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Summary

Dynamics of hydrodynamic perturbations in a plasma depend strongly on an angle be-
tween the wave vector and equilibrium straight magnetic field. The case of perpendicular
propagation is especial. There are only two (fast) magnetosonic modes since two (slow)
ones degenerate into the stationary one with zero speed of propagation. This demands in-
dividual definition of wave modes by the links of hydrodynamic relations. These links are
not limiting case of the relations in the case of non-zero angle. The nonlinear excitation of
the entropy mode in the field of intense magnetosonic perturbations is also unusual. Bulk
and shear viscosity and thermal conduction are considered as the damping mechanisms
in a weakly nonlinear flow. The leading-order dynamic equation is derived which governs
perturbation of density in the entropy mode. The links of magnetosonic perturbations
and magnetosonic heating may be indicators of plasma-β, geometry of a flow, damping
coefficients and type of wave motion. The ”almost resonant” character of magnetosonic
heating excited by the slow magnetosonic wave in the course of nearly perpendicular wave
propagation, is discussed.

1 Introduction

The wave processes in a plasma and associated non-linear phenomena are of growing impor-
tance. This concerns laboratory and astrophysical applications (see e.g. [1, 2, 3]). Links of
small-signal perturbations determine every wave or non-wave mode on a pair with the corre-
sponding dispersion relation in a linear flow. The dispersion relations for non-wave modes are
degenerative in an ideal fluid flow in the absence of magnetic field with zero thermal conduc-
tion and viscosity. Three-dimensional flow specify three non-wave modes with zero dispersion
relations, ω(k) = 0. That leads to ambiguously defined non-wave eigenvectors corresponding to
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these roots. One of them is the entropy mode with any stationary perturbation in density and
zero velocity and perturbation of pressure. The second is vorticity mode determined by condi-

tion of incompressibility for the velocity field,
−→
∇ · v⃗ = 0 and zero perturbations of density and

pressure. Any linear combination of these modes also represents a mode and specifies non-wave
stationary fluid flow. Including in consideration thermal conduction eliminates degeneracy of
the entropy mode, and including in consideration shear viscosity eliminates degeneracy of the
vorticity mode. As for the two branchs of sound, they rely to different dispersion relations in
both ideal and damping flow.

The flows of plasma are much more complex compared to the fluid flow in the absence
of magnetic field. Presence of magnetic field introduces non-isotropy of a flow and brings
slow and fast magnetosonic modes with variety of propagation speeds which leads to unusual
degenerative dispersion relations and ambiguously defined modes. In particular, slow wave
modes may degenerate into non-wave ones with zero speed of propagation. This never happens
to the homogeneous flows where sound speed does not vary and degeneration may be caused
only by zero damping coefficients. The special case of degeneracy connected with transformation
of wave modes into non-wave ones, should be considered individually. The key issue is proper
re-definition of modes; that yields also unusual nonlinear phenomena.

The nonlinear effects are still unresolved issue in many applications of plasma dynamics
but are recognized as having a key influence (inter alia, the energy transfer from the transition
region into the corona is understood as a nonlinear phenomenon [4, 5]). Nonlinear excitation of
the entropy mode by intense sound [6, 7], that is, magnetoacoustic heating, may be confidently
observed remotely. In astrophysical applications, the slow evolution of entropy perturbations
is the main and often the only source of information concerning equilibrium parameters of a
plasma, geometry of a flow and a wave driver. It is especial if excited by perpendicularly or
nearly perpendicularly propagating wave. The mathematical content of the study has been
used in description of various linear and weakly nonlinear fluid flows [8]. The initial point is to
determine links between hydrodynamic perturbations specifying any mode on a pair with the
dispersion relation. The next issue is to evaluate the projecting operators which subdivide the
individual modes from the total field of perturbations. They subdivide also dynamic equations
for perturbations in a specific mode when operating on the system of conservation equations.
Going to investigation of weakly nonlinear dynamics in the field of intense wave, we still make
use of the specific links and corresponding projecting. Projecting is in fact a linear combination
of the conservation equations which result in the system of coupling evolutionary equations for
the interacting modes in a weakly nonlinear flow.

