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Abstract—The importance of surrogate modeling techniques 

has been gradually increasing in the design of antenna structures 

over the recent years. Perhaps the most important reason is a high 

cost of full-wave electromagnetic (EM) analysis of antenna 

systems. Although imperative in ensuring evaluation reliability, it 

entails considerable computational expenses. These are especially 

pronounced when carrying out EM-driven design tasks such as 

geometry parameter tuning or uncertainty quantification, both 

requiring repetitive simulations. Conducting some of the design 

procedures, e.g., global search or yield optimization, directly at the 

level of simulation models may be prohibitive. The employment of 

fast replacement models (or surrogates) may alleviate these 

difficulties; yet, accurate modeling of antenna structures faces its 

own challenges. The two major obstacles are the curse of 

dimensionality, manifesting itself in a rapid growth of the number 

of training data samples necessary to render a reliable model (as a 

function of the number of antenna parameters), and high 

nonlinearity of antenna characteristics. Recently, the concept of 

performance-driven modeling has been introduced, where the 

modeling process is focused on a small region of the parameters 

space, which contains high-quality designs with respect of the 

considered performance figures. The most advanced variation of 

this class of methods is nested kriging, where both the model 

domain and the surrogate itself are constructed through kriging 

interpolation. Domain confinement is realized using a set of pre-

optimized reference designs, and allows for significant 

improvement of the model predictive power while using a limited 

number of training data samples. In this work, the constrained 

modeling concept is coupled with a novel pyramidal deep 

regression network (PDRN) surrogate, which offers improved 

handling of highly-nonlinear antenna responses. Three examples 

of microstrip antennas are used to demonstrate the advantages of 

constrained PDRN metamodels over the nested kriging surrogates 

with the (average) accuracy improved by a factor of two without 

increasing the training data set cardinality. 

Index Terms—Surrogate modeling, antenna design, domain 

confinement, nested kriging, deep neural networks. 

I. INTRODUCTION

Design of antenna systems is a complex and multifaceted task, 

which requires meticulous development of the structure 

geometry [1], [2], but also careful tuning of its parameters [3]. 

Depending on the application area and performance demands 
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imposed upon the device, the antenna topology may incorporate 

various modifications of the base geometries (e.g., stubs of 

various shapes [4], ground plane [5] and radiator slots [6], 

defected ground structures [7], shorting pins [8], etc.), require 

appropriate allocation of its components (e.g., to excite 

orthogonal modes in circularly polarized antenna [9], improve 

radiator isolation in MIMO systems [10]), or a construction of 

compound devices, e.g., frequency selective surfaces allocated 

over a radiator for directivity improvement [11], etc. The 

aforementioned and other design techniques lead to increasingly 

complex designs described by large numbers of parameters, but 

also phenomena that affect the system operation (mutual 

coupling [12], the presence of connectors [13], radomes [14]). 

Accounting for these in an adequate manner can only be done 

through full-wave electromagnetic (EM) analysis, which has 

become ubiquitous in the design of modern antenna structures 

[15]-[19]. Evaluation accuracy and versatility perhaps the most 

appealing features of EM simulation tools, whereas potentially 

long simulation time is a disadvantage. The latter becomes 

problematic whenever repetitive analyzes are necessary. This is 

a common issue for most EM-driven design task, including 

parameter tuning [20], multi-objective design [21], statistical 

analysis [22], or tolerance-aware optimization [23]. 

The literature offers various tools for alleviating the difficulties 

incurred by the aforementioned high-cost issue. Some of these 

are strictly algorithmic approaches, both intrusive (e.g., adjoint 

sensitivities [24]), and non-intrusive (e.g., gradient-based 

procedures accelerated by sparse sensitivity updates [25], [26]); 

others exploit customized EM solvers tailored to particular 

classes of antenna structures [27], [28]. Notwithstanding, a large 

part of recent developments rely on surrogate modeling 

techniques [29]-[35]. By far, the most popular ones are 

approximation models, which are fast to evaluate and easily 

accessible [36], [37]. Because of being data-driven, these models 

are versatile and readily transferrable between various 

application domains. Widely used techniques include polynomial 

regression [38], kriging [39], radial-basis functions [40], neural 

networks [41], [42], support vector regression [43], Gaussian 

process regression [44], or polynomial chaos expansion [45]. 
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Although the surrogates can be used as stand-alone models, i.e., 

overall replacements of EM simulations, this is only possible for 

simple design scenarios (low-dimensional parameter spaces, 

limited parameter ranges, slightly nonlinear system outputs) [46], 

[47]. In more realistic situations, data-driven models are often 

combined with nature-inspired optimization procedures [48]-

[50], or machine learning frameworks [51], [52], where 

utilization of the model as a predictor is interleaved with its 

updating process, typically using some sort of sequential design 

of experiments [53] with appropriate infill criteria [54]. The latter 

can be oriented towards improving the model accuracy [55] or 

identification of the global optimum [56]. Physics-based 

surrogates constitute a second group of metamodels, which are 

particularly popular in the context of local optimization [57]. The 

main idea is to correct an underlying low-fidelity representation 

of the system (e.g., equivalent network [58], or coarse-mesh EM 

model) using sparsely-sampled high-fidelity data. Owing to the 

embedded problem-specific knowledge, physics-based 

surrogates exhibit better generalization capability (as compared 

to data-driven models) but they are less versatile, and highly 

dependent on the setup (selection of the low-fidelity model and 

the correction methods). Representative examples of physics-

based techniques include space mapping [59], cognition-driven 

design [60], and various response correction approaches (e.g., 

[61], [62]). 

Despite their popularity, data-driven models are severely 

affected by the curse of dimensionality, which hinders their 

application to modeling of real-world antenna structures. Due 

to high nonlinearity of antenna characteristics, handling more 

than a few parameters becomes a serious problem, especially 

when broad ranges thereof are to be covered to ensure design 

utility of the model. Depending on the problem and setup, the 

scope of applicability can be somehow extended through 

dimensionality reduction (principal component analysis [63], 

model order reduction approaches [64]), high-dimensional 

model representation (HDMR) [65], orthogonal matching 

pursuit [66], or variable-fidelity methods (Bayesian model 

fusion [67], co-kriging [68]). An alternative approach is the 

employment of deep learning (DL) algorithms [69], in 

particular, Deep Neural Networks (DNN) that have 

demonstrated their capability of improved handling of 

nonlinear system outputs as compared to more traditional 

regression models (e.g., [70], [71]). Unfortunately, DNNs face 

some serious issues on their own, primarily related to the model 

setup (adjustment of hyper-parameters, the network 

architecture, preventing overtraining, etc.) [72]-[74]. Another 

alternative is ensemble learning (EL) [75], which is essentially 

is a technique of strategically combining different sets of 

individual models, referred to as learners, to solve a specific 

computer intelligence challenge such as classification or 

regression. The main principle of EL is to use base learner 

models, usually exhibiting low performance as stand-along 

surrogates, as the building blocks for generating surrogates with 

more complex architecture and improved performance [76]. 

