency
band gaps ∆fm = fNm+1 − fNm, but also in changes of their positions f̄m(m = 1, 2, 3, . . .) in the natural
frequency spectra defined as f̄m = 1

2fNm+1 + 1
2fNm. The only unaffected feature is their positions with

respect to the frequency number j, as directly resulting from the periodicity of the beam, which remains
the same and equal to N , as is clearly seen in Fig. 12.

It can be seen from Fig. 11 and Fig. 12 that for longitudinal natural vibrations the width ∆f1 and
position f̄1 of the first frequency band gap changed from 39.9 kHz at 88.9 kHz to 50.9 kHz at 75.6 kHz. In
the case of flexural vibrations they changed from 8.2 kHz at 27.4 kHz to 10.5 kHz at 23.3 kHz, while in the
case of torsional vibrations the change was from 56.2 kHz at 56.8 kHz to 73.3 kHz at 52.6 kHz. The width
∆f2 and position f̄2 of the second frequency band gap in the spectrum of natural frequencies, associated
with flexural vibrations, changed more prominently from 23.4 kHz at 82.5 kHz to 33.4 kHz at 63.52 kHz.

The results of numerical computations presented in Fig. 11 and Fig. 12 allow the authors to conclude
that through careful manipulation of the cell geometry it should be possible to adjust not only the width,
but also the position of particular frequency band gaps in the spectra of natural frequencies of the beam.
In this way dynamic characteristics of the beam could be optimised in order to achieve desired isolation or
filtering properties.
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Figure 12: Changes in the positions and widths of frequency band gaps ∆fm as a function of the frequency band gap number m,
in the case of: longitudinal (blue), flexural (red) and torsional (green) natural vibrations of a periodic beam. Results obtained
numerically by the use of TD-SFEM and based on the 6-mode theory of longitudinal behaviour, 8-mode of flexural behaviour
as well as 3-mode of torsional behaviour of the beam, for the discrete values of ri = {5, 7.5, 10, 12.5, 15, 5} mm.
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For this reason it was assumed by the authors that the geometry of the beam can be optimised in the
context of the position and the width of one common frequency band gap in the natural frequency spectra
of the beam. Three different positions of the common frequency band gap f̄c equal to 20 kHz, 40 kHz as
well as 60 kHz were considered here, all of the same width ∆fc = 10 kHz.

The optimisation procedure employed by the authors in this paper is presented in the following section
Optimisation procedure. The results of the optimisation process employed by the authors are discussed in
detail in the subsequent section Numerical and experimental verification. They concern and confirm not
only the correspondence of numerical simulation results and experimental measurements obtained by the
authors, but also their correctness.

5. Optimisation procedure

As before, the frequency band gaps of the beam are denoted as ∆fm(m = 1, 2, 3, . . .). A target frequency
band to be covered by these band gaps is ∆fc and is allocated symmetrically with respect to the target
central frequency f0. The lower and upper frequencies defining the band gaps ∆fm(m = 1, 2, 3, . . .) are
denoted as fm1 and fm2 , as well as by fc1 and fc2 as the frequencies defining the target band ∆fc. In that
context the optimisation problem can be defined as a problem to adjust the vector r = [r1 . . . r6]T in order
to obtain a maximal coverage of the target band by the frequency band gaps of the beam and, at the same
time, minimal (possibly zero) coverage of the remaining part of the spectrum. This optimisation problem
can be stated as:

r∗ = arg min
r
U(r) (20)

The scalar objective function U(r) is defined by considering the following three cases:

1. If [fm1fm2 ] ∩ [fc1fc2 ] = ∅ for m = 1, 2, 3, . . ., i.e. when there is no overlap between the band gaps. In
this case the value of the objective function is U(r) = min{m : dm}, where dm = fc1−fm2 if fm2 < fc1
or alternatively dm = fm1

− fc2 if fm1
> fc2 . In other words, the objective is the minimum distance

between the target frequency band and the closest band gap. The objective function value can be
positive or is zero in the cane when one of the band gaps is adjacent to the target frequency band.