2 Finite-magnitude perturbations in a plasma’s flow with

mechanical and thermal losses

We start from a set of MHD (magnetofydrodynamic) equations describing dynamics of fully ion-
ized gas which take into account thermal conduction and mechanical viscosity. It consists of the
continuity equation, the momentum equation, the energy balance equation and electrodynamic
equations in the differential form (e.g. [9, 10]):

∂ρ

∂t
+
−→
∇ · (ρv⃗) = 0,

2
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ρ
Dv⃗

Dt
= −

−→
∇p+ 1

µ0

(
−→
∇ × B⃗)× B⃗ + η∆v⃗ +

(
1

3
η + ξ

)
−→
∇(

−→
∇ · v⃗), (1)

Dp

Dt
− γ

p

ρ

Dρ

Dt
= (γ − 1)

[
−→
∇ · (χ

−→
∇T ) + ξ(

−→
∇ · v⃗)2 + η

2

∑
i,j=1,2,3

(
∂vi
∂xk

+
∂vk
∂xi

− 2

3
δi,k

−→
∇ · v⃗

)2
]
,

∂B⃗

∂t
=

−→
∇ × (v⃗ × B⃗),

−→
∇ · B⃗ = 0,

where p, ρ, v⃗, B⃗, are hydrostatic pressure and density of a plasma, its velocity, the magnetic
field, and µ0 is the permeability of free space. The third equation incorporates the continuity
equation and the energy balance. It refers to an ideal gas with the adiabatic index γ = CP/CV

(CP and CV denote the specific heats per unit mass under constant pressure and constant
density, respectively), T = p

ρ(CP−CV )
is the temperature of a plasma. We make use of the

Navier-Stokes form of the viscous tensor [6, 10]. The viscous coefficients η and ξ are referred
to as shear (first) and bulk (second) viscosity in classic fluid mechanics. Thermal conduction
coefficient consists of two parts,

χ = χ|| cos
2(θ) + χ⊥ sin2(θ), (2)

where here χ|| and χ⊥ are the thermal conduction coefficients parallel and perpendicular to
the magnetic field. The ”perpendicular thermal conductivity” in strongly magnetized plasmas
is much less than ”parallel thermal conductivity” [11]. The transport coefficients in some
studies are assumed to be isotropic in view of microturbulence [11, 12, 13, 14]. This concerns
also the thermal conduction χ [11, 15] (particularly, isotropic transport coefficients is a good
approximation in studies of dynamics of the solar corona [16]). All transport parameters are
treated as constants which do not vary with coordinates.

We consider the geometry of a flow accepted in Refs [15, 17]: the straight equilibrium

magnetic field B⃗0 forms the constant angle θ (0 ≤ θ ≤ π) with the wave vector which is

directed along axis z. The y-component of B⃗0 equals zero, so as

B0,x = B0 sin(θ), B0,z = B0 cos(θ), B0,y = 0.

All thermodynamic quantities are expanded around the equilibrium thermodynamic state as
f(z, t) = f0+f

′(z, t). The bulk flow is absent, v⃗0 = 0⃗. The leading-order system which describes
weakly nonlinear phenomena, includes quadratically nonlinear terms

∂ρ′

∂t
+ ρ0

∂vz
∂z

= −ρ′∂vz
∂z

− vz
∂ρ′

∂z
,

∂vx
∂t

− B0,z

ρ0µ0

∂Bx

∂z
− η

ρ0

∂2vx
∂z2

= −vz
∂vx
∂z

− B0,z

ρ20µ0

ρ′
∂Bx

∂z
, (3)

