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Abstract: This study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham
plastic’s viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a
Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations
in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation
governing acoustic heating, and to retain those belonging to the thermal mode. The nonlinear terms of
the final equation are a result of interaction between sounds and the thermal mode. In the field of intense
sound, the resulting nonlinear acoustic terms form a driving force for the heating. The final governing
dynamic equation of the thermal mode is valid in a weakly nonlinear flow. It is instantaneous, and does
not imply that sounds be periodic. The equations governing the dynamics of both sounds and the thermal
mode depend on sign of the shear rate. An example of the propagation of a bipolar initially acoustic pulse
and the evolution of the heating induced by it is illustrated and discussed.
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1. Introduction

A Bingham plastic is a viscoplastic material that behavesas a rigid body at low stresses but flows as a viscous fluidat high stress. The mathematical model of such a non-newtonian liquid was first proposed by Bingham [1]. ABingham plastic does not exhibit any shear rate (no flowand thus no velocity) until a certain stress is achieved.For the Newtonian fluid the shear stress linearly dependson shear rate, and the coefficient of proportionality be-
∗E-mail: anpe@mif.pg.gda.pl

tween these two values is the viscosity. By contrast theBingham Plastic requires two parameters, the yield stressand the plastic viscosity. The physical reason for thenon-Newtonian behavior is that the plastic liquid con-tains particles (e.g. clay) or large molecules (e.g. poly-mers) which have some kind of interaction, creating a weaksolid structure. A certain amount of stress is required tobreak this structure [2, 3]. Once the structure has beenbroken, the liquid particles move under viscous forces. Ifthe stress is removed, the particles associate again. ABingham plastic is used, among other applications, as amathematical model of mud flow in offshore engineering,and in the handling of slurries. Common examples includetoothpaste, which will not be extruded until a certain hy-
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drostatic pressure is used on the tube, as well as paints.It is well known that sound attenuates linearly in the stan-dard thermoviscous flow of a fluid. The acoustic heatingis an increase of the ambient fluid temperature caused by
nonlinear losses in acoustic energy. It is not an acousticquantity but a value referred to the entropy, or thermalmode. The acoustic heating in the standard thermovis-cous fluid flows is well-studied theoretically and experi-mentally regarding periodic sound as the origin of heating[4, 5]. Interest in acoustic heating in non-Newtonian flu-ids has grown in recent years in connection with biomed-ical applications. These require accurate estimations ofheating during medical therapies which apply sounds ofdifferent kinds including non-periodic ones, particularlyimpulses [6, 7].This study is devoted to nonlinear dissipation of soundenergy in a Bingham plastic fluid. The mathematical tech-nique has been worked out and applied previously by theauthor to some problems of thermoviscous nonlinear flow.It allows separation of the individual equations governingsound, vorticity and entropy modes in Newtonian and non-Newtonian (relaxing) fluids [8–10]. The method and re-sults based upon it concerning flow over a Bingham plas-tic are described in Sections 3, 4. The important feature ofthe equations governing sound and corresponding acous-tic heating is shown: they dependent on the sign of theshear rate. The dynamics of a bipolar pulse is illustratedas an example (Sec. 5).
2. Dynamic equations in a Bingham
plastic fluid
The continuity, momentum and energy equations describ-ing a thermoviscous fluid flow without external forces read:

∂ρ
∂t +−→∇ · (ρ−→v ) = 0,

∂−→v
∂t + (−→v · −→∇)−→v = 1

ρ

(
−−→∇p+Div P

)
,

∂e
∂t + (−→v · −→∇)e

= 1
ρ

(
−p(−→∇ · −→v ) + χ∆T + P : Grad −→v ) .

(1)

Here, ~v denotes the velocity of the fluid, ρ, p are the den-sity and pressure, respectively; e, T denote the internalenergy per unit mass and the temperature, respectively; χis the thermal conductivity, and xi, t are the spatial coordi-nates and time. The operator Div denotes the divergenceof a tensor and Grad is a dyad gradient. P is the vis-cous stress tensor. In the model of a Bingham plastic,

the viscous stress tensor relates to the shear rate in thefollowing manner:
Pi,k =

 P0 + η2
(
∂vi
∂xk

+ ∂vk
∂xi

)
,

(
∂vi
∂xk

+ ∂vk
∂xi

)
> 0,

−P0 + η2
(
∂vi
∂xk

+ ∂vk
∂xi

)
,
(
∂vi
∂xk

+ ∂vk
∂xi

)
< 0. (2)