However, an appropriate handling of the building blocks, 

including their selection and integration, is a non-trivial task 

[77]. Recently introduced performance-driven (or constrained) 

modeling paradigm offers a conceptually different solution to 

the dimensionality and parameter range issues [78]. Therein, 

the surrogate model is only constructed in a specified region of 

the parameter space, containing design that are of high-quality 

with respect to the assumed performance figures. Identification 

of this region, and, consequently, the modeling domain, is 

realized using a set of pre-optimized reference designs and an 

auxiliary inverse model. The surrogate model itself is 

constructed using kriging interpolation. As demonstrated in 

[79] and [80], domain confinement allows for a dramatic 

improvement of the accuracy while using small number of 

training data samples. 

This work proposes a framework for modeling of antenna 

structures, which combines the domain confinement approach, 

and a pyramidal deep regression network (PDRN). The latter is 

a novel approach incorporating deep neural network surrogates 

with a pyramidal-shape architecture, and procedures for 

automated determination of the specific model network and the 

hyper-parameters. The latter allows for mitigating the common 

issues pertinent to DNN models, in particular, the risk of 

overtraining, but also enables improved exploitation of the 

problem-specific knowledge embedded in the training data set. 

At the same time, constraining the model domain according to 

the performance-driven modeling methodology [78], permits 

efficient handling of parameter space dimensionality and 

setting up high-quality models valid over broad parameter 

ranges. The presented procedure has been comprehensively 

validated using three antenna structures, and benchmarked 

against conventional surrogates as well as nested kriging [79]. 

The results demonstrate that our approach fully exploits all 

advantages implied by domain confinement. At the same time, 

the predictive power of the obtained models is greatly improved 

as compared to the nested kriging framework (by a factor of 

around two on the average), let alone the remaining benchmark 

methods. The latter is a consequence of inherent suitability of 

DNN in terms of representing nonlinear frequency 

characteristics of antenna structures. The proposed approach 

can be considered a viable alternative to existing techniques 

whenever a construction of accurate replacement models is 

required in multi-parameter spaces under limited computational 

resources.  

The novelty and the technical contribution of this work can 

be summarized as follows: (i) development of a novel ANN-

based surrogate retaining the flexibility of deep neural network 

models but with architecture described by a small number of 

control parameters, which addresses practical issues pertinent 

to DNN metamodels (overtraining, etc.); (iii) development of 

procedures for automated hyper-parameter determination 

through Bayesian Optimization, (iii) incorporating the 

proposed surrogate into performance-driven modeling 

paradigm to alleviate major difficulties of antenna response 

modeling, (iv) demonstrating the relevance of the proposed 

approach for modeling of multi-parameter antenna 

characteristics over broad ranges of geometry parameters and 

operating conditions, (v) demonstrating superiority of the 

presented technique over several state-of-the art surrogates, 

both conventional and domain-confined ones. 
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II. ANTENNA MODELING USING DOMAIN-CONFINED 

PYRAMIDAL DEEP REGRESSION NETWORK 

This section introduces the modelling methodology proposed 

in this work. We start by formulating the antenna modelling 

task in Section II.A. This is followed by an outline of the 

pyramidal deep regression network (PDRN) surrogate, 

developed to represent antenna characteristics within the 

presented framework (Section II.B). The concept and 

implementation of domain confinement [78] is briefly recalled 

in Section II.C, whereas Section II.D summarizes the 

operational flow of the overall modelling procedure. 

Comprehensive verification of the methodology along with its 

benchmarking will be discussed in Section III. 

A. Surrogate Modeling: Problem Formulation 

For an antenna structure of interest, we will denote by x = [x1 

… xn]T the vector of its independent parameters. Typically, 

these are antenna dimensions or material parameters (e.g., 

permittivity of the substrate, the structure is implemented on). 

It is assumed that the primary computational model of the 

antenna is based on full-wave electromagnetic (EM) analysis. 

The relevant antenna responses (reflection, gain, axial ratio 

characteristics, etc.) at the design x are collectively denoted as 

R(x). The objective is to construct a fast replacement model 

(surrogate) Rs, which is valid within a certain domain X, 

typically defined using lower and upper bounds l = [l1 … ln]T 

and u = [u1 … un]T, on the parameters, so that lk ≤ xk ≤ uk, for k 

= 1, …, n. The surrogate should represent the EM model as well 

as possible over X, i.e., R(x) – Rs(x) is to be small (e.g., in the 

RMS sense [81]) for all x  X. At the same time, the surrogate 

should be computationally cheap so that multiple evaluations of 

Rs do not entail considerable CPU expenses.  

In this work, we focus on data-driven models, i.e., the 

surrogates that are constructed using the data pairs 

{x(i),R(x(i))}i = 1,…,NT, acquired across the domain X. This data is 

approximated, and the model yields predictions concerning the 

antenna characteristics for arbitrary parameter vectors within X. 

B. Pyramidal Deep Regression Network (PDRN) Surrogate 

This section introduces the proposed pyramidal deep 

regression network (PDRN) model. By using a pyramid-like 

structure of the neuron layers, PDRN attempts to find the 

optimum model by transforming the input parameters into a 

very high dimensional space to increase the number of degrees 

of freedom and facilitate handling of nonlinear input-output 

relationships pertinent to the antenna structure at hand. 

Subsequently, after a mapping step, the problem is reduced to a 

low-dimensional space. For preventing model over-fitting, the 

model leaky ReLU activation function [82], [83], [84] is 

employed. The detailed description of the PDRN surrogate is 

provided below, following a brief characterization of the 

artificial neural network (ANN) and deep neural network 

(DNN) models. 

Universal approximation is a well-known property of ANN, 

which indicates a possibility of modelling a continuous function 

over a compact set [85], [86]. Let 𝑓: ℝ𝐷𝑖 → ℝ𝐷𝑜  be a general 

transformer function over 𝒮 ⊂  ℝ𝐷𝑖. 𝐷𝑖 and 𝐷𝑜 stand for the 

input and output space dimensions.  A general feedforward 

neural network can be defined as 

   2 1

1( ( )       Kf Kx W W W x b b       (1) 

where  𝒙 ∈  ℝ𝐷𝑖×1, 𝑓(𝒙) ∈  ℝ𝐷𝑜×1 are the input and output 

vectors,  𝑾𝑙 , 𝒃𝑙 are the weight matrices and bias vector, 

respectively, whereas 𝜎(⋅) is a non-linear activation function. 