∂vy
∂t

− B0,z

ρ0µ0

∂By

∂z
− η

ρ0

∂2vy
∂z2

= −vz
∂vy
∂z

− B0,z

ρ20µ0

ρ′
∂By

∂z
,

∂vz
∂t

+
1

ρ0

∂p′

∂z
+
B0,x

ρ0µ0

∂Bx

∂z
−
(

4η

3ρ0
+

ξ

ρ0

)
∂2vz
∂z2

=
ρ′

ρ20

∂p′

∂z
+
B0,x

ρ20µ0

ρ′
∂Bx

∂z
− 1

ρ0

∂

∂z

(
B2

x +B2
y

2µ0

)
−

3
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vz
∂vz
∂z

−
(

4η

3ρ0
+

ξ

ρ0

)
ρ′

ρ0

∂2vz
∂z2

,

∂p′

∂t
+ c2ρ0

∂vz
∂z

− χ

ρ0CP

∂2γp′

∂z2
+

χc20
ρ0CP

∂2ρ′

∂z2
= −γp′∂vz

∂z
− vz

∂p′

∂z
+ (γ − 1)

(
4η

3
+ ξ

)(
∂vz
∂z

)2

+

(γ − 1)η

((
∂vx
∂z

)2

+

(
∂vy
∂z

)2
)

− χ

ρ20CP

∂2(γp′ρ′ − c20ρ
′2)

∂z2
,

∂Bx

∂t
+

∂

∂z
(B0,xvz − B0,zvx) = −Bx

∂vz
∂z

− vz
∂Bx

∂z
,

∂By

∂t
− ∂

∂z
(B0,zvy) = −By

∂vz
∂z

− vz
∂By

∂z
.

It represents the Taylor series expansions of Eqs(1) in powers of the magnetosonic Mach number
M up to the second order, whereM is a ratio of velocity magnitude to the speed of magnetosonic
perturbations. Hence, there are seven unknown variables and the same number of dispersion
relations and modes of a flow. The linear damping may be described by the generic small
dimensionless parameter, say, λ, which ensures weak attenuation of magnetosonic perturbations
in the course of propagation. The terms of order M and Mλ are collected on the left of Eqs(3),
and the terms O(M2), O(M2λ) are collected on its right. The nonlinear terms of order O(M2λ)
are of importance in the context of magnetosonic heating although they are smallest among
other terms.

The dispersion relations follow from linearized Eqs(3) if one looks for all hydrodynamic
perturbations in the form of a sum of planar waves with the wave vector k and frequency ω
(that is, proportional to exp(iω(k)t−ikz)). C is the magnetosonic speed satisfying the equation
(e.g.,[18, 19, 15])

C4 − C2(c20 + C2
A) + c20C

2
A,z = 0, (4)

and CA and c0

CA =
B0√
µ0ρ0

, c0 =

√
γp0
ρ0

designate the Alfvén speed and the acoustic speed in non-magnetized gas in equilibrium, CA,z =
CA cos(θ). Eq.(4) represents two branches (fast and slow) propagating in the positive direction
of axis z and two branches propagating in the negative direction of axis z with the same modules
of speeds. The exception is the case θ = π

2
which leads to the double non-wave zero root and

speeds of fast modes C = ±
√
c20 + C2

A. Hence, there are only two wave modes which specify this
case. The case θ = 0 yield degeneration of two magnetosonic p-modes into the Alfvén modes
with C = ±CA. These two cases should be considered individually. Neither the definition of
modes nor nonlinear effects are limiting cases of the more general ones for θ differing from 0 and
π/2. All evaluations in this study (dispersion relations, links between specific perturbations,
dynamic equations) are leading-order, that is, they contain terms up to Mλ in regard to linear
phenomena and M2λ in regard to nonlinear phenomena. The dispersion relations which are
valid apart from the specific cases, are well-known. They correspond to two Alfvén branches

ω = ±CA,zk + i
η

2ρ0
k2, (5)

four magnetosonic p-branches

ω = Ck + i
α

2
k2, (6)

4
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where

α = αη
4η

3ρ0
+ αξ

ξ

ρ0
+ αχ

(γ − 1)χ

Cpρ0
,

αη =
C2(C4 + C2(6c20 − C2

A)− 3c20(c
2
0 + C2

A))

4c20(C
4 − c20C

2
A,z)

, αξ =
C4(C2 − C2

A)

c20(C
4 − c20C

2
A,z)

, αχ =
C2(C2 − C2

A)

C4 − c20C
2
A,z

,

and the entropy mode

ω = i
χ

CPρ0
k2. (7)