2. If [fm1fm2 ] ∩ [fc1fc2 ] = ∅ for at least one m, the the objective is defined as M(fc1 − fc2), where M is
a fraction of the target band, which is covered by the band gaps, assuming that M < 1. In this case
the maximum value of the objective function is zero, whereas the minimum is fc1 − fc2 .

3. If ∪m[fm1fm2 ]∩ [fc1fc2 ] = [fc1fc2 ], i.e. when the target frequency band is entirely covered by the band
gaps then the objective is defined as (fc1 − fc2)(2 − P ), with P being defined as

∑
m[(fm2 − fm1) −

(fc2 − fc1)]/[∆f − (fc2 − fc1)], and where ∆f is the entire frequency range under consideration. Thus,
P is a fraction of the frequency spectrum, except the target band, which is covered by the band gaps.
Here, the objective function value can be between fc1 − fc2 and 2(fc1 − fc2).

The above definition of the objective function is introduced to distinguish three qualitatively different
situations, and order them in terms of a decreasing value of the objective function. On the one hand, one is
interested in obtaining possibly large coverage of the target band. On the other hand, the band gaps should
be reduced to the target band as much as possible. The best possible situation is a complete coverage of
the target band and no band gaps anywhere else within the frequency spectrum at the same time.

The problem defined by Eq. (20) with the objective function U(r), in conjunction with the beam vibration
model, is a difficult multi-modal task. The optimisation engine of choice is a particle swarm optimiser (PSO)
[28], being the global optimisation routine, followed by a pattern search algorithm, being the local optimiser.
The details of the pattern search algorithm can be found in [29]. A brief exposition of the PSO routine is
provided here for the convenience of all potential readers.

PSO is based on mimicking the swarm behaviour exhibited in nature, such as the schooling of fish or the
flocking of birds [28]. It simulates a set of individuals that interact with each other using social influence
and social learning. A typical model of the swarm is particles represented by their positions and velocities,
i.e. certain vectors. The particles exchange information about good positions, in terms of the corresponding
objective function value, and adjust their own velocity and position accordingly. The particle movement has
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two components: stochastic and deterministic. Each particle is attracted toward the position of the current
global best position g and its own best location r∗i found during the optimization run. At the same time, it
has a tendency to move randomly.

Let ri and vi denote the position and the velocity vectors of the i-th particle. Both vectors are updated
according to the following rules:{

vi ← χ[vi + ciR1 • (r∗i − ri) + c2R2 • (g − ri)]

ri ← ri + vi

(21)

where R1 and R2 are vectors with components being uniformly distributed random numbers between 0 and
1, whereas • denotes component-wise multiplication. The parameter χ is set to 0.7298 [28], while c1 and
c2 are acceleration constants determining how much a particle is directed towards good positions. They
represent a cognitive component and a social component, respectively. In the current case they are equal
to c1 = 2.0 and c2 = 2.1. The sum of c1 + c2 should not be smaller than 4.0 [28]. As the values of the
parameters c1 and c2 increase, χ gets smaller, as also does the damping effect. In the present implementation
the size of the swarm was set to 80 and the maximal number of iterations to 100.

It should be emphasised that having the control parameters c1 and c2 at these values (i.e. c1 + c2 above
4.0 as a sum) is a general recommendation following the analysis of PSO as a dynamical system [28]. In
particular, this ensures that the damping effects due to directing the particles towards good positions are
at the sufficient level. If this is not the case, the search may turn into the random search (in particular, if
c1 + c2 is too small) or one can experience premature convergence (if c1 + c2 is too large).

6. Numerical and experimental verification

6.1. Computations by TD-SFEM

As a result of the optimisation procedure described above three sets of the discrete values of ri were
obtained by the authors for a predefined width of the common frequency band ∆fc equal to 10 kHz. In each
of these cases the common frequency band gap ∆fc was positioned within the natural frequency spectra of
the beam under investigation at a different central frequency f̄c equal to 20 kHz, 40 kHz and 60 kHz, for all
three types of beam natural vibrations: longitudinal, flexural and torsional, respectively. This is summarised
in Tab. 1.