Using this definition, it can be seen that f(x) is non-linear affine 

transformation over 𝓢. Its non-linearity has a vital role in 

modelling of f(x). In the training phase of neural network, an 

optimizer attempts to identify the optimal set of weights to 

minimize a given loss function, defined as a metric of the 

network approximation capability. ANN models are capable of 

modelling complex data. ANN enact a significant role in the 

field of regression studies [41], [42]. It is especially in multi-

output problems, where ANN ability to simultaneously produce 

all outputs at the same time makes it superior to algorithms that 

can only yield a single output, such as Support Vector 

Regression Machine (SVRM) [43], or Gaussian Process 

Regression (GPR) [44]. Otherwise, in these algorithms, 

separate models must be trained for each output. This situation 

is troublesome for large data sets data, such as frequency 

characteristics of antenna structures. While nonlinearity 

leverages NN structures, it also reveals their weakness. In 

particular, the asymptotic regions of the activation function 

determine the characteristics of the neural networks. Sigmoid 

and tanh, which are the most widely used activation functions 

in ANN models, can be given as an example. The ANN models 

learning mechanism is based on portioning the error generated 

in the loss function onto the weights. The process is referred to 

as back propagation, and enabled using the derivative operator's 

chain rule. Let ℒ(𝒕, 𝑓(𝒙)) be a loss function for the ANN over 

𝒕 ∈ ℝ𝐷𝑜×1 target vector. A derivative of this function with 

respect to 𝑾𝑙 can be expressed as  

     
1

, ,  

 

   
  

   

K l

l K K l

f ft x t x

W x W
           (2) 

where 𝜎𝑙 are the outputs of the 𝑙th layer activations. Sigmoid and 

tanh activations have asymptotic regions. Hence, during the back 

propagation of the error, the derivatives tent to be zero in these 

regions. This problem is referred to as vanishing gradient, where 

it affects the generalization capabilities of the models using the 

activation functions featuring a saturation regime [87]. In 

particular, it makes effective learning of ANN a complicated 

matter. This issue is especially pronounced for Deep Neural 

Network (DNN) due to the internal covariate shift problem [88]. 

Similar problems have been experienced in Convolutional 

Neural Network (CNN) models, which have been popular in the 

recent years and have a very deep structure. However, with the 

increasing interest in Convolutional Neural Network (CNN) 

structures, many alternative activation functions have been 

proposed to alleviate this difficulty [82]-[84]. 

Deep Neural Networks (DNN) is a recent generation of ANN 

models (Shallow Neural Networks) that generate outputs by 

passing input information through more than two layers [89]. 

One of the best known DNN models in this field are CNNs. 

CNN models have been developed especially for image 

processing applications. By reducing the raw 𝑁 × 𝑀 sized 

image to lower dimensions with the convolution mechanism, it 
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obtains a feature vector and classifies images at the same time. 

The principal approach here is that the raw image data in very 

high dimension is gradually mapped to lower dimensions. This 

way, raw 𝑁 × 𝑀 size data is reduced to 𝐷 dimension. Inspired 

by this, we set up a regression model with the strategy of 

transition from higher dimensional space to lower dimensional 

space in order to process data featuring complex input/output 

relationships.  

The Pyramidal Deep Regression Network (PDRN) model 

proposed in this work capitalizes on several improvements and 

mechanisms introduced into the DNN surrogates. In particular, 

PDRN is designed to alleviate the issues common to neural 

networks. The overall architecture of PDRN, shown in Fig. 1, 

is the pyramid-shaped network. The idea behind this structure 

is to transform the input parameters into very high dimensional 

space to increase the number of degrees of freedom and 

facilitate handling of nonlinear input-output relationships 

pertinent to the antenna structure at hand. Subsequently, 

information distillation progresses to low-dimensional space. 

This process can actually be thought of as a dimensional 

evolution between the input and output parameters. As 

mentioned before, PDRN relies on rendering a DNN by 

reducing the number of neurons for subsequent layers. From the 

point of view of the network output, the number of neurons is 

gradually increasing towards the input layer. The scale ratio sc 

is fixed for all layers, which allows for simplifying the network 

architecture by limiting it to a specific (here, trapezoidal) shape, 

which can be controlled using a few parameters to be 

automatically determined during the training process. 

As seen in the Fig. 1, the neural architecture of PDRN 

depends of 𝜙𝐾 that is the number of neurons for the last layer. 

The number of neurons for other layers are determined by 

factoring of 𝜙𝐾. The depth size ds is another parameter of 

PDRN, which controls the number of hidden layers between the 

input and the output layers. For example, according to this 

definition, 𝜙𝐾 = 64 , sc = 1.2 and ds = 3 yields the architecture 

of PDRN as 

        2 1 0
: 64   64 64    r sc r sc r sc       (3) 

where  ℳ represents the model structure and 𝑟(⋅) is rounding 

operator to ensure and integer number of neurons in each layer. 

Thus, the PDRN structure can be fully controlled using the three 

parameters, 𝜙𝐾, sc, and ds. As mentioned before, the classical 

activation function lead to the vanishing gradient issues in 

DNN. To prevent this phenomena, a leaky ReLU (LReLU) 

activation employed in CNNs is selected [90] to work with 

PDRN. LReLU activation and its derivative are defined as 

 0 1 0
( )            

   

d xx x x
x

x otherwise otherwisedx








 

  
  
 

   (4)  

where the parameter 𝛼 ∈ (0,1) is referred to as the leakage 

ratio. Leaky ReLU has a negative slope, and this makes it 

operable at every gradient flow. As can be observed that the 

derivative of the activation function is non-zero in every 

training iteration. This makes it suitable for modelling complex 

data relations. In PDRN, LReLU activation and α are fixed for 

all layers, therefore, it is sufficient to only select one parameter 

() in the construction phase of the surrogate. In summary, the 

PDRN hyper-parameters determining the architecture of the 

model are: (i) the number of neurons in the last layer 𝜙𝐾, (ii) 

the depth of the model ds, (iii) the scale parameter for 

determination of neurons in other layers sc, and (iv) the leakage 

parameter  of the LReLU. 

 Let 𝒗 ∈ ℝD𝑖×1 be the input vector containing the parameters 

of the regression problem. PDRN maps it to a desired output 

parameter domain. The output values are compared with the 

target values using the Mean Absolute Error (MAE) loss 

function, and the error is propagated to the neural weights. The 

MAE loss is defined as, 

  {| |} MAE o o t                              (5) 

where 𝒐, 𝒕 ∈ ℝ𝐷𝑜×1 stand for the prediction values of network 

and the target vector in 𝐷𝑜 dimension output space, 

respectively. 𝔼{⋅} is expectation operator.  This loss indicates 

that the training process is equivalent to the ℓ1-norm 

minimization task.  

In DNN models, including the proposed PDRN surrogate, it 

is vital to use a pre-processing step for heterogeneous-valued 

data which may feature considerably different parameter 

ranges. For data standardization, a z-score methodology is 

preferred [91], [92]. Let 𝑽 ∈ ℝ𝑁𝑡𝑟×𝐷𝑖 stores the training 

samples as row vector. Z-score is defined as,     
 

 

 

1 
 

z i z

i

itr zN

v μ
v

η
                         (6) 

where 𝝁𝑧, 𝜼𝑧 and 𝒗𝑖
𝑧

 
are sample mean, standard deviation of 

dimensions of 𝑽, and normalized training sample. Division in 

(6) is understood in the Hadamard sense (component-wise).  

Having established the generic architecture with hyper-

parameters along with the pre-processed training data, the next 

step is the model training process itself. The key element 

thereof is to compute the derivatives of the loss function with 

respect to the network weights. By using gradient-based descent 

algorithms, the model is trained to attain a local optimum in the 

solution space.  

 

 

 

Fig. 1.  Generic PDRN model architecture: 𝒙𝑙 and 𝒘𝑙are output and weight 

values of 𝑙th layer. 𝜎(⋅)  is the activation function.  