Eq.(6) has been established by Nakariakov, Chin et al.[15, 17] in the flows of a plasma with only
one damping factor, that is, thermal conduction, and that due to the shear viscosity was derived
in Ref.[20]. Links of perturbations in any individual mode are determined by the corresponding
dispersion relation. In particular, four magnetosonic modes, two Alfvén modes and the entropy
mode apart from the specific cases are determined by relations

ψms =



ρ′

vx
vy
vz
p′

Bx

By


ms

= (8)



1

−CA,z(C
2−c20)

CA,xCρ0
+

C2CA,z(C
2−c20)(C

2−2c20−C2
A)

2ρ0CA,xc
2
0(C

4−c20C
2
A,z)

(
ξ
ρ0

+ (γ − 1)
c20
C2

χ
CP ρ0

)
∂
∂z
+

η
CA,z(C

2−c20)(C
4+C2(4c20−C2

A)−3c20(c
2
0+C2

A))

6ρ0CA,xc
2
0(C

4−c20C
2
A,z)

∂
∂z

0

C
ρ0

− C4(C2−C2
A)

2ρ0c20(C
4−c20C

2
A,z)

(
ξ
ρ0

+ (γ − 1)
c20
C2

χ
CP ρ0

)
∂
∂z
−

η
ρ0

C2(C4+C2(6c20−C2
A)−3c20(c

2
0+C2

A))

6ρ0c20(C
4−c20C

2
A,z)

∂
∂z

c20 − (γ − 1) χ
CP ρ0

c20
C

∂
∂z

(C2−c20)µ0

B0,x
+

CC2
A,z(C

2−c20)µ0

B0,x(C4−c20C
2
A,z)

(
ξ
ρ0

+ η
3ρ0

+ (γ − 1)
c20
C2

χ
CP ρ0

)
∂
∂z

0



ρms,

5
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ψA =



ρ′

vx
vy
vz
p′

Bx

By


A

=



0
0
1
0
0
0

∓ B0

CA
− η B0

2ρ0CACA,z

∂
∂z


vy,A, ψent =



1

− χCA,x

CA,zCP ρ20

∂
∂z

0
− χ

CP ρ20

∂
∂z

0
0
0


ρent, (9)

where ρms, vy,A, ρent are the reference perturbations for the magnetosonic, Alfvén and entropy
modes. The links accounting shear viscosity and thermal conductivity without account of bulk
viscosity have been derived in [21]. Evidently, these links are not valid if θ = 0 or θ = π/2
(denominators in some expressions equal zero) and should be determined individually in these
specific cases. As for the case θ = 0, it is well studied regarding weakly nonlinear dynamics
magnetosonic perturbations (e.g., [22, 23]). We focus on the perpendicular propagation in this
study.

3 Dispersion relations and specific perturbations. Case

θ = π/2

In this case, CA,z = 0, C = ±C⊥ (C⊥ =
√
c20 + C2

A), and the links for the Alfvén and the entropy
modes given by Eqs(9) are not longer valid, as well as the links for the magnetosound modes (8)
(there are only two fast wave modes, since slow modes degenerate into the stationary one with
zero roots of dispersion relation). The properties of a flow, including definition of modes as links
of specific perturbations and nonlinear phenomena, change abruptly. We will number modes,
corresponding relations and the reference variables inherent to each mode for convenience. The
reference perturbations are designated as By,1, Bx,2, ρ3, vx,4, vy,5, ρ6, ρ7. The corresponding
links for two degenerate stationary modes with the dispersion relations

ω1,2 = 0 (10)

sound

ψ1 = (0 0 0 0 0 0 1)By,1, ψ2 = (−γC
2
Aρ0

c20B0

0 0 0 − C2
Aρ0
B0

1 0)Bx,2. (11)

ψ1, ψ2 are very especial types of motion which appear only in the case θ = π/2. They do
not remind the only non-wave entropy mode in the case θ ̸= π/2. ψ1 relies on one non-zero
stationary perturbation By, and ψ2 connects stationary perturbations ρ′, p′ and Bx. This mode

specifies zero perturbation in temperature, T ′

T0
= p′

p0
− ρ′

ρ0
= 0. Any linear combination of ψ1,

ψ2 also represents the stationary mode, so we face with ambiguous definition of the stationary
modes. The entropy mode is determined by the dispersion relation