Table 1: Discrete values of ri(i = 1, 2, . . . , 6) resulted from the optimisation procedure of the beam geometry for predefined
positions of the common frequency band gap f̄c of a constant width ∆fc equal to 10 kHz within natural frequency spectra of the
beam, in the case of longitudinal, flexural and torsional behaviour. Results obtained numerically by the use of TD-SFEM and
based on the 6-mode theory of longitudinal behaviour, 8-mode of flexural behaviour, as well as 3-mode of torsional behaviour
of the beam.

f̄c ∆fc r1 r2 r3 r4 r5 r6
[kHz] [kHz] [mm] [mm] [mm] [mm] [mm] [mm]

1 20 10 7.6 37.2 27.8 37.2 7.7 7.6
2 40 10 11.2 26.4 18.7 28.7 14.7 11.2
3 60 10 9.9 16.4 19.8 14.6 31.8 9.9

The results of numerical simulation by the use of TD-SFEM, based on the presented theories of the beam
longitudinal, flexural and torsional behaviour, and corresponding to the three sets of the discrete values of
ri are shown in Figs. 13–15. In Fig. 13 they are presented for the value of f̄c = 20 kHz, in Fig. 14 for the
value of f̄c = 40 kHz, and in Fig. 15 for the value of f̄c = 60 kHz. In each of these cases the position of the
common frequency band gaps ∆fc equal to 10 kHz is indicated by a grey colour band.

It is clearly seen from Figs. 13–15 that in each of the cases considered here the presence of one common
frequency band gap ∆fc is a direct consequence of overlapping of some of the existing frequency band gaps
∆fm(m = 1, 2, 3, . . .) within the natural frequency spectra of of the beam.
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Figure 13: Changes in the positions and widths of frequency band gaps ∆fm as a function of the frequency band gap number m,
in the case of: longitudinal (blue), flexural (red) and torsional (green) natural vibrations of a periodic beam of optimised geome-
try. A common frequency band gap ∆fc of 10 kHz centrally positioned in the frequency spectra of the beam at 20 kHz. Results
obtained numerically by the use of TD-SFEM and based on the 6-mode theory of longitudinal behaviour, 8-mode of flexural
behaviour, as well as 3-mode of torsional behaviour of the beam, for the discrete values of ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6}
mm.

For the first scenario and the common frequency band gap ∆fc centrally positioned in the frequency
spectra of the beam at 20 kHz, it is evident from Fig. 13 that its existence results from overlapping of the
first frequency band gap in the case of longitudinal vibrations (within the range of natural frequencies from
14.5 kHz to 25.2 kHz), the first frequency band gap in the case of torsional vibrations (within the range of
natural frequencies from 4.5 kHz to 59.0 kHz), as well as the second frequency band gap in the case of the
flexural vibrations (within the range of natural frequencies from 14.8 kHz to 38.5 kHz).

In a similar manner, for the second scenario and the frequency band gap ∆fc centrally positioned in
the frequency spectra of the beam at 40 kHz, it is clear from Fig. 14 that the presence of one common
frequency band gap ∆fc results from overlapping of the same set of frequency band gaps. These are the
first frequency band gap in the case of longitudinal vibrations (within the range of natural frequencies from
34.8 kHz to 45.1 kHz), the first frequency band gap in the case of torsional vibrations (within the range of
natural frequencies from 17.1 kHz to 51.5 kHz), as well as the second frequency band gap in the case of the
flexural vibrations (within the range of natural frequencies from 31.0 kHz to 50.8 kHz).
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Figure 14: Changes in the positions and widths of frequency band gaps ∆fm as a function of the frequency band gap number
m, in the case of: longitudinal (blue), flexural (red) and torsional (green) natural vibrations of a periodic beam of opti-
mised geometry for the common frequency band gap ∆fc of 10 kHz centrally positioned in the frequency spectra of the
beam at 40 kHz. Results obtained numerically by the use of TD-SFEM and based on the 6-mode theory of longitudinal
behaviour, 8-mode of flexural behaviour as well as 3-mode of torsional behaviour of the beam, for the discrete values of
ri = {11.2, 26.4, 18.7, 28.7, 14.7, 11.2} mm.
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Figure 15: Changes in the positions and widths of frequency band gaps ∆fm as a function of the frequency band gap number
m, in the case of: longitudinal (blue), flexural (red) and torsional (green) natural vibrations of a periodic beam of optimised ge-
ometry for the common frequency band gap ∆fc of 10 kHz centrally positioned in the frequency spectra of the beam at 60 kHz.
Results obtained numerically by the use of TD-SFEM and based on the 6-mode theory of longitudinal behaviour, 8-mode of flex-
ural behaviour as well as 3-mode of torsional behaviour of the beam, for the discrete values of ri = {9.9, 16.4, 19.8, 14.6, 31.8, 9.9}
mm.

