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Abstract: This study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham
plastic’s viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a
Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations
in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation
governing acoustic heating, and to retain those belonging to the thermal mode. The nonlinear terms of
the final equation are a result of interaction between sounds and the thermal mode. In the field of intense
sound, the resulting nonlinear acoustic terms form a driving force for the heating. The final governing
dynamic equation of the thermal mode is valid in a weakly nonlinear flow. It is instantaneous, and does
not imply that sounds be periodic. The equations governing the dynamics of both sounds and the thermal
mode depend on sign of the shear rate. An example of the propagation of a bipolar initially acoustic pulse
and the evolution of the heating induced by it is illustrated and discussed.
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1. IntrOductiOn tween these two values is the viscosity. By contrast the
Bingham Plastic requires two parameters, the yield stress
and the plastic viscosity. The physical reason for the
non-Newtonian behavior is that the plastic liquid con-
tains particles (e.g. clay) or large molecules (e.g. poly-
mers) which have some kind of interaction, creating a weak
solid structure. A certain amount of stress is required to

A Bingham plastic is a viscoplastic material that behaves
as a rigid body at low stresses but flows as a viscous fluid
at high stress. The mathematical model of such a non-
newtonian liquid was first proposed by Bingham [1]. A
Bingham plastic does not exhibit any shear rate (no flow
and thus no velocity) until a certain stress is achieved.
For the Newtonian fluid the shear stress linearly depends

break this structure [2, 3]. Once the structure has been
broken, the liquid particles move under viscous forces. If
the stress is removed, the particles associate again. A
- ) ) Bingham plastic is used, among other applications, as a
on shear rate, and the coefficient of proportionality be- mathematical model of mud flow in offshore engineering,

and in the handling of slurries. Common examples include

*E-mail: anpe@mif.pg.gda.pl toothpaste, which will not be extruded until a certain hy-

138



Downloaded from mostwiedzy.pl

AN\ MOST

Anna Perelomova

drostatic pressure is used on the tube, as well as paints.
It is well known that sound attenuates linearly in the stan-
dard thermoviscous flow of a fluid. The acoustic heating
is an increase of the ambient fluid temperature caused by
nonlinear losses in acoustic energy. It is not an acoustic
quantity but a value referred to the entropy, or thermal
mode. The acoustic heating in the standard thermovis-
cous fluid flows is well-studied theoretically and experi-
mentally regarding periodic sound as the origin of heating
[4, 5] Interest in acoustic heating in non-Newtonian flu-
ids has grown in recent years in connection with biomed-
ical applications. These require accurate estimations of
heating during medical therapies which apply sounds of
different kinds including non-periodic ones, particularly
impulses [6, 7].

This study is devoted to nonlinear dissipation of sound
energy in a Bingham plastic fluid. The mathematical tech-
nique has been worked out and applied previously by the
author to some problems of thermoviscous nonlinear flow.
It allows separation of the individual equations governing
sound, vorticity and entropy modes in Newtonian and non-
Newtonian (relaxing) fluids [8-10]. The method and re-
sults based upon it concerning flow over a Bingham plas-
tic are described in Sections 3, 4. The important feature of
the equations governing sound and corresponding acous-
tic heating is shown: they dependent on the sign of the
shear rate. The dynamics of a bipolar pulse is illustrated
as an example (Sec. 5).

2. Dynamic equations in a Bingham
plastic fluid

The continuity, momentum and energy equations describ-
ing a thermoviscous fluid flow without external forces read:

ot
v o =5 1
— 4+ (Vv -V)V =—|=-Vp+DivP],
d
! S (1)
e ., =
at—l—(\/~V)e
:%(—p(€-7)+xAT+P:Crad7).

Here, V denotes the velocity of the fluid, p, p are the den-
sity and pressure, respectively; e, T denote the internal
energy per unit mass and the temperature, respectively; x
is the thermal conductivity, and x;, t are the spatial coordi-
nates and time. The operator Div denotes the divergence
of a tensor and Grad is a dyad gradient. P is the vis-
cous stress tensor. In the model of a Bingham plastic,

the viscous stress tensor relates to the shear rate in the
following manner:

n [ ovi v, dv; av,
P, = PO + 2 (0xk + 6):) ! Oxk + Bxﬁ > 0’ (2)
ik =
' n [ ov v, dv; v,
_P0+§(6xk+axl:)’ Oxk+ﬁxl: <0.