A liquid is therefore rigid for shear stress |Pi,k |, lessthan a critical value P0. Two thermodynamic functions
e(p, ρ), T (p, ρ) complement the system (1). They may bewritten as series for the excess internal energy e′ = e−e0and temperature T ′ = T −T0 in powers of excess pressureand density p′ = p− p0, ρ′ = ρ − ρ0 (ambient quantitiesare marked by index 0):

e′ = E1
ρ0 p′ + E2p0

ρ20 ρ′ + E3
p0ρ0 p′2 + E4p0

ρ30 ρ′2
+E5
ρ20 ρ

′p′,

T ′ = Θ1
ρ0Cv p′ + Θ2p0

ρ20Cv ρ
′ + Θ3

p0ρ0Cv p′2 + Θ4p0
ρ30Cv ρ

′2
+ Θ5
ρ20Cv ρ

′p′,

(3)

where E1, . . .Θ5 are dimensionless coefficients and Cvmarks the heat capacity per unit mass under constantvolume. The series (3) allows consideration of a widevariety of fluids in the general form: discrepancies aremanifested by the different coefficients for different fluids.The common practice in nonlinear acoustics is to focus onthe equations of the second order in the acoustic Machnumber M = v0/c0, where v0 is the magnitude of parti-cle velocity and c0 = √ (1−E2)p0
E1ρ0 is an infinitesimal signalvelocity in the Newtonian liquid (when P0 = 0), respec-tively. The present study is also confined to considerationof nonlinearity of the second order, so that in the series(3) only terms up to the second order are kept. The ex-pressions for the coefficients E1 and E2 in terms of thecompressibility, κ, and the thermal expansion, β, are asfollows:

E1 = ρ0Cvκ
β , E2 = −Cpρ0

βp0 + 1. (4)
Cp denotes the heat capacity per unit mass under constantpressure,

κ = − 1
V

(
∂V
∂p

)
T

= 1
ρ

(
∂ρ
∂p

)
T
,

β = 1
V

(
∂V
∂T

)
p

= − 1
ρ

(
∂ρ
∂T

)
p
.

(5)
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Acoustic heating produced in the thermoviscous flow of a Bingham plastic

A small variation in entropy is a total differential thatprovides a relationship between the first coefficients inthe series (3):
Θ2 = Cvρ0T0

E1p0 −
(1− E2)Θ1

E1 . (6)
The following small dimensionless parameters will bethose responsible for viscoplastic viscosity, µ = ηΩ/(ρ0c20)and the yield stress, Φ0 = P0

E1ρ0c20 (Ω is the characteristicsound frequency). We consider also the small thermal con-ductivity: δ = χT0Ω
c40E21ρ0 , which is supposed to be of the sameorder as µ and Φ0. We shall consider weakly nonlinearflows discarding O(M3) terms in all expansions and con-fining of terms to be considered to include µ0 or µ1. Theresulting model equations will account therefore for thecombined effects of nonlinearity, attenuation, and thermalconductivity.

3. Definition of modes in planar flow
of infinitesimal amplitude
We consider one-dimensional flow along the Ox axis. Thedispersion equation follows from the linearized version ofEq. (1). Its roots determine three independent modes (ortypes of linear flow) of infinitesimal signal disturbancesin an unbounded fluid. In one dimension, there existthe acoustic (two branches), and the thermal (or entropy)modes. In general, every perturbation of the field vari-ables contains contributions from any of the three modes,for example, ρ′ = ρ′a,1 + ρ′a,2 + ρ′e. That allows separationin the linear part of the governing equations using thespecific properties of the modes, namely the relationshipsbetween components of velocity and excess quantities oftwo thermodynamic functions, for example pressure anddensity. The method developed by the author in [8–10]provides the possibility of consequent decoupling of theinitial system (1) into specific dynamic equations for ev-ery mode based upon the specific properties of each modein a weakly nonlinear and standard thermoviscous flow aswell. All formulae everywhere below in the text, includ-ing links between modes and the governing equations, arewritten in leading order with respect to powers of the smallparameters M, µ, Φ0, and δ.It is convenient to rearrange formulae in the dimensionlessquantities in the following way:
p∗ = p′

c20 · ρ0 , ρ∗ = ρ′
ρ0 , v∗ = v

c0 , x∗ = Ωx
c0 , t∗ = Ωt. (7)

Starting from Eq. (8), the upper indexes (asterisks) de-noting the dimensionless quantities will be omitted every-

where in the text. In the dimensionless quantities, Eq. (1)accounting for Eqs. (2, 3) reads:
∂v
∂t + ∂p