Due to a higher value of the central position f̄c of the common frequency band gap ∆fc positioned at
60 kHz, the third scenario involves frequency band gaps ∆fm(m = 1, 2, 3, . . .) also positioned higher in the
natural frequency spectra of the beam. It can be seen from Fig. 15 that the existence of the common
frequency band gap ∆fc results this time from overlapping of the second frequency band gap in the case of
longitudinal vibrations (within the range of natural frequency 55.0 kHz to 66.6 kHz), the second frequency
band gap in the case of torsional vibrations (within the range of natural frequencies from 42.0 kHz to 89.9
kHz), as well as the fourth frequency band gap in the case of the flexural vibrations (within the range of
natural frequencies from 53.0 kHz to 69.0 kHz).

6.2. Computations by FEM

The results of numerical computations obtained by the authors using TD-SFEM and the spectral finite
elements developed in the case of the longitudinal, flexural and torsional behaviour of the periodic beam
under investigation were cross-verified by the use of the classical FEM. Due to the size of the numerical model
required for this purpose, resulting from full 3-D modelling of the beam, as well as meshing requirements
[18] resulting from high frequency responses sought, only the first scenario was considered here, when the
common frequency band gap ∆fc of 10 kHz was centrally positioned in the frequency spectra of the beam
at 20 kHz.

As a numerical tool the Autodesk Simulation Mechanical FEM software was selected by the authors.
The beam was modelled by more than 1.2 million 4-node tetrahedral FEs of linear shape functions. The
numerical model included more than 250 thousand nodes in total, which was equivalent to more than 770
thousand DOFs. Numerical computations considered calculations of the first 200 modes of natural vibrations
of the beam in the frequency range up to 26 kHz. Also in this case the free type of boundary conditions
were used by the authors.

A detailed view of a single unit cell divided into FEs for numerical calculations by FEM is presented in
Fig. 16. It should be emphasised here that a numerical model of a single unit cell had to be very rich in
order to appropriately represent locally high frequency responses of the beam at high frequencies, especially
around these natural frequencies, which were close to the central frequency f̄c of the common frequency
band gap ∆fc. This model included more than 30 thousand 4-node tetrahedral FEs, which resulted in 47
thousand nodes, which is equivalent to 141 thousand DOFs.

It was expected that, in a similar manner as in the case of numerical computations by TD-SFEM, a
visible frequency band gap ∆fc of approximately 10 kHz, around the central frequency f̄c of 20 kHz, should
be observable also in this instance. It was found that such a frequency band gap exists between modes of
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(a) (b) (c)

Figure 16: A detailed view: side (a), front (b), perspective (c), of a single unit cell divided into FEs for numerical calculations
using the classical FEM employing 4-node tetrahedral FEs provided by Autodesk Simulation Mechanical FEM software.

natural vibrations 180 and 181 and concerns frequencies of natural vibrations equal to 15.86 kHz and 25.51
kHz, respectively, as is clearly seen in Fig. 17. Thus, the resulting frequency band gap was equal to 9.65
kHz and it was positioned around the central frequency equal to 20.69 kHz. This is equivalent to the relative
error of 3.5% for both these values.