A liquid is therefore rigid for shear stress |P;.|, less
than a critical value Py. Two thermodynamic functions
e(p,p). T(p, p) complement the system (1). They may be
written as series for the excess internal energy e’ = e—ey
and temperature T" = T — Ty in powers of excess pressure
and density p’ = p — po, p' = p — po (ambient quantities
are marked by index 0):
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where E;,...0Os5 are dimensionless coefficients and C,
marks the heat capacity per unit mass under constant
volume. The series (3) allows consideration of a wide
variety of fluids in the general form: discrepancies are
manifested by the different coefficients for different fluids.
The common practice in nonlinear acoustics is to focus on
the equations of the second order in the acoustic Mach
number M = vy/cy, where vy is the magnitude of parti-
cle velocity and ¢y = 1/% is an infinitesimal signal
velocity in the Newtonian liquid (when Py = 0), respec-
tively. The present study is also confined to consideration
of nonlinearity of the second order, so that in the series
(3) only terms up to the second order are kept. The ex-
pressions for the coefficients £ and E, in terms of the
compressibility, k, and the thermal expansion, B, are as
follows:

_ poCik E, = _Gpo +1. (4)

& B Bpo

C, denotes the heat capacity per unit mass under constant
pressure,
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A small variation in entropy is a total differential that
provides a relationship between the first coefficients in
the series (3):

Cvp()T() (1 — E2)91

0, = - . 6
: Eipo E; ©)

The following small dimensionless parameters will be
those responsible for vlscoplastlc viscosity, p = nQ/(poc?)

and the yield stress, &y = —2= (Q is the characteristic

Eq p Q
sound frequency). We consider also the small thermal con-
T
order as p and ®,. We shall consider weakly nonlinear

ductivity: 0 =

which is supposed to be of the same

flows discarding O(M?3) terms in all expansions and con-
fining of terms to be considered to include u° or p'. The
resulting model equations will account therefore for the
combined effects of nonlinearity, attenuation, and thermal
conductivity.

3. Definition of modes in planar flow
of infinitesimal amplitude

We consider one-dimensional flow along the Ox axis. The
dispersion equation follows from the linearized version of
Eq. (1). Its roots determine three independent modes (or
types of linear flow) of infinitesimal signal disturbances
in an unbounded fluid. In one dimension, there exist
the acoustic (two branches), and the thermal (or entropy)
modes. In general, every perturbation of the field vari-
ables contains contributions from any of the three modes,
for example, o’ = p}, ; + p,, , + p,. That allows separation
in the linear part of the governing equations using the
specific properties of the modes, namely the relationships
between components of velocity and excess quantities of
two thermodynamic functions, for example pressure and
density. The method developed by the author in [8-10]
provides the possibility of consequent decoupling of the
initial system (1) into specific dynamic equations for ev-
ery mode based upon the specific properties of each mode
in a weakly nonlinear and standard thermoviscous flow as
well. All formulae everywhere below in the text, includ-
ing links between modes and the governing equations, are
written in leading order with respect to powers of the small
parameters M, p1, ®, and 0.

It is convenient to rearrange formulae in the dimensionless
quantities in the following way:

! ' Qx

pr= P =PV e 2 e ar )

2. P
Co - Po Po Co Co

Starting from Eq. (8), the upper indexes (asterisks) de-
noting the dimensionless quantities will be omitted every-

where in the text. In the dimensionless quantities, Eq. (1)
accounting for Egs. (2, 3) reads:
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originates from the yield stress. The main nonlinear terms
of order M? form the right-hand side of the set (8). The
dynamic equations in the rearranged form include the di-
mensionless quantities

_ Xe1Q _ Xezo
' T e @CE T podCG1—Ey)’
5 = @3)(0 1— E2 _ 64)(0
T EpC, BTN (1= E)peciAC,’
95XQ
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The sum of two first coefficients is the linear attenuation
due to the thermal conductivity, 0 = 01 + d,. The lin-
earized version of Eq. (8) describes a flow of infinitesimal
magnitude, when M — 0:

dv  op v
ot Tox Fae =Y
ap azp ’p
v _ 5P 5P 11
o5 F+ ¢) S5 —0os=0 (1)
dp | ov
=0.
at " ox

The linear hydrodynamic field is represented by acoustic
modes, propagating in the positive or negative direction
of the Ox axis, respectively, and the non-wave thermal,
or entropy, mode. Every type of motion is determined in
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fact by one of the roots of the dispersion relation of the
linear flow, w(k) (k is the wave number) [4, 5, 11] and fixes
the relations between hydrodynamic perturbations, which
are independent of time [8-10]. The dispersion relations
for sound propagating in the positive Ox axis direction
(marked by index 1), sound propagating in the negative
Ox axis direction (marked by index 2), and the entropy
mode (marked by index 3) in a Bingham plastic are as
follows:

¢ ik?
Wap =k (1 +§) +[7(u+6),

o\ ik
wa,zz—k(wz) +‘7(u+5), (12)

we = —ik*d;.