ω3 = i
(c20 + γC2

A)k
2

c20 + C2
A

χ

CPρ0
(12)

and the links

ψ3 = (1 0 0 − χ

CPρ20

c20 + γC2
A

c20 + C2
A

∂

∂z
− C2

A,
B0

ρ0
0)ρ3. (13)

6
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Evidently, ω3, ψ3 is not a special case of ω, ψent (Eqs (7), (9)) apart from the case without
magnetic field with B0 = 0. There are two degenerate modes which associate with the dynamical
viscosity,

ω4,5 = ik2
η

ρ0
,

ψ4 = (0 1 0 0 0 0)vx,4, ψ5 = (0 0 1 0 0 0)vy,5. (14)

Neither dispersion relation nor ψ4, ψ5 are limiting cases of Alfvén modes (Eqs(5),(9)). ψ4,
ψ5 represent diffusion of transversal components of velocities with coefficient of damping η/ρ0
which is two times larger than that of Alfvén modes. Any linear combination of linearly
independent vectors ψ4 and ψ5 also represents a mode corresponding to ω4,5. Two magnetosound
modes are determined by relations:

ω6,7 = ±C⊥k + i

(
ξ

2ρ0
+

2η

3ρ0
+ (γ − 1)

c20
2(c20 + C2

A)

χ

CPρ0

)
k2. (15)

The magnetosonic links take the forms
ψ6,7 =(

1 0 0 ± C⊥

ρ0
−
(

ξ

2ρ0
+

2η

3ρ0
+ (γ − 1)

c20
2ρ0C2

⊥

χ

CPρ0

)
∂

∂z
c20 ∓ (γ − 1)

c20
C⊥

χ

CPρ0

∂

∂z

B0

ρ0
0

)
ρ6,7.

(16)
ω6,7, ψ6,7 are described in the frames of (6),(8). It is remarkable that different scenarios of
attenuation impose different definition of modes. In the case of only non-zero bulk viscosity ξ,
there are five zero roots of dispersion equation, ω1,. . . ,ω5. That brings degenerate five modes
which are defined ambiguously. Any linear independent combination of them also represents
a mode. The case of only non-zero shear viscosity η brings three zero dispersion relations and
three degenerate modes, and the case of only non-zero thermal conduction χ brings four zero
dispersion relations and four degenerate modes.

4 Nonlinear effects

4.1 Magnetoacoustic heating. Case θ = π/2

Applicability of the projecting in the weakly nonlinear fluid flows is indicated in Ref.[8]. In
regard to magnetohydrodynamics, it is described in details in Ref.[24]. The fundamental issue
is to evaluate the projecting operators in a linear fluid flow. The projecting operator which
distinguishes an excess density in the entropy mode from the total vector of perturbations

ψ =
7∑

i=1

ψi, (17)

so as
Pentψ = ρ3 ≡ ρent, (18)

takes the leading-order form

Pent =

(
c20

c20 + γC2
A

0 0 − (γ − 1)χ

CP

c20
C4

⊥

∂

∂z
− 1

C2
⊥

c20C
2
A(γ − 1)ρ0

B0C2
⊥(c

2
0 + γC2

A)
0

)
. (19)
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It is not a special case of Pent in the non-degenerate case

Pent,θ ̸=π/2 =

(
1 − (γ − 1)χCA,x

CA,zc20CP

∂

∂z
0 − (γ − 1)χ

CP c20

∂

∂z
− 1

c20
0 0

)
. (20)

For definiteness, we consider the dominant magnetosonic mode propagating in the positive
direction of axis z, that is, with C⊥ > 0. The dominance of a mode means that its specific
perturbations are much larger than that of other modes, and in particular, of the entropy mode.
The dynamic equation for the density perturbation in the magnetosonic mode which propagates
in the positive direction of axis z, takes the form

∂ρms

∂t
+ C⊥

∂ρms

∂z
+

3C2
A + (γ + 1)c20

2C2
⊥

ρms
∂ρms

∂z
−
(

ξ

2ρ0
+

2η

3ρ0
+ (γ − 1)

c20
2C2

⊥

χ

CPρ0

)
∂2ρms

∂z2
= 0.