 

Authorized licensed use limited to: Reykjavik University. Downloaded on September 24,2021 at 04:58:55 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


0018-926X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2021.3111299, IEEE
Transactions on Antennas and Propagation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

5 

If the DNN models are trained with a small amount of data, the 

training error can be readily reduced with no improvement of the 

model predictive power. This situation is referred to as overfitting 

[87]. Utilization of large-scale training data prevents the model 

from entering the overfitting regime. Although handling large-

scale data is problematic for algorithms such as SVRM or GPR, 

it can be tackled with stochastic gradient descent-based 

optimizers such as Adagrad [93], RMSProp [94], and Adam [95]. 

Stochastic gradient-based descent procedures are the preferred 

training strategies for neural networks, which differ from a 

classical approach in utilization of the error function gradients. 

The former uses the gradients to train the model after passing the 

entire data through the network. Stochastic gradient descent uses 

a partition of data called mini batch to generate gradients, then 

train neurons by using this particular subset. Sweeping the entire 

data determines one training epoch. In this study, Adam 

optimizer is preferred to update the model weights. One of the 

fundamental issues in DNN, including the proposed model, is the 

adjustment of the network architecture, which is often realized by 

trial and error. In this work, Bayesian Optimization (BO) is 

employed to determine the architecture-defining hyper-

parameters of PDRN in a fully automated manner. This will be 

elaborated on in Section II.C. 

C. PDRN Architecture Search via Bayesian Optimization 

Optimal hyper-parameters determination is critical for the 

models designed for any classification or regression tasks 

where these parameters can be continuous variables (such as 

weights) or discrete variables such as the number of layers and 

the number of neurons. Herein, the optimal hyper-parameter 

determination of the proposed PDRN model is executed by 

means of Bayesian Optimization (BO). BO utilizes 

probabilistic modelling techniques to enable global 

optimisation of complex and expensive functions [96]. 

Probabilistic Surrogate Model (PSM) of the objective 

function iteratively improved at each observation, and the 

acquisition function (used to explore the state space based on 

the surrogate model optimally) are the two essential parts of 

Bayesian Optimization (BO) [97], [98], [99]. While PSM is 

being used to evaluate the uncertainty of the model, the 

acquisition function allows for balancing the exploration and 

exploitation during the optimization run. The model uncertainty 

plays a key role in this process. One of the most commonly used 

acquisition function is Expected Improvement (EI) [100]. The 

initial models are generated based on the random sampling or 

design of experiment (DoE) [101]. At each iteration, the PSMs 

are updated using the sampled data. Subsequent (in-fill) sample 

points are then generated by maximizing the acquisition 

function. Table I provides a pseudocode of the BO. 

Although various models can be used for the prior 

distribution of probabilistic model [101], Gaussian Process 

(GP) is applied more frequently for BO as compared to others 

[102], [103]. For  𝑓: 𝑋 → 𝑅 , GP assumes that for any finite set 

of samples {𝒙1, … , 𝒙𝑛} ∈ 𝑋𝑛, the vector (𝑓(𝒙1), … , 𝑓(𝒙𝑛) )𝑇   
follows joint multivariate Gaussian distribution 

   1( ) ... ( )  ~  ,
T

nf f N Kx x μ                        (7) 

where 𝝁 is a 𝑛 × 1 mean vector, K is 𝑛 × 𝑛 a covariance matrix. 
 

TABLE I 

PSEUDOCODE OF BAYESIAN OPTIMIZATION 

Bayesian Optimization# [96] 

1: Initial Sampling 

2: Generate probabilistic surrogate model 

3: for t = 1, 2, 3, ….. do 

4: Find xt optimizing the acquisition function 

5: Sample yi= f(xi)+ N(0,σ2
noise), 

6: update the probabilistic model 

7: End for 

8: return optimal 𝒇(𝒙) 
# Here, xi is the ith sample, yi is the noisy observation of the objective function at xi.  

 

GP can be defined by the mean function 𝑚(𝒙) and the covariance 

function 𝑘(𝒙1, 𝒙2). The mean vector 𝜇 is determined as 

  ,       1  , ,    i im i n    x                           (8) 

whereas the covariance matrix is determined by  

 ,   ij i jK k x x                                    (9) 

Herein, Squared Exponential Covariance (Kernel) is used as the 

covariance function 

 
   

2

2

1
, exp

2

T

i j i j
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x x x x
x x             (10) 

where 𝜎𝑙 is the characteristic length scale, and 𝜎𝑓 is the standard 

deviation of the signal. Let 𝐷 = {𝑋, 𝒚} be the training set, where 

𝑋 = {𝒙1, … , 𝒙𝑛} and 𝒚 = {𝑓(𝑥1), … , 𝑓(𝑥𝑛)}. For a new 

observation point 𝒙∗, the corresponding function value 𝒚∗ =
𝑓(𝒙∗) follows joint Gaussian distribution 

   

 
* * ** *

*

,       ( , )
 ~  ,

,            n

k k Xm
N

k X Km

    
    

       

x x xy x

xy
         (11) 

where 𝒎 = (𝑚(𝒙1), … , 𝑚(𝒙𝑛))
𝑇
is the n × 1 mean vector,𝑙 is 

the length scale, and 

   * * 1 *, ( , , , ( , ))nk X k k x x x x x                  (12) 

   * *, ,
T

k X k Xx x                                (13) 
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                      (14) 

Here, it should be noted that 𝑦∗ is bounded by 𝒚 and also follows 

the normal distribution [104] defined as  

 
* *

2

* | | ~  ,N  y y y yy                                  (15) 

   
*

1

| * *  , ( )nm k X K   y y x x y m                  (16) 

   
*

2 1

| * * * *,   , ( , )y nk k X K k X  y x x x x               (17) 

The mean 𝜇𝒚∗|𝒚 can be taken as the prediction while 𝜎𝒚∗|𝒚
2  is 

the confidence of the prediction for probabilistic prediction 

of 𝒚∗. A Gaussian noise 𝜖 ~ 𝑁(0, 𝜎𝑛
2), 𝜎𝑛

2: variance of Gaussian 

noise, can be added to 𝑓(𝒙) for observation of the noise effects. 

The covariance function and prediction of GP model after 

applying noise would be defined as: 

    2
0      

, ,         
1     

n i j i j n ij ij

i j
k k

i j
  


  


x x x x     (18) 

   
*

2 1

| * *  , ( ) ( )n n ijm k X K      y y x x y m         (19) 
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*

2 2 1

| * * * *,   , ( ) ( , )n n ijk k X K k X     y y x x x x       (20) 

The acquisition function is a key component of BO, which is 

used to determine the new (infill) points by balancing the trade-

off between exploration and exploitation [98]. By using GP, the 

acquisition function attempts to minimize the objective function 

𝒚 = 𝑓(𝒙). As mentioned before, one of the commonly used 

acquisition functions is Expected Improvement (EI) [105], 

[106]. Let take 𝜏 as the currently known minimal value of 𝑓(𝒙). 