mode 179 at 15.85 kHz

(a)

mode 180 at 15.86 kHz

(b)

mode 181 at 25.51 kHz

(c)

mode 182 at 25.53 kHz

(d)

Figure 17: Selected modes of natural vibrations of a periodic beam: mode 179 at 15.85 kHz (a), mode 180 at 15.86 kHz (a),
mode 181 at 25.51 kHz (c), mode 182 at 25.53 kHz (d), calculated numerically by the classical FEM and application of 4-node
tetrahedral FEs using Autodesk Simulation Mechanical FEM software.

In the opinion of the authors the primary source of this error comes from the inappropriate approximation
of the beam geometry, which was initially assumed as smooth [30]. The condition of a smooth geometry
could not be met in the classical FEM using the 4-node tetrahedral elements of linear or higher order shape
functions. It should be noted that this particular condition is very difficult to meet using any FEM software
available and in practice requires developing customised FEs, as was done by the authors. An additional
source of the error may come from the fact that the 4-node tetrahedral FEs are better suited for solving
static or low frequency dynamic problems [11] rather than high frequency dynamic responses.
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6.3. Experimental measurements

The programme of experimental measurements was planned by the authors to verify not only the results
of numerical investigations obtained by the use of TD-SFEM, presented in the previous section of this paper,
and the results of the optimisation procedure that led to three different beam geometries, but primarily
to verify the correctness of the concept discussed throughout the paper. However, due to very complex
geometries resulting from the optimisation procedure as well as machining difficulties, the authors decided
to test experimentally only one scenario, i.e. the case, for which the common frequency band gap ∆fc of 10
kHz was centrally positioned in the frequency spectra of the beam at 20 kHz.

Dynamic responses of the beam under investigation were measured experimentally in the form of the
spectrum of forced vibrations as well as wave propagation patterns. For that purpose a one-dimensional
(1-D) laser Doppler scanning vibrometer (LDSV) was used, model Polytec PSV-400. This system was
additionally equipped with a linear amplifier, American Piezo, Inc. model EPA-140 (±200 Vpp). In order
to induce beam vibrations during the experiments an American Piezo, Inc. PZT-850 transducer in the form
of a disc (10 mm ×10 mm) was used. This transducer was attached eccentrically to the face of the first unit
cell. The periodic beam, as well as the experimental equipment used by the authors, are presented in Fig.
18.

During the experiments only the radial component u̇r of beam vibrations was measured by 1-D LDSV.
Starting from the 1st unit cell the points located at the centre of the carving of every fifth unit cell were
chosen as measurement points. In this manner 9 measurement points were selected. Vibrational signals at
each measurement point were averaged based on 15 measurements.

(a) (b)

(c) (d)

Figure 18: A detailed view of: a periodic beam sample with an American Piezo, Inc. PZT transducer attached (a), American
Piezo, Inc. linear amplifier model EPA-140 (b), Polytec 1-D LDSV head (c), LDSV measurement unit model PSV-400 (d),
used by the authors for experimental measurements.
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The first measurement scenario concerned forced vibration responses of the beam. In this case the chirp
type of excitation was used in the range of frequencies starting from 1 kHz up to 75 kHz. The results
obtained from experimental measurements are presented in Fig. 19. These results should be understood as
an averaged result from all 9 vibration spectra obtained from each measurement point.

It can be clearly seen from Fig. 19 that the position and the width of the common frequency band gap
in the frequency spectrum of the beam very well corresponds to the values obtained by to the optimisation
procedure. The common frequency band gap of the beam is located in Fig. 19 within the range of frequencies
from 15.4 kHz to 25.7 kHz. This means that the total width of the frequency band gap ∆fc measured
experimentally was 10.3 kHz, in comparison to its value obtained as the result of the optimisation procedure,
equal to 10.4 kHz. In a similar manner the position of the centre of the experimentally measured frequency
band gap f̄c was 20.6 kHz, in comparison to its value obtained as the result of the optimisation procedure
equal to 20.0 kHz. As a result the error related to the width of the common frequency band gap is smaller
than 1%, while the error related to its position in the frequency spectrum of the beam is smaller than 3%.
In the opinion of the authors this indicates that agreement between the experimental and numerical results
is excellent.