(21)
Application of the projector (19) at the system (3), which may be briefly represented as

∂ψ

∂t
+ Lψ = ψ̃ (22)

(where ψ̃ is the vector which consists of nonlinear terms), distinguishes the dynamic equation
for specific perturbation of density in the entropy mode.

Pent

[
∂ψ

∂t
+Nψ

]
=
∂ρent
∂t

− χ

Cpρ0

c20 + γC2
A

C2
⊥

∂2ρent
∂z2

= Pentψ̃ = Qms,⊥. (23)

Among all nonlinear terms in ψ̃, we consider only terms belonging to the magnetosonic mode
which propagates in the positive direction of axis z, hence Qms,⊥ represents the nonlinear source
due to this magnetosonic mode exclusively,

Qms,⊥ =
(γ − 1)χ

Cpρ20

(
A1

(
∂ρms

∂z

)2

+ A2ρms
∂2ρms

∂z2

)
− (24)

(γ − 1)

(
4η

3ρ20
+

ξ

ρ20

)(
∂ρms

∂z

)2

,

where

A1 = −γβ(8γ − 12 + β2(γ − 3)γ + β(2γ2 − γ − 7))

(2 + β)(2 + βγ)2
(25)

A2 =
γβ(8− 4γ + 2β2γ + (γ + 5)β)

2 + β)(2 + βγ)2
,

and plasma-β is determined as the ratio
2c20
γC2

A
. In the case of periodic or nearly periodic acoustic

exciter, in view that magnetosonic perturbations in the leading order are functions of x−C⊥t,

⟨Qms,⊥⟩ ≈ −γ − 1

ρ0

(
(γ − 1)χ

CPρ0

c20
C2

⊥
+

4η

3ρ0
+

ξ

ρ0

)〈(
∂ρms

∂z

)2
〉
, (26)

where the angular brackets designate average over the period of perturbations. In the linear flow
(that is, if ψ̃ = 0), Qms,⊥ equals zero and an excess entropy density evolutes independently on
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other modes in accordance to the dispersion relation (12). There is no leading-order nonlinear
coupling between magnetosonic and other non-wave modes.

The dynamic equation which governs perturbation of density in the entropy mode excited
by the periodic magnetosonic wave which propagates in the positive direction of axis z (θ = 0),
is the same than in the absence of magnetic field (CA = 0):

∂ρent
∂t

− χ

Cpρ0

∂2ρent
∂z2

= Qms,||, (27)

Qms,|| =
(γ − 1)χ

CPρ20

(
−(γ − 3)

(
∂ρms

∂z

)2

+ 2ρms
∂2ρms

∂z2

)
− (γ − 1)

(
4η

3ρ20
+

ξ

ρ20

)(
∂ρms

∂z

)2

,

so in the case of periodic or nearly periodic exciter,

〈
Qms,||

〉
≈ −(γ − 1)

ρ0

(
(γ − 1)χ

CPρ0
+

4η

3ρ0
+

ξ

ρ0

)〈(
∂ρms

∂z

)2
〉
. (28)

This coincides with the results of Ref.[7]. In general, equations (23),(27) do not refer to spe-
cial kinds of exciters nor to average quantities. Since the difference in equations (23),(27) is
brought by thermal conduction, we focus on the effects associated with the thermal conduction
exclusively. Fig.1 shows coefficients in the magnetosonic sources of dynamic equations for per-
turbation in density inherent to the entropy mode (23),(27). In evaluations, γ = 5/3. Eq.(27)
is a limiting case of Eq.(23) when β → ∞ (CA → 0). The magnetosonic source of heating
Qms,⊥ tends to zero if β → 0.

A1

3-γ

A2

10 20 30 40 50
β

0.5

1.0

1.5

2.0

Fig.1. Coefficients which determine sources Qms,⊥, Qms,|| in dynamic equations for
perturbation in density inherent to the entropy mode (Eqs(23),(27)). Cases of perpendicular

and parallel wave vector and equilibrium magnetic field.