The improvement I for y can be defined as 

 
                 

,
0            

 


 
 


y y
I y

otherwise
                       (21) 

and indicates that the improvement only occur when y is less 

than 𝜏. Based on the GP, the prediction of y at observation point 

x use the distribution of  

    2| , ( , ( ))p D N  y x x                          (22) 

where 𝜇(𝑥) and 𝜎 are the mean and variance of the distribution, 

𝒮 is the vector of hyper-parameters. Based on these, EI can be 

defined as 

       

 

, , | ,

( ) ( )
( ) Ω ( ) ( )

( ) ( )

EI E I I p D d 

   
   

 





   

  
   

 

x y y y y

x x
x x

x x

    (23) 

where Ω(⋅) is the cumulative distribution function of standard 

normal distribution, and 𝜔(⋅) is the probability density 

function. 

In the following, the application of BO for PDRN neural 

architecture search is presented. BO estimates the number of 

neurons in the last layer 𝜙𝐾), the depth ds of the model, the scale 

parameter sp, and the leakage parameter  of LReLU. The 

PDRN architecture parameters can be jointly described as S = 

{K, ds, sc, }. The operation of the BO search algorithm in the 

context of PDRN has been summarized in Table II.  

Figure 2 shows the flow chart of the PDRN neural architecture 

search by BO. The output of the algorithm is the set of optimal 

hyper-parameters, which corresponds to the minimum average k-

fold loss value ℒ(𝑎𝑣𝑔) [107-110]. BO randomly generated a 

sample from the given hyper-parameter space that would be used 

to evaluate the k-fold error for a model created using these 

parameters. Subsequently, the parameter set 𝒮, and the average 

loss value ℒ(𝑎𝑣𝑔) are stored, and 𝒮 is updated. Towards the end 

of the optimization process, the parameter set 𝒮 that gives the 

minimum average loss value ℒ(𝑎𝑣𝑔) will be taken as the optimal 

model for the given training dataset. 

In this study, the parameter ranges for the neural architecture 

search using BO are taken as follows: 𝜙𝐾 ∈

{16, 32, 48, … , 128}, ds  {3, 4, 5, 6, 7}, sc  {1, 1.25, 1.5, …, 

3}, 𝛼 ∈ [0 , 0.5]. Here, in order to reduce the computational 

overhead of the optimization process, 𝜙𝐾 and sc are taken as 

discrete values. Although these value can also be considered as 

continues variables, the effect of small variations in their values 

can generally be neglected. The maximum number of iteration 

is taken as 30 in this study. As mentioned before, over-fitting is 

one of the most challenging problems of DNN. Apart from 

using the appropriate activation function, the employment of 

regularization layers such as Dropout and Batch normalizations 

are efficient solutions to prevent the over-fitting of the models 

[111], [112].  

Construction of the proposed PDRN model is a three-stage 

process as explained in Fig. 3. In Stage 1, BO is used to 

determine the optimum network architecture for a given 

training data set. In this work, k = 2-fold is selected to evaluate 

the neural architecture quality. In Stage 2, the best hyper-

parameter set 𝒮𝑏𝑒𝑠𝑡 is used to generate the PDRN model, which 

is then trained using the entire input data set. In Stage 3, the 

final model performance is evaluated using the test data. 

 
TABLE II 

BAYESIAN OPTIMIZATION OF PDRN HYPER-PARAMETERS  

Algorithm 2: Bayesian Optimization Search Algorithm 

Input of   𝒮(. ): V, iter 

Output {K,ds,sc,α} = 𝒮 (Vtr, iter) 

Procedure 

1. Set t = 0; Initialize St = {K,ds,sc,α} 

2. Generate PDRN model by using St 

3. Evaluate k-fold average score Lavg for the model 

4. Update S using BO, store {St,Lavg}, and set t = t + 1 

5. If t = iter, then terminate the process, else go to 3 

6. Return Sbest corresponding to minimum Lavg 

 

 

Fig. 2.  Flow diagram of the neural architecture search of PDRN using Bayesian 

optimization. 

 

 
Fig. 3.  Flow diagram of the PDRN surrogate training and architecture optimization.  
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D. Domain Confinement 

As it will be demonstrated in Section 3, PDRN does ensure 

improved handling of highly-nonlinear antenna characteristics 

as compared to standard regression surrogates, e.g., kriging or 

support vector regression. In this work, for further enhancement 

of the accuracy, it is coupled with the performance-driven 

modeling paradigm of [79]. For the convenience of the reader, 

this section briefly outlines the concept and analytical 

formulation of domain confinement. 

The key concept is the objective space F that consists of 

objective vectors f = [f1 … fN]T, where fk is the kth figure of 

interest (e.g., center frequency, bandwidth, power split ratio, 

substrate permittivity, etc.) or material parameter (e.g., 

permittivity of the substrate the antenna is to be implemented 

on). The space F is delimited by the lower and upper bounds 

fk.min and fk.max, k = 1, …, N, that determine the intended region 

of validity of the surrogate model. 

The second fundamental concept of performance-driven 

modeling is design optimality. Given the objective function 

U(x,f) that quantifies the quality of the design x for a selected 

objective vector f, the optimum design x* is understood as 
* ( ) argmin ( , ) FU U

x
x f x f                        (24) 

As an elementary example, consider a patch antenna to be 

matched at the center frequency f0, and implemented on the 

dielectric substrate of relative permittivity r. The surrogate 

model of the antenna input characteristic is to be constructed 

within the range of center frequencies f0.min ≤ f0 ≤ f0.max, and the 

range of permittivity r.min ≤ r ≤ r.max. Then, the objective space 

F is the interval [f0.min f0.max] × [r.min r.max], and the objective 

function may be defined as U(x,f) = max{|S11.r(x,f0)|}, where 

S11.r(x,f) is the antenna reflection coefficient at the design x and 

frequency f, simulated for the structure implemented on the 

substrate with permittivity r. 

The set of all designs optimal in the sense of (24) for all 

objective vectors f  F will be denoted as  

 ( ) ( ) : F FU F U Ff f                           (25) 

It can be observed that restricting the surrogate model 

domain to UF(F) and its vicinity is sufficient to capture all 

designs that are of interest in a particular design context (i.e., 

from the point of view of the objective fk) [79]. Thus, the 

immediate task is to approximate UF(F) as a subset of the 

parameter space X. In the nested kriging framework [79] this is 

realized using a set of reference designs x(j) = [x1
(j) … xn

(j)]T j = 

1, …, p, pre-optimized w.r.t. the vectors f(j) = [f1
(j) … fN

(j)], 

which are distributed (in a possibly uniform manner) in F. In 

practice, the reference designs have to be acquired beforehand, 

but in some cases, they may be available from the previous 

design work with the same antenna structure. 