0
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ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm

∆fc

Figure 19: Spectrum of natural frequencies of a periodic beam measured experimentally by the use of 1-D LDSV, for the radial
component u̇r of beam vibrations, for the discrete values of ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm. A common frequency band
gap ∆fc of 10.3 kHz centrally positioned in the frequency spectra of the beam at 20.5 kHz.

Moreover, the authors suspect that the small discrepancy observed could have its source primarily in
machining of the experimental sample, and secondly in the values of material mechanical properties used
for all numerical calculations, which could slightly differ from real values. Additionally, it could be relevant
that precise machining of the beam sample required its division into two separate and equal parts that later
had to be connected together by a specially designed aluminium bolt made from the same material.

The second measurement scenario concerned wave propagation patterns. It was assumed here that the
total time T of each measurement was equal to 12.5 ms. The number of samples n collected at each measure-
ment point was 1600. The sampling frequency fs was 128 kHz and particular measurements were delayed
in respect to each other by 1 s. It was expected by the authors that as a benefit of the optimised geometry
of the beam its vibroacoustic isolation properties should have a significant influence on the propagation of
elastic waves along the beam. Therefore three different frequencies of the excitation signal were selected by
the authors, having different positions with respect to the common frequency band gap ∆fc. The excitation
signals had a form of a sine pulse modulated by the Hann window. In each case the number of sine cycles
m was equal to 5. The carrier frequencies fc of the excitation were selected as 10 kHz, 20 kHz as well as 30
kHz, and the resulting modulation frequencies fm = fc/m were equal to 2 kHz, 4 kHz and 6 kHz. The time
and frequency domain shapes of the excitation signal in the case of the excitation frequency fc of 10 kHz
and the modulation frequency of fm of 2 kHz, are presented in Fig. 20.

It should be understood that depending on the carrier and modulation frequencies fc and fm a part
of the signal energy can fall into the common frequency band gap ∆fc. In the current case of the carrier
frequency fc of 10 kHz signal energy is carried within the range of frequencies starting from fc − 2fm equal
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Figure 20: Typical variation of an excitation voltage signal applied to a PZT transducer during experimental measurements:
in the time domain (a), in the frequency domain (b).

to 6 kHz up to fc + 2fm equal to 14 kHz, therefore practically no signal energy falls into the common
frequency band gap. In the case of the carrier frequency fc of 20 kHz signal energy is carried within the
range of frequencies starting from fc − 2fm equal to 12 kHz up to fc + 2fm equal to 28 kHz, and 97.4% of
the signal energy falls into the common frequency band gap. Finally, in the case of the carrier frequency fc
of 30 kHz signal energy is carried within the range of frequencies starting from fc− 2fm equal to 18 kHz up
to fc + 2fm equal to 42 kHz, and only 7.6% of signal energy falls into the common frequency band gap. As
a consequence of this it can be expected that vibroacoustic isolation properties of the beam observed and
measured, based on wave propagation patterns of the radial component u̇r of beam vibrations, should differ
and appear as strongly dependent on the value of the carrier frequency fc. This is well illustrated by Fig.
21, Fig. 22 and Fig. 23.
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Figure 21: Wave propagation patters of a periodic beam measured experimentally by the use of 1-D LDSV, for the radial
component u̇r of beam vibrations, for the discrete values of ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm. Results obtained for the
carrier frequency fc of the excitation signal equal to 10 kHz outside the common frequency band gap ∆fc.