4.2 Excitation of the entropy mode by slow magnetosonic wave in
the course of nearly perpendicular propagation

The magnetosonic heating in the case θ ̸= 0, θ ̸= π/2 in the case of slow and fast modes is
described by equation

∂ρent
∂t

− χ

Cpρ0

∂2ρent
∂z2

= Qms =
∂F (z − Ct)

∂z
. (29)
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In the leading order, all magnetoacoustic perturbations and magnetosonic source Qms depend
on z − Ct. Analysis may be done making use of results discussed in the review of Rudenko,
Makov [25]. In the leading order, perturbations in the excited mode propagate with its own
speed and the speed of exciting mode [26, 25, 27]. This last part contributes to the exciting
mode. The magnitude of excited perturbation increases infinitely when linear speeds of both
modes coincide. If thermal conduction in its left hand side is neglected, Eq.(29) has a solution
satisfying zero initial condition

ρent =
1

C
(F (z)− F (z − Ct)) (30)

which if C → 0 rearranges readily into

ρent = t
∂F

∂z
(31)

which reflects linear growth with time of magnitude of entropy perturbation in the course of
resonant excitation. (This resonant excitation concerns impulsive exciters. If there is non-zero
average of the period compound of magnetic source, ⟨Qms⟩ ̸= 0, excitation by source moving
with any speed, is always resonant. Taking in mind that dynamics of entropy perturbations is
slow, Eq.(29) after averaging over wave period transforms into ρent = t ⟨Qms⟩ .)

The ”almost resonant” excitation of the entropy mode by the slow mode propagating nearly
perpendicular to the magnetic field with the speed close to zero may take place. The solution
to (29) for non-zero C which satisfies zero initial condition, takes the form [25]:

ρent =

∫ ∞

−∞

G(k)

−C + ik χ
Cpρ0

(
exp(ikCt)− exp(− χ

Cpρ0
k2t)

)
exp(−ikz)dk, (32)

where

G(k) =
1

2π

∫ ∞

−∞
F (z)dz (33)

is the spatial spectrum of the magnetosound source. For large time domains starting from the
beginning of evolution, the module of perturbation is

|ρent| =
|G(k0)|k0√

C2 +
(

χ
Cpρ0

k0

)2 . (34)

If the spectrum represents a single wave number k0,

G(k) = G(k0)δ(k − k0). (35)

This example shows that the thermal conduction eliminates the resonant peculiarity when C
tends to zero and determines maximum magnitude of perturbation of density inherent to the
entropy mode in the course of magnetosonic excitation if C → 0,

|ρent,max| =
Cpρ0
χ

|G(k0)|, (36)

It may achieve considerable values in view of small χ ≈ χ⊥. The similar behavior takes place
for other kinds of F (z).
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5 Remarks and conclusions

The special cases of a plasma flow with the wave vector perpendicular or nearly perpendicular
to the magnetic field and the related nonlinear phenomena require proper definition of modes
as the relations between specific small-magnitude perturbations. In general, there are two slow
and two fast magnetosonic p-modes (Eq.(8)) with the speeds determined by Eq.(4) apart from
θ = 0 and θ = π/2. The properties of a flow change abruptly when approaching θ = π/2.
The case θ = π/2 is of especial interest, where slow modes degenerate into two stationary ones
with zero speed (ψ1,ψ2, Eqs(11)), and two Alfvén modes degenerate into non-wave diffusion
modes (ψ4,ψ5, Eqs(14)). These modes are determined by unusual dispersion relations and links
of specific perturbations which are not limiting cases of the general ones if θ ̸= π/2. Also,
dispersion relation and links for the entropy mode are unusual. The entropy mode relies on the
dispersion relation (12) and the corresponding mode (13). Neither the dispersion relation nor
the entropy mode are limiting cases of the more general one. In particular, the entropy mode
possesses unusual non-zero perturbations of pressure and magnetic field, p′ and Bx, and zero
vx. The entropy mode is not longer isobaric but specified by non-zero perturbation in pressure
p′ = −C2

Aρ
′, so as the dimensionless variation of temperature equals

T ′

T0
=
p′

p0
− ρ′

ρ0
= −c

2
0 + γC2

A

c20

ρ′

ρ0
.