The definition of the constrained domain of the surrogate 

model is a two-step process. In the first step, the first-level 

kriging interpolation model sI(f) : F  X is obtained using the 

training data set {f(j),x(j)}, j = 1, …, p. Note that sI is an inverse 

model with sI(F) approximating UF(F). Furthermore, we have 

sI(f(j)) = x(j) for j = 1, …, p, but the two sets do not coincide 

outside the reference set. This makes it necessary to fatten sI(F) 

so that the entire UF(F) can be accommodated therein. In [76], 

this is realized by extending sI(F) using the orthonormal basis 

{vn
(k)(f)}, k = 1, …, n – N, of vectors normal to sI(F) at f. To this 

end, the extension coefficients are defined as 

1

(1) ( )

( ) [ ( ) ... ( )]

0.5 | ( ) | ... | ( ) |

T

n N

T
n N

d n d nT

  



 

   

α f f f

x v f x v f
                (26) 

where xd = xmax – xmin, with xmax = max{x(k), k = 1, …, p}, xmin 

= min{x(k), k = 1, …, p}. Here, T is a thickness parameter. The 

vertical bounds of the surrogate model domain XS are the 

manifolds M+ and M–  

  ( )

1
: ( ) ( )



 
   

n N k

I k nk
M Xx x s f f v f         (27) 

The domain itself is then defined as [76] 

( )

1

( ) ( ) ( ) : ,

1 1, 1,...,

 







 
   

  
      


n N

k

I k k n

kS

k

F
X

k n N

x s f f v f f
        (28) 

Figure 4 provides a graphical illustration of the concepts 

involves in the domain definition. The second-level (ultimate) 

surrogate is rendered in XS usin the training data 

{xB
(k),R(xB

(k))}k = 1, …, NB. The data samples xB
(k) are uniformly 

allocated in XS [79].  
 

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f 
(j)

 
(a) 

x1

x3

x2

UF(F)

sI(F)

X

x
(j)

 
(b) 

 
(c) 

Fig. 4.  Performance-driven (constrained) modeling: (a) graphical illustration of 

the objective space (here shown for two performance figures); (b) parameter space 

X, reference designs, and the optimum design set UF(F) along with the image sI(F) 

of the first-level surrogate; note that UF(F) and sI(F) only coincide at the reference 

designs, therefore, extension is necessary; (c) definition of the domain XS through 

orthogonal extension of sI(F): for illustration the normal vector v1
(k) is shown at f(k) 

along with the manifolds M– and M+ and the domain XS. 

 

x1

x3

x2

UF(F)

sI(F)

XS

sI(f 
(k))

v1
(k)

M+

M-
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As expected, domain confinement has a profound effect on 

the model predictive power. In particular, it opens the door to 

constructing accurate metamodels over broad ranges of antenna 

geometry parameters and operating conditions using reasonably 

small numbers of training samples [79]. This feature is explored 

in the modeling methodology proposed in this work. 

E. Modeling Framework 

Figure 5 summarizes the operational flow of the modeling 

methodology proposed in this work. The objective space is set 

up by the user according to the intended range of validity of the 

surrogate. The reference designs are assumed to be acquired 

beforehand. The first step of the procedure is to define the 

model domain, which is followed by design of experiments (cf. 

[79] for details), and the acquisition of the EM simulation data. 

The PDRN surrogate is then established by first determining its 

specific architecture, then the model itself (hyper-parameters, 

etc.). 

III. VERIFICATION CASE STUDIES AND BENCHMARKING 

This section provides a comprehensive numerical validation of 

the modelling methodology proposed in this work. On the one 

hand, we investigate the advantages of modelling antenna 

characteristics using PDRN rather than standard regression 

techniques. On the other hand, we demonstrate the benefits of 

combining PDRN with the domain confinement paradigm. The 

surrogates are constructed using the data sets of various sizes, 

from 50 to 800 samples. Furthermore, constrained PDRN is 

compared to several benchmark methods, including kriging, 

support vector regression, and ensemble learning. The 

experiments are based on modelling of reflection and gain 

characteristics of three microstrip antennas with the figures of 

interest including operating frequencies as well as substrate 

permittivity. 

A. Test Cases 

The geometries of the verification antenna structures, 

referred to as Antenna I, II, and III, are shown in Fig. 6. Antenna 

I is a uniplanar dual-band dipole [113]. Antenna II is a ring-slot 

structure [114], whereas Antenna III is a quasi-Yagi structure 

with a parabolic reflector [115]. Table 3 provides the details 

concerning the antenna substrates and geometry parameters as 

well as the computational models. It should be noted that for 

Antennas II and III, the relative permittivity of the substrate is 

to be considered as one of the operating conditions (i.e., a 

component of the objective space), so that the surrogate model 

to be constructed is valid for a range of permittivity values. 

B. Experimental Setup. Benchmark Methods 

Table IV gathers the information concerning the parameter and 

objective spaces, as well as the reference designs. In all cases, the 

objective spaces are two-dimensional. For Antenna I, the operating 

conditions are the operating frequencies of the lower and upper 

operating band. In the case of Antennas II and III, the first 

component of the objective space is the operating frequency, 

whereas the second is the relative permittivity of the dielectric 

substrate the antenna is to be implemented on. The objective spaces 

in Table IV determine the intended region of validity of the 

surrogate to be constructed. The allocation of the reference designs 

can be found in the second-but-last row of the table; the average 

number of designs is ten. The parameter spaces are determined as 

the smallest intervals containing the reference points. It can be 

observed that the parameter ranges are wide, which, along with 

broad ranges of the operating conditions, make the modeling tasks 

extremely challenging. The details concerning design optimality 

are provided in the last row of Table IV. 

 

Objective space 

F

Reference designs 

x
(j), j = 1,...,p

Identify first-order surrogate sI

Construct manifolds M±

Define surrogate model domain XS

Design of experiments

Optimize PDRN model architecture & 

hyperparameters

Identify PDRN surrogate within XS

EM Solver

Domain definition

Data acquisition

Model identification

Acquire training data 

{xB
(k),R(xB

(k))}, k = 1, ..., NT

Surrogate Rs

  
Fig. 5.  Flowchart of the proposed modeling framework involving PDRN with 

automated architecture determination and domain confinement. 

 

TABLE III 

VERIFICATION CASE STUDIES: ANTENNA PARAMETERS AND COMPUTATIONAL MODELS 

 
Antenna 

I II III 

Substrate RO4350 (εr = 3.5, h = 0.76 mm) 
h = 0.76 mm 

εr – one of objective space components 

h = 1.5 mm 

εr – one of objective space components 

Independent parameters x = [l1 l2 l3 w1 w2 w3]
T x = [lf ld wd r s sd o g]T x = [W L Lm Lp Sd Sr W2 Wa Wd g]T 

Other parameters l0 = 30, w0 = 3, s0 = 0.15, and o = 5 
wf computed for given εr to ensure 50-

ohm line impedance 

W1 computed for given εr to ensure 50-

ohm line impedance 

Computational model 
CST (~100,000 cells, simulation time, 

~60 seconds) 

CST (~300,000 cells, simulation time, 

~90 seconds) 

CST (~1,100,000 cells, simulation time, 

~3 minutes) 
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(a) 

 
(b) 

W1

W2

W1

Sr

Lm

W2

W1

g
Wa

Sr

Lm

W1

Wd

W

L

Lp

Sr Metal via

(c) 

Fig. 6.  Geometries of the verification antenna structures: (a) Antenna I [114], 

(b) Antenna II [114], and (c) Antenna III (front and back on the left- and right-

hand side of the picture) [115]. 

 

For all test antennas, the surrogate models are constructed 

both in the original parameter space X, and in the confined 

domain defined as described in Section II.C, using the thickness 

parameters T = 0.05 in all cases. The models are rendered using 

five different data sets containing 50, 100, 200, 400, and 800 

samples. This is to investigate the scalability of the models, i.e., 

the relationship between the dataset cardinality and the model 

predictive power. 