It can be clearly seen from Fig. 21, Fig. 22 and Fig. 23 that the value of the excitation frequency fc,
with respect to the position and width of the common frequency band gap of the beam ∆fc, has a great
impact on the wave propagation patterns that can be observed. In the case of the excitation frequency fc of
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10 kHz it can be noted that the maximum amplitude of the radial component u̇r of beam vibrations in the
1st unit cell reaches 197.4 µm, while its value in the 40th unit cell drops down to 45.9 µm. This is equivalent
to a relative change of 76.8%. In the case of the excitation frequency fc of 20 kHz the changes observed are
significantly different. The maximum amplitude of the radial component u̇r of beam vibrations in the 1st
unit cell reaches 829.8 µm, while its value in the 40th unit cell drops down to 11.7 µm, which is equivalent
to a relative change of 98.6%. Finally, in the case of the excitation frequency fc of 30 kHz the maximum
amplitude of the radial component u̇r of beam vibrations in the 1st unit cell reaches 226.2 µm, while its
value in the 40th unit cell drops down to 34.3 µm. This is equivalent to a relative change of 84.8%.

Obviously, when the frequency range of the excitation signals falls outside the common frequency band
gap, as in the case of results presented in Fig. 21 and Fig. 23, changes in the wave propagation patterns
result only from internal cross-reflection of the signal as well as natural damping properties of the beam
material. The latter was not taken into account by the authors. In contrast to this, when the frequency range
of the excitation signals falls into the common frequency band gap, the vibroacoustic isolation properties
of the beam manifest very strongly, as presented in the case of Fig. 22. It should be emphasised that the
relatively strong damping of signals propagating along the beam in the case of the carrier frequency fc of
30 kHz, higher than in the case of the carrier frequency fc of 10 kHz, in the opinion of the authors can be
attributed to the fact that still 7.6% of the signal energy falls into the common frequency band gap.

In order to better illustrate this property of the beam, the results obtained by the authors are presented
in Fig. 24 as the values of a damping coefficient ζj at selected measurement points j, measured with respect
to the power of the signal measured at the 1st unit cell, and for the carrier frequencies fc of the excitation
signals equal 10 kHz, 20 kHz as well as 30 kHz. The value of the damping coefficient ζj was calculated by
the authors according to the following simple formula:

ζj = 10 log10

pj
p1
, j = 5, 10, . . . , 40 (22)

where the power spectrum pj of a signal u̇r(t)|j at each measurement point j was calculated as:

pj =

∫ fc+2fm

fc−2fm

∣∣∣ˆ̇ur(f)|j
∣∣∣2df ≈ i=l∑

i=k

ˆ̇ur(fi)ˆ̇u∗r(fi)|j , i = 1, 2, . . . , n, j = 1, 5, 10, . . . , 40 (23)

based on its discrete Fourier transform ˆ̇ur(fi)|j , where n is the total number of samples and where ˆ̇u∗r(fi)|j
is a complex conjugate of ˆ̇ur(fi)|j . The values of indexes k and l were determined according to a very simple
relationship as k = min{i : fi ≥ fc − 2fm} and l = max{i : fi ≤ fc + 2fm}.

It can be noted that the greatest values of the damping coefficient ζj are obtained for the carrier frequency
fc of 20 kHz reaching 24.6 dB at the 25th unit cell, while its averaged value is 13.3 dB. In the case of the
carrier frequency fc of 10 kHz the damping coefficient ζj reaches its maximum of 10.9 dB at the 40th unit
cell, while its averaged value is 2.4 dB. Finally, in the case of the carrier frequency fc of 30 kHz the damping
coefficient ζj reaches its maximum of 18.3 dB at the 30th unit cell, while its averaged value is 10.6 dB.

7. Conclusions

The results presented in this paper can be divided into three separate categories. The first category of
results concerns modelling techniques employed by the authors in order to investigate dynamic properties
as well as dynamic responses of a three-dimensional periodic beam. The second category of results concern
the optimisation procedure used by the authors to adjust parameters of their numerical models to achieve
predefined dynamic properties of the beam in terms of the position and width of a common frequency band
gap. The final category of results concerns those of experimental measurements by one-dimensional laser
Doppler scanning vibrometry.