They uniquely determine relations between velocity, ex-
cess density and pressure attributable to every mode,
which are valid at any time of a hydrodynamic field evo-
lution:

Vai 1
QZJU,‘I = Pan = (1 + %) + ”;5% Va1,
Pa.i (1-3)+52%
1
o= —(1+ %) + LZZ% Voo, (13)
—(1-3)+5 %
62
lpe = 0 Pe-
1

The important and unusual property of both acoustic roots
of the dispersion relation and the modes correspondent to
them is that they depend (by means of ®) on the sign
of the velocity gradient. The linear equation describing
the fluid velocity of an acoustic wave propagating in the
positive Ox axis direction agrees with w, 1 from Eq. (12)
and takes the form:

ox 2 0x?

=0, (14

ot 2

BVM ( 0} ) 6v,,,1 v+ 0 azvm
1 5 -

which describes differently the cases of positive and neg-
ative shear rates:

2

ox 2 ox2

6va,1 n ( ¢0) anJ . U+ 0 OZVM _

(15)

The density perturbation in the entropy motion satisfies
the diffusion equation:

dpe %p.
0
at %79

=0. (16)

Equations for every type of motion may be also extracted
from the system (8) in accordance to relationships specific
for each mode. That can proceed formally by means of
projecting of the equations into specific sub-spaces. The
linear dynamic equations are obviously independent.

4. Dynamic equations in a weakly
nonlinear flow

4.1. Weakly nonlinear dynamic equation of
sound

The nonlinear terms in every equation from the right-hand
side of system (8) include in general parts attributable
to every mode. We fix relations determining every mode
in a linear flow and consider every excess quantity as a
sum of the specific excess quantities of all modes. The
consequent decomposition of the governing equations for
both branches of sound and the thermal mode may be still
done by means of linear projection, for details see [10].
Projection points out a method of linearly combining the
equations in order to keep terms belonging to the appro-
priate mode in the linear part and to reduce all other terms
there. Keeping only terms corresponding to the acoustic
rightwards propagating wave in the nonlinear part, and
expressing all acoustic quantities in terms of velocity by
use of links (4,1 from Egs. (13)), one can easily obtain an
equation analogous to the well-known Burgers’ equation:

OVa1 S\ Ovgr w400V
ot +(1+§) ax 2 ox? (17)
__1-0i-D 0
> Va1 aX Van

The nonlinear term in the right-hand side of Eq. (17) may
be considered as a result of self-action of sound which
corrects the linear equation governing sound (14) by non-
linear terms.

4.2. The thermal mode in a sound-dominant
field. Acoustic heating.

In the context of acoustic heating, the magnitude of excess
density specific for the entropy mode is small compared to
that for sound. We consider the ratio of the characteristic
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amplitudes of the excess densities specifying entropy mo-
tion and sound to be of order M. The modes (13) satisfy
in leading order (up to terms of order 8?) the equality as

follows:
Va1 + Va2 + Ve
( I e ) Pai+Pa2tpe | =pe

Par + Pa2 + Pe

(18)
which points out a way of combining equations (8) in order
to reduce all acoustic quantities in the linear part of the
final equations. The important property of the projection is
not only to decompose specific perturbations in the linear
part of the equations, but to distribute nonlinear terms
correctly between the different dynamic equations. The
links within the sound equations should be supplemented
by nonlinear quadratic terms making sound isentropic to
leading order. These corrections in the Bingham plastic

|

are similar to these, specific for the Riemann wave in an
ideal gas [12]:

) ,u—éa
pu,1—(1+5)va1+ 2 a

1
+Z(1 — Dy — Dz)Va1,
(19)
u+90 0

=1 ¢ Va1 + —— =V,
pa,1— 2 a1 2 a al

1
+Z(3 + Dy + Do)vg ;.

but involve additional terms proportional to ®, p and 9.
The nonlinear corrections of second and higher order de-
pend on equation of state.