The modeling error is estimated using a split-sample method 

based on a separate set of 100 testing samples. The error 

measure is the relative RMS error defined as ||R(x) – 

Rs(x)||/||R(x)||, where R and Rs stand for the EM simulated and 

surrogate-evaluated antenna characteristics (complex in the 

case of reflection response, and dB-valued for realized gain). 

The following four techniques are considered: 

 The modeling approach proposed in this work, pyramidal 

deep regression network (PDRN) of Section 2.2; 

 Kriging interpolation [55]; 

 Convolutional neural network (CNN) [43]; 

 Ensemble learning [75]; 

The last three methods are the benchmark approaches. The 

kriging surrogate used second-order polynomial (as a trend 

function) and Gaussian correlation function [55]. CNN 

algorithm had been used as a counterpart method [82-84], CNN 

had been used as a state of the art regression method for 

prediction of reflection phase characteristics of a reflect-array 

FSS in [116], same hyper parameters (Depth size of 3 and first 

filter amount of 64) in [116] are also used here for generating a 

counterpart model for proposed PDRN. Finally, the ensemble 

learning method had been used as a final counterpart model. 

The ensemble aggregation method had been taken as LSBoost, 

which is one of the regression ensembles that aims at 

minimizing the mean-squared error [117], Learning rate of the 

model is obtained via the use of Bayesian Optimization [77] 

using the data set belong to Antenna I in parameter space X with 

50 samples which is found as 0.24. 

C. Results and Discussion 

The numerical results have been gathered in Tables V 

through VIII. Figures 5, 6, and 7 show the responses of the 

proposed surrogate model and the EM-simulation data for 

selected test designs.  

 

 
 

 

TABLE IV 

VERIFICATION CASE STUDIES: PARAMETER AND OBJECTIVE SPACES, REFERENCE DESIGNS 

 
Antenna 

I II III 

Parameter space X 

(lower and upper 

bounds l and u) 

l = [29 5.0 17 0.2 1.5 0.5]T 

u = [42 12 25 0.6 5.2 3.5]T 

l = [22.0 3.5 0.3 6.5 3.0 0.5 3.5 0.2]T 

u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T 

l = [100 55 10 14.5 6.0 10 2.0 7.5 16.3 0.5]T  

u = [137 81 29 28 21 18 5.0 20 40 1.0]T 

Objective space F 

Lower and upper operating 

frequencies:  

2.0 GHz ≤ f1 ≤ 3.0 GHz;  

4.0 GHz ≤ f2 ≤ 5.5 GHz  

=>   f = [f1 f2]
T 

Operating frequency: 

 2.5 GHz ≤ f0 ≤ 6.5 GHz;  

Substrate permittivity  

2.0 ≤ r ≤ 5.0   

=>   f = [f0 r]
T 

Operating frequency: 

2.5 GHz ≤ f0 ≤ 5.0 GHz;  

Substrate permittivity  

2.5 ≤ r ≤ 4.5   

=>   f = [f0 r]
T 

Reference designs$ 

{f1,f2} = {2.0, 4.0}, {2.2, 5.0}, {2.0, 

5.5}, {2.3, 4.5}, {2.4, 5.5}, {2.6, 

4.0}, {2.7, 3.5}, {2.8, 4 .7}, {3.0, 

4.0}, and {3.0, 3.5}. 

{f,r} = {2.5,2.0}, {2.5,3.5}, {2.5,5.0}, 

{4.0,3.5}, {4.5,2.0}, {4.5,5.0}, 

{5.0,3.5}, {6.5,2.0}, {6.5,3.5}, 

{6.5,5.0}. 

{f0,r} = {2.5, 4.5}, {3.5, 4.5}, {5.0, 4.5}, {2.5, 

2.5}, {5.0, 2.5}, {3.5, 2.5}, {4.5, 3.5}, and 

{3.0, 3.5} 

Design optimality# U(x,f) = max{|S11(x,f1)|, |S11(x,f2)|} U(x,f) = max{|S11(x,f0)|} 

0

0

0

(1 /2)
1

0
(1 /2)

( , ) ( ,[ ] )

( ) ( , ) ( )










 

 

T

r
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f B

U U f

f B G f df c
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Here, G(x,f) is the realized gain at frequency f; 

c(x) is a penalty term 
$The allocation of the reference designs in terms of the pairs of the objective vector components. 
#Formulation of the objective function defining the design optimality. Antenna I and II are to be optimized in a minimax sense. Antenna III is to be designed for 

maximum (average) in-band gain while ensuring –10 dB in-band matching. The bandwidth B is 0.08 (eight percent);  is a penalty coefficient and c is a penalty 

function that quantifies violation of the constraint |S11|  –10 dB (e.g., c(x) = max{max{f0(1 – B/2)  f  f0(1 + B/2) : |S11(x,f)| + 10},0}2). 
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TABLE V 

MODELING RESULTS AND BENCHMARKING FOR ANTENNA I 

Number of 

training 

samples 

Relative RMS error 

Modeling in parameter space X Modeling in confined domain XS 

Kriging CNN 
Ensemble 

learning 

Proposed 

PDRN 
Kriging CNN 

Ensemble 

learning 

Proposed 

PDRN 

50 21.7 % 29.2 % 31.1 % 10.4 % 6.9 % 8.6 %  14.5 % 3.0 % 

100 17.3 % 16.1 % 29.1 % 7.0 % 4.5 % 6.0 % 13.1 % 2.4 % 

200 12.6 % 10.2 % 27.5 % 4.1 % 2.8 % 4.5 % 11.6 % 1.9 % 

400 9.3 % 7.0 % 25.7 % 3.3 % 2.6 % 3.9 % 11.0 % 1.6 % 

800 7.2 % 6.1 % 25.0 % 2.7 % 2.4 % 3.7 % 10.7 % 1.6 % 

TABLE VI 

MODELING RESULTS AND BENCHMARKING FOR ANTENNA II 

Number of 

training 

samples 

Relative RMS error 

Modeling in parameter space X Modeling in confined domain XS 

Kriging CNN 
Ensemble 

learning 

Proposed 

PDRN 
Kriging CNN 

Ensemble 

learning 

Proposed 

PDRN 

50 56.9 % 67.7 % 73.8 % 36.2 % 12.9 % 13.1 % 28.9 % 4.1 % 

100 50.8 % 58.8 % 69.1 % 23.3 % 6.9 % 8.2 % 25.4 % 2.6 % 

200 35.8 % 34.0 % 63.9 % 12.8 % 4.9 % 6.4 % 23.1 % 2.3 % 

400 31.5 % 22.3 % 58.1 % 7.5 % 3.1 % 4.8 % 19.9 % 1.9 % 

800 25.6 % 13.5 % 55.8 % 5.3 % 2.2 % 5.3 % 19.1 % 1.5 % 

 