∂x − µ
∂2v
∂x2 = −v ∂v∂x + ρ∂p∂x − µρ

∂2v
∂x2 ,

∂p
∂t + (1 + Φ)∂v∂x − δ1 ∂2p

∂x2 − δ2 ∂2ρ
∂x2

= −v ∂p∂x + (D1p+D2ρ) ∂v∂x + µ
E1
(
∂v
∂x

)2

+δ3 ∂2p2
∂x2 + δ4 ∂2ρ2

∂x2 + δ5 ∂2(ρp)
∂x2 + Φρ(∂v∂x

)
,

∂ρ
∂t + ∂v

∂x = −v ∂ρ∂x − ρ∂v∂x ,

(8)

where
Φ(sgn(∂v∂x

)) = { − P0
E1ρ0c20 ≡ −Φ0, ( ∂v∂x ) > 0,
P0

E1ρ0c20 ≡ Φ0, ( ∂v
∂x
)
< 0. (9)

originates from the yield stress. The main nonlinear termsof order M2 form the right-hand side of the set (8). Thedynamic equations in the rearranged form include the di-mensionless quantities
δ1 = χΘ1Ω

ρ0c20CvE1 , δ2 = χΘ2Ω
ρ0c20Cv (1− E2) ,

δ3 = Θ3χΩ
E1ρ0c20Cv

1− E2
E1 , δ4 = Θ4χΩ(1− E2)ρ0c20λCv ,

δ5 = Θ5χΩ
E1ρ0c20Cv ,

D1 = 1
E1
(
−1 + 21− E2

E1 E3 + E5
)
,

D2 = 11− E2
(1 + E2 + 2E4 + 1− E2

E1 E5
)
.

(10)

The sum of two first coefficients is the linear attenuationdue to the thermal conductivity, δ = δ1 + δ2. The lin-earized version of Eq. (8) describes a flow of infinitesimalmagnitude, when M → 0:
∂v
∂t + ∂p

∂x − µ
∂2v
∂x2 = 0,

∂p
∂t + (1 + Φ)∂v∂x − δ1 ∂2p

∂x2 − δ2 ∂2ρ
∂x2 = 0,

∂ρ
∂t + ∂v

∂x = 0.
(11)

The linear hydrodynamic field is represented by acousticmodes, propagating in the positive or negative directionof the Ox axis, respectively, and the non-wave thermal,or entropy, mode. Every type of motion is determined in
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fact by one of the roots of the dispersion relation of thelinear flow, ω(k) (k is the wave number) [4, 5, 11] and fixesthe relations between hydrodynamic perturbations, whichare independent of time [8–10]. The dispersion relationsfor sound propagating in the positive Ox axis direction(marked by index 1), sound propagating in the negative
Ox axis direction (marked by index 2), and the entropymode (marked by index 3) in a Bingham plastic are asfollows:

ωa,1 = k
(1 + Φ2

)+ ik22 (µ + δ),
ωa,2 = −k (1 + Φ2

)+ ik22 (µ + δ),
ωe = −ik2δ2.

(12)

They uniquely determine relations between velocity, ex-cess density and pressure attributable to every mode,which are valid at any time of a hydrodynamic field evo-lution:
ψa,1 =

 va,1
pa,1
ρa,1

 =
 1(1 + Φ2 )+ µ−δ2 ∂

∂x(1− Φ2 )+ µ+δ2 ∂
∂x

 va,1,

ψa,2 =
 1
−
(1 + Φ2 )+ µ−δ2 ∂

∂x
−
(1− Φ2 )+ µ+δ2 ∂

∂x

 va,2,

ψe =
 δ2 ∂

∂x01
ρe.

(13)

The important and unusual property of both acoustic rootsof the dispersion relation and the modes correspondent tothem is that they depend (by means of Φ) on the signof the velocity gradient. The linear equation describingthe fluid velocity of an acoustic wave propagating in thepositive Ox axis direction agrees with ωa,1 from Eq. (12)and takes the form:
∂va,1
∂t + (1 + Φ2

)
∂va,1
∂x −

µ + δ2 ∂2va,1
∂x2 = 0, (14)

which describes differently the cases of positive and neg-ative shear rates:
∂va,1
∂t + (1− Φ02

)
∂va,1
∂x −

µ + δ2 ∂2va,1
∂x2 = 0,
∂va,1
∂x > 0,

∂va,1
∂t + (1 + Φ02

)
∂va,1
∂x −

µ + δ2 ∂2va,1
∂x2 = 0,
∂va,1
∂x < 0.