For simplicity, let a sound be associated only with wave
propagation in the positive Ox axis direction: p, =
Pais Pa = Pai Va = Vaa. The linear combination of the
left-hand sides of the equations in (8) in accordance with
(18) and (19) results in the equality:

P) P EE Zp  _Pp 9 @pe (Dy+Dy—1) &
A R R o p+ s b 15,2y Ty 5 e T T
gt \ 05 T =P tp)| —055p+ 0155+ 055 R 5Pt 0253 4 ax2 "
5 , (20)
+W 6 2+67V _|_( +6)V iv _93\/2
2 T ox 2ox2 Ve TWT ONVag Ve ] T 5ok e

In the prior simple evaluations, the corrected links (19) are used, as well as the dynamic equation (17) to exclude the
partial derivative with respect to time in the nonlinear terms. In the context of acoustic heating, the sound dominates,
so that only acoustic quadratic terms should be kept. Combining in a similar way the right-hand sides of the equations
from the set (8), and comparing the result with Eq. (20), one obtains the dynamic equation governing acoustic heating:

P pe (Di+D=1) & , (1+D1+Dy)( 0 , =& 3 ® 9,
GiPet 05 —0 4 ox2 ' 2 Tox e T 620 3V i Oagave | =5 5
M+ Di+Dy) 0 2 _H v, 2 é Ova _E v, 2 7
=% £ | % +2(D1 —1) 2(1+D1+Dz) = (21)
¢(D1+3D2+1) o 8
+f07 6\/062‘/0,

which becomes simpler after ordering:

9 %p 0 v, \° (1+ Dy + Dy) &
—pet 0= =025V, + (D) =1 ? — o
gt T 95 Vogya e T (D )( ) T e
(14 Dy + Dy) & AR (Dy +3D,+3) 0 2
B i e ) A SR AT W5 +3) 0 »
H 4 a2t E (ax) )+¢ 4 G

(

It is remarkable that the dynamic equation for acoustic equations in the absence of thermal conduction. Other-

heating is a result of combining the energy and continuity wise, it is a result of combining the energy, continuity,
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and momentum equations in accordance with Eq. (18). The
acoustic terms of the leftward propagating sound become
completely reduced in the linear part of the final equation.
Consideration in this chapter is restricted to an acoustic
field represented by rightward propagating sound (i.e, in
the positive direction of the Ox axis), though it may be
easily expanded to leftward propagation or any mixture of
the two acoustic branches.

5. Heating of a Bingham plastic by a
bipolar impulse

Solving Eq. (22), governing the decrease in the ambient
density p., is a fairly complex problem, because the ex-
cess acoustic density itself should satisfy Eq. (17). Both
dynamic equations are nonlinear and account for attenu-
ation due to thermal conduction and viscosity. The equa-
tion governing dynamics of p, includes nonlinear acoustic
terms standing by dissipative coefficients. They form the
nonlinear source of acoustic heating and reflect the fact
that the origins of the phenomenon are both nonlinearity
and absorption. The diffusion equation (22) is instanta-
neous: it describes dynamics of the thermal mode in any
time and does not require periodic sounds. Let us consider
only terms originating from the plastic viscosity both in the
governing equations of sound and for the excess density
attributable to the entropy mode (Egs. (17, 22)). We arrive
at the following system of equations governing sound:

R I
no
R e
v,
ox ((2)3)

and the excess density of the entropy mode

a _ [(+Di+D) & 2y 1 av,,
atPe = 7H 2 oax2 E1
o, (D1 F30243) 9, av,,
T >0,
4 ox
o _ (04D+D) @, 1 ava
otPe = 2 ox2 e
o, (D1+3D2+3)6 P 6va -0

4 ox

Eqgs. (24) describe differently domains of positive and neg-
ative velocity gradients. To simplify estimation, we will

refer to an acoustic pulse satisfying the linear wave equa-
tions (15). The excess temperature T, (a non-wave quan-
tity after a pulse passes), takes the following form in view

of Egs. (3):
G)ng 1 1 /Dc 0

Te = e = —5Pe0 = — 4, 3, edt

o(X) 0GP o(X) gPeo g ) a”

(D1 + 3D, +3) (14 Dy + Dy)
- Fs + &g S, + Ss,
BE, 1 48 2T H 28 3
(25)

where

o0 v, 2
51(x)—/_mdt(ax) ,

Sy [, dt vz, Ly, >0,
f dtdvi, 2v, <0,

ox Var

00 32
Ss(x) = / dtﬁvg.

It is remarkable that evaluation of S, is different for posi-
tive and negative velocity gradients. As example, we con-
sider an initially bipolar symmetric pulse

t+1/dg, —1/Pg <t < —1/2%y,
—v(t,x=0)=4 —t, —12dy < t < 1/2d,,
t—1/®g, 120y <t < 1/dg.