TABLE VII 

MODELING RESULTS AND BENCHMARKING FOR ANTENNA III  

Number of 

training 

samples 

Relative RMS error 

Modeling in parameter space X Modeling in confined domain XS 

Kriging CNN 
Ensemble 

learning 

Proposed 

PDRN 
Kriging CNN 

Ensemble 

learning 
Proposed PDRN 

50 61.4 % 70.1 % 56.4 % 30.7 % 17.9 % 31.3 % 34.1 % 9.7 % 

100 50.7 % 56.4 % 54.5 % 19.6 % 13.3 % 21.5 % 27.1  % 7.7 % 

200 39.8 % 46.6 % 46.1 % 13.8 % 7.5 % 15.7 % 24.5 % 5.3 % 

400 32.8 % 38.0 % 44.4 % 10.7 % 5.4 % 11.9 % 22.7 % 3.9 % 

800 31.8 % 29.8 % 40.4 % 8.8 % 4.5 % 9.3 % 19.9 % 3.2 %  

 
TABLE VIII 

OPTIMALLY SELECTED PDRN MODEL ARCHITECTURES  

 

 

 

 

Case Study Antenna I Antenna II Antenna III (|S11|) Antenna III (Gain) 

Number of 

training samples 
Domain K ds sp α K ds sp α K ds sp α K ds sp α 

50 
original X 48 5 2.5 0.13 48 6 1.75 0.03 96 6 1.5 0.06 80 5 1.25 0.18 

confined XS 64 6 2 0.06 64 5 2.5 0.03 80 6 1.75 0.01 48 5 2 0.05 

100 
original X 32 6 2.5 0.02 32 6 2.5 0.04 80 6 1.5 0.06 80 5 1.5 0.09 

confined XS 64 6 1.5 0.17 64 6 2 0.02 96 6 1.25 0.18 96 6 2 0.01 

200 
original X 64 5 2.25 0.02 32 6 1.5 0.01 80 6 1.75 0.03 96 6 2 0.03 

confined XS 64 5 2.5 0.01 48 6 1.25 0.01 64 5 2 0.02 80 6 1.5 0.02 

400 
original X 64 5 2.5 0.01 64 6 2 0.02 32 6 2 0.02 96 4 2 0.05 

confined XS 48 6 1.75 0.03 48 5 2 0.01 96 5 1.25 0.06 80 6 2 0.001 

800 
original X 48 6 2.5 0.01 48 5 1.75 0.01 64 4 2 0.08 32 6 1.5 0.05 

confined XS 48 6 1.25 0.01 64 6 1.5 0.01 96 4 2 0.01 48 6 1.75 0.01 
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Fig. 5.  Antenna I: responses of the proposed surrogate model constructed in 

the confined domain using 400 training samples (o) versus EM-simulation data 

(—). The curves represent antenna input characteristics as the selected test 

designs. 

 
Fig. 6.  Antenna II: responses of the proposed surrogate model constructed in 

the confined domain using 400 training samples (o) versus EM-simulation data 

(—). The curves represent antenna input characteristics as the selected test 

designs. 

 
Fig. 7.  Antenna III: responses of the proposed surrogate model constructed in 

the confined domain using 400 training samples (o) versus EM-simulation data 

(—). The curves represent antenna input characteristics (top) and realized gain 

(bottom) as the selected test designs. 

 

The hyper-parameters of the proposed PDRN surrogate have 

been optimized on Intel Core i7-76000K CPU @ 4 GHz with 

16 GB RAM and GTX1080TI GPU. The computing times of 

model training were as follows:  

 Antenna I: 3, 7, 18, 39, and 91 minutes for 50, 100, 200, 

400, and 800 samples, respectively (space X); 3, 7, 19, 43, 

and 96 minutes for 50, 100, 200, 400, and 800 samples, 

respectively (confined domain XS); 

 Antenna II: 5, 11, 25, 55, and 127 minutes for 50, 100, 

200, 400, and 800 samples, respectively (space X); 6, 13, 

26, 59, and 134 minutes for 50, 100, 200, 400, and 800 

samples, respectively (confined domain XS); 

 Antenna III: 5, 13, 31, 69, and 157 minutes for 50, 100, 

200, 400, and 800 samples, respectively (space X); 9, 14, 

34, 74, and 162 minutes for 50, 100, 200, 400, and 800 

samples, respectively (confined domain XS). 

It can be observed that the computational complexity of the 

model training process grows slightly faster than linearly with 

respect to the training data set size. 

The data provided in the Tables V through VIII allows for 

drawing conclusions concerning the performance of the 

proposed modeling approach in both the original and confined 

spaces. These are summarized below: 

 The proposed PDRN model exhibits a considerably better 

predictive power than the benchmark techniques, both in the 

original parameter space X and in the confined domain XS.  

 The differences in the modeling error are significant in 

favor of PDRN, and they are more pronounced for smaller 

training sets (50 to 200 samples), which indicates that the 

proposed technique is capable of exploiting the allocation 

of the available data through the automated architecture 

and hyper-parameter determination; 

 The above observation is confirmed in Table VIII, which 

indicates that the specific model architecture achieved 

during the training phase depends on both the considered 

antenna structure and the training data set size;  

 PDRN model capitalizes on domain confinement, which 

allows for further improvements of the predictive power 

of the surrogate, especially for smaller data sets;  

 In particular, constrained PDRN outperforms the nested 

kriging framework and the accuracy improvement is by a 

factor two to three for the data sets of 50 samples, and by 

about 1.5 for the largest sets. These differences are 

significant given that all considered test cases are very 

challenging both in terms of the parameter space 

dimensionality and—even more importantly—the 

parameter and operating condition ranges; 

 The obtained results are consistent throughout the entire set 

of antenna structures utilized for verification, which 

demonstrates that the proposed technique can be successfully 

used for handling a variety of antenna modeling tasks without 

any additional tuning of its control parameters. 

Overall, to the authors’ knowledge, the performance of the 

proposed constrained PDRN surrogate is perhaps the best ever 

reported in the antenna modeling literature thus far. It should 

also be mentioned that experimental validation of the presented 

antennas is not included in this work as being irrelevant to the 

paper topic. Notwithstanding, it can be found in other works 

employing these antenna structures for benchmark purposes 

(e.g., [79], [81]). 

IV. CONCLUSION 

This paper proposed a novel framework for accurate and 

reduced-cost modelling of antenna structures. Our 

methodology combines enhanced pyramidal deep regression 

network (PDRN) surrogates with automated architecture and 

hyper-parameter determination, and the concept of 

performance-driven modelling. The former offers improved 

flexibility in terms of representing highly-nonlinear antenna 

characteristics, whereas the latter enables significant 
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computational savings in terms of training data acquisition. The 

presented approach has been demonstrated using three 

microstrip antennas with their replacement models constructed 

over broad ranges of geometry and material parameters as well 

as operating frequencies. All considered test cases are 

challenging also due to the dimensionality of the parameter 

spaces as well as the parameter ranges. Comprehensive 

benchmarking indicates superiority of the domain-confined 

PDRN technique over both conventional regression models 

(kriging, CNN) but also the ensemble learning model. In 

particular, the predictive power of the confined surrogates has 

been improved by a factor of two over the nested kriging 

method without increasing cardinality of the training data set. 

The proposed framework can be suitable for rendering reliable 

surrogates under challenging scenarios, such modelling of 

multi-band antennas over wide ranges of centre frequencies, or 

modelling of multiple frequency characteristics of antennas 

implemented on various substrates of different height and 

permittivity. 
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