Based on the authors’ investigations described in this paper the following general conclusions can be
drawn:

21

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


-400

0

400
unit cell no. 1

-400

0

400

u̇
r
[µ
m
/s
] unit cell no. 20

-400

0

400

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

t [ms]

unit cell no. 40

Figure 22: Wave propagation patterns of a periodic beam measured experimentally by the use of 1-D LDSV, for the radial
component u̇r of beam vibrations, for the discrete values of ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm. Results obtained for the
carrier frequency fc of the excitation signal equal to 20 kHz within the common frequency band gap ∆fc.
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Figure 23: Wave propagation patterns of a periodic beam measured experimentally by the use of 1-D LDSV, for the radial
component u̇r of beam vibrations, for the discrete values of ri = {7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm. Results obtained for the
carrier frequency fc of the excitation signal equal to 30 kHz outside the common frequency band gap ∆fc.
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Figure 24: Variation of a vibroacoustic damping coefficient ζj of a periodic beam, based on results of experimental mea-
surements by the use of 1-D LDSV, for the radial component u̇r of beam vibrations, for the discrete values of ri =
{7.6, 37.2, 27.8, 37.2, 7.7, 7.6} mm. Results obtained for the carrier frequencies fc of the excitation signal equal to 10 kHz,
20 kHz and 30 kHz.

■ A new, isoparametric, 6-node spectral finite element (SFE), based on Chebyshev node distribution
has been developed by the authors. This SFE has been designed in order to investigate dynamic
behaviour of axisymmetrical beam-like structural elements of varying geometry. Thanks to a smooth
and continuous variation of its geometry the element is especially well suited to study the dynamic
behaviour of periodic structures. It should be noted that geometrical discontinuities between adjacent
finite elements (FEs) can have a great impact on the correctness and applicability of numerical models
in the case of their application [31] to the study of periodic structures.

■ Due to significant changes in SFEs geometry, expressed by the element radius, extended forms of
the displacement fields for particular types of beam vibrations have been used, i.e. 6-mode theory
of longitudinal behaviour, 8-mode of flexural behaviour and 3-mode of torsional behaviour. As a
consequence of this, a very good agreement between numerical results obtained by the use of the
current SFE and known analytical solutions have been achieved in the cases of longitudinal, flexural
and torsional behaviour of the beam, in a very wide range of frequencies up to 5 MHz·mm.

■ The optimisation procedure employed by the authors allowed them to adjust geometrical parameters
of particular SFEs within a single cell defining a periodic beam. Thanks to this the width and the
position of a resulting common frequency band gap can be arbitrary selected in the cases of longitudinal,
flexural and torsional vibrations, within the natural frequency spectrum of the periodic beam under
investigation.

■ The correctness and the applicability of the formulated SFE as well as the optimisation procedure have
been successfully verified by the use of the classical finite element method (FEM). For that purpose a
numerical model has been prepared by the authors using the Autodesk Simulation Mechanical software,
which consisted 1.2 million 4-node tetrahedral FEs (770,000 DOF) in comparison to 200 SFE of 6-node
elements (17,017 DOF in total, for all types of beam vibrations). A numerical model proposed by the
authors has been therefore less than one forty-fifth the size of the model used by the classical FEM,
making the current approach not only computationally faster and more robust, but also very well
suited for various optimisation algorithms.

■ The results of numerical computations obtained by the authors using the current SFE have also
been successfully verified by the results of experimental measurements using of one-dimensional laser
Doppler scanning vibrometry (1-D LDSV). Moreover, the result of experimental measurements have
stayed in very good agreement with the results of the optimisation procedure and have confirmed the
applicability of periodic structures as vibroacoustic isolators or filters.

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


■ The approach presented by the authors in the present paper together with the optimisation procedure
can be potentially applied to other similar problems related to the application of periodic structures
such as vibroacoustic isolators or filters in the cases when only particular types of vibrations must
be eliminated. They indicate the capabilities offered by numerical modelling and optimisation meth-
ods that can be successfully employed in order to design periodic structures of predefined dynamic
properties, i.e. the widths and the positions of frequency band gaps in their vibration spectra.
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