(26)
In order to consider the exclusive properties of heating
in a Bingham plastic, we account for variations in the
speed of the pulse caused by ®. That means that only
two first terms in the governing equations (23) are taken
into account. The parts with positive velocity gradient
move slower than those with negative velocity gradients.
Fig. 1a shows the initial waveform as a function of the
retarded time t — x at x = 0 and waveforms at x = 0.2/®,
and x = 0.5/®y (marked by 1, 2 and 3, correspondingly).
It is also remarkable that a bipolar pulse transforms into
a unipolar one. A similar behavior for acoustic pulses has
been observed experimentally and explained theoretically
in continuum solid media with hysteresis [13]. Fig. 1b il-
lustrates the terms in the right-hand part of Eq. (25). The
last term in the right-hand part of Eq. (25), proportional
to Ss, is zero, but Sy and S, are positive. Evaluation
of the factors standing by Sy and S, requires knowledge
about the thermodynamic state of the Bingham liquid. Un-
fortunately, the thermodynamic data which would make
possible the evaluation of the compressibility 8 and the
coefficients Dy, D,, and E; are absent in the literature.
The only kind of a fluid where the equations of state are
known analytically along with all relative coefficients is an
ideal gas [4, 5]. The thermodynamics of a Bingham plastic
certainly differs from those of an ideal gas, but it seems
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useful to recall the properties of an ideal gas in evaluat-
ing at least the sign of terms depending on Sy, S, or Ss.
Thermodynamics of an ideal gas gives Dy = —y, D, =0,
and E; = 1/(y—1), where y is the ratio of specific heats in
an ideal gas. Hence, coefficients depending on S, and S
are positive in an ideal gas. They are expected to be pos-
itive in the case of a Bingham plastic, providing a positive
variation in temperature due to loss in acoustic energy.
The term associated with S; relates to the standard shear
viscosity [9], but the origin of the term associated with S,
is specific for a Bingham plastic’s yield stress. This last
term depends on the sign of the shear rate.

v/i2M

L L 20,x

Fig.1b

Figure 1. (a) Velocity in an acoustic pulse 54;va(t — x,x) at x = 0
(1, Eq. (26)), x = 0.2/dg (2), x = 0.5/dg (3). (b) Parts
of the increase in temperature attributable to the entropy
mode after the pulse passes in accordance to Eq. (25). S3
equals zero.

Egs. (24) and (25) coincide with the well-known equa-

tion governing acoustic heating in the limiting case of a
Newtonian ideal gas and periodic sound as an origin of
the heating [4, 5] The yield stress in a Newtonian ideal
gas is equals zero, and its internal energy is the well-
established function of pressure and density,

-_P_ (27)

Traditionally, only this case is considered in the theory
of nonlinear acoustics. The dimensionless perturbation of
velocity in the periodic sound propagating in the positive
direction of the Ox axis takes the form

Ve = Mexp(—ux/2) sin(t — x), (28)

and the excess density attributable to the thermal mode
averaged over the sound period decreases with time in
accordance to the following equation:

2o =By Meplm), (9

where angle brackets denote averaging over the sound
period. It may be easily concluded from Eq. (22) that ac-
counting for the thermal conductivity would lead to the
same equations as the latter two, but with the overall
attenuation y + 0 replacing p. That agrees with the con-
clusions of studies [4, 5].

6. Conclusions

The main result of this study is the equation governing
acoustic heating, Eq. (22). It is a result of consequent
decomposition of weakly nonlinear equations governing
sound and the entropy mode. The method developed by
the author results in instantaneous dynamic equations:
it does not need temporal averaging of the conservative
equations with respect to sound period. That differs the
method from the traditional decomposition of equations for
acoustic and non-acoustic motions [4, 5]. Acoustic heat-
ing grows with increase of the acoustic Mach number M
and the parameters responsible for attenuation and yield
stress, ¢ and @. It increases also with increasing thermal
conductivity 0. In view of the mathematical difficulties, the
influence of the thermal conductivity on acoustic heating
is not considered in the example.

A very important peculiarity of the dynamics of a Bing-
ham plastic is dependence of the equations governing both
sound and the entropy modes on the sign of the shear
rate. That requires individual evaluation of the dynamics
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of every waveform as well as the heating generated by it.
Bipolar waveforms become monopolar beginning at some
distance from a transducer. The width of a pulse enlarges
with increase of distance from a transducer. In general,
the third term forming the acoustic force of heating, pro-
portional to Ss, differs from zero. The pairwise ratios of
the three terms in the right-hand side of Eq. (25) depend
on a number of quantities describing the thermodynamic
state of a Bingham liquid, such as E4, Dy, and D, (Egs. (3,
10)).
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