The diffusion coefficient in the case of perpendicular propagation equals
(c20+γC2

A)

c20+C2
A

χ
CP ρ0

(Eq.(12))

but in the case θ ̸= π/2 it equals χ
CP ρ0

(Eq.(7)). Hence, it is not a special case but a quantity

always larger than that in the more general case (1 to γ times larger). The projector into the
perturbation of density inherent to the entropy mode (19) is not a limiting case of more general
one (20) as well.

The links between specific perturbation are unfairly underestimated in the fluid dynamics.
They may be referred to as ”constitutive equations” or ”polarization relations” [28] and are the
foundation for linear and weakly nonlinear analysis. They allow to subdivide different modes in
the total field of perturbations by projectors and to undertake analysis of nonlinear dynamics.
They also point at the character of irreversible processes in a flow. In particular, curves in the
plane perturbations of pressure versus perturbation of density in wave processes (Eq.(8))

p′

c20
= ρ′ − (γ − 1)

χ

CPρ0C

∂

∂z
ρ′ ≈ ρ′ + (γ − 1)

χ

CPρ0C2

∂

∂t
ρ′ (37)

reveal hysteretic behavior due to thermal conduction and indicate speed of sound in a plasma
since |C|/c0 > 1 for fast magnetosonic modes and |C|/c0 < 1 for slow magnetosonic modes.
When θ → π/2 and speed of slow mode C tends to zero, the term responsible for thermal
conduction may achieve considerable values even for small χ⊥. Eq.(37) may indicate χ⊥, C
(hence, equilibrium parameters of a plasma and θ) in the case of nearly perpendicular wave
vector and magnetic field. This concerns also links of vz and ρ′ which depends on all damping
coefficients but with growing contribution of χ in a slow mode when θ → π/2. With zero
thermal conduction and the first viscosity, the case θ = π/2 yields five degenerate modes with
zero dispersion relation. The links of perturbations for the degenerate modes are uncertain and
have no analogues with the more general case.

Nonliner effects of sound in the particular case, θ = π/2, are also especial. Nonlinear
dynamics of perturbations cannot be Fourier analyzed but the linear links may be used in order
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to determine modes and to derive dynamic equations in a weakly nonlinear flow. Eqs (21),(23)
describe propagation of magnetosonic excess density and excitation of perturbation in density
which specifies heating in this particular cases of geometry of a flow. In the case θ ̸= π/2,
the corresponding enlargement of a medium temperature and decrease in its density due to
magnetosound heating is isobaric (ψent, (9)), so as the variation in the background temperature
associates with the perturbation of density as T ′

T0
= − ρ′

ρ0
. The excited entropy mode in the

case θ = π/2 is not longer isobaric and specifies zero vx. The part of the source associating
with the thermal conductivity in the case of periodic excitation is smaller than that in the

more general case θ ̸= π/2 (
c20+C2

A

c20
times smaller). The magnetosonic source Qms,⊥ includes

contribution of mechanical viscosity which does not depend on θ, but the part connected with
thermal conduction may be indicator of plasma-β (Eq.(24), Fig.1). Evidently, the deviation
from the non-magnetic case increases with enlargement of CA and leads to smaller magnitudes
of perturbations of density specifying the entropy mode ceteris paribus.

”Almost resonant” excitation of the entropy mode is theoretically possible in the course of
nearly perpendicular propagation of the slow impulsive magnetosonic wave with a speed close
to zero. The entropy mode excited by the magnetosonic wave represents slow non-wave motion
and may be confidently detected. The character of excitation points also at the equilibrium and
transport parameters of a plasma, kind of a wave exciter and, generally, an angle between the
equilibrium magnetic field and the wave vector. The theoretical results which concern links of
specific perturbation and excitation of magnetosonic heating may be useful in both laboratory
and astrophysical applications. They may be included in indirect methods such as ”coronal
seismology” and be helpful in estimation of coronal properties and coefficients of dissipation.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in
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