(15)

The density perturbation in the entropy motion satisfiesthe diffusion equation:
∂ρe
∂t + δ2 ∂2ρe

∂x2 = 0. (16)
Equations for every type of motion may be also extractedfrom the system (8) in accordance to relationships specificfor each mode. That can proceed formally by means ofprojecting of the equations into specific sub-spaces. Thelinear dynamic equations are obviously independent.
4. Dynamic equations in a weakly
nonlinear flow
4.1. Weakly nonlinear dynamic equation of
sound
The nonlinear terms in every equation from the right-handside of system (8) include in general parts attributableto every mode. We fix relations determining every modein a linear flow and consider every excess quantity as asum of the specific excess quantities of all modes. Theconsequent decomposition of the governing equations forboth branches of sound and the thermal mode may be stilldone by means of linear projection, for details see [10].Projection points out a method of linearly combining theequations in order to keep terms belonging to the appro-priate mode in the linear part and to reduce all other termsthere. Keeping only terms corresponding to the acousticrightwards propagating wave in the nonlinear part, andexpressing all acoustic quantities in terms of velocity byuse of links (ψa,1 from Eqs. (13)), one can easily obtain anequation analogous to the well-known Burgers’ equation:

∂va,1
∂t + (1 + Φ2

)
∂va,1
∂x −

µ + δ2 ∂2va,1
∂x2

= −1−D1 −D22 va,1 ∂∂x va,1.
(17)

The nonlinear term in the right-hand side of Eq. (17) maybe considered as a result of self-action of sound whichcorrects the linear equation governing sound (14) by non-linear terms.
4.2. The thermal mode in a sound-dominant
field. Acoustic heating.
In the context of acoustic heating, the magnitude of excessdensity specific for the entropy mode is small compared tothat for sound. We consider the ratio of the characteristic
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Acoustic heating produced in the thermoviscous flow of a Bingham plastic

amplitudes of the excess densities specifying entropy mo-tion and sound to be of order M. The modes (13) satisfyin leading order (up to terms of order δ2) the equality asfollows:
(
−δ ∂

∂x − 1 + Φ 1 )


va,1 + va,2 + ve

pa,1 + pa,2 + pe

ρa,1 + ρa,2 + ρe

 = ρe,

(18)which points out a way of combining equations (8) in orderto reduce all acoustic quantities in the linear part of thefinal equations. The important property of the projection isnot only to decompose specific perturbations in the linearpart of the equations, but to distribute nonlinear termscorrectly between the different dynamic equations. Thelinks within the sound equations should be supplementedby nonlinear quadratic terms making sound isentropic toleading order. These corrections in the Bingham plastic

are similar to these, specific for the Riemann wave in anideal gas [12]:
pa,1 = (1 + Φ2

)
va,1 + µ − δ2 ∂

∂x va,1
+14 (1−D1 −D2)v2

a,1,
ρa,1 = (1− Φ2

)
va,1 + µ + δ2 ∂

∂x va,1
+14 (3 +D1 +D2)v2

a,1.

(19)

but involve additional terms proportional to Φ, µ and δ.The nonlinear corrections of second and higher order de-pend on equation of state.For simplicity, let a sound be associated only with wavepropagation in the positive Ox axis direction: pa =
pa,1, ρa = ρa,1 va = va,1. The linear combination of theleft-hand sides of the equations in (8) in accordance with(18) and (19) results in the equality:

∂
∂t

(
−δ ∂∂x v − (1− Φ)p+ ρ

)
− δ ∂

2
∂x2 p+ δ1 ∂2p

∂x2 + δ2 ∂2ρ
∂x2 ≈ ∂

∂t ρe + δ2 ∂2ρe
∂x2 − δ (D1 +D2 − 1)4 ∂2

∂x2 v2
a

+(1 +D1 +D2)2
(
− ∂
∂x v

2
a + δ2 ∂2

∂x2 v2
a + (µ + δ)va ∂2

∂x2 va
)
− Φ2 ∂

∂x v
2
a.

(20)
In the prior simple evaluations, the corrected links (19) are used, as well as the dynamic equation (17) to exclude thepartial derivative with respect to time in the nonlinear terms. In the context of acoustic heating, the sound dominates,so that only acoustic quadratic terms should be kept. Combining in a similar way the right-hand sides of the equationsfrom the set (8), and comparing the result with Eq. (20), one obtains the dynamic equation governing acoustic heating:

∂
∂t ρe + δ2 ∂2ρe

∂x2 − δ (D1 +D2 − 1)4 ∂2
∂x2 v2

a + (1 +D1 +D2)2
(
− ∂
∂x v

2
a + δ2 ∂2

∂x2 v2
a + (µ + δ)va ∂2

∂x2 va
)
− Φ2 ∂

∂x v
2
a

= − (1 +D1 +D2)2 ∂
∂x v

2
a −

µ
E1
(
∂va
∂x

)2 + δ2 (D1 −D2 − 1)(∂va
∂x

)2
− µ2 (1 +D1 +D2)(∂va∂x

)2

+Φ(D1 + 3D2 + 1)4 ∂
∂x v

2
a − δva

∂2
∂x2 va,

(21)

which becomes simpler after ordering:
∂
∂t ρe + δ2 ∂2ρe

∂x2 = δ
(
−2va ∂2

∂x2 va + (D1 − 1)(∂va∂x
)2)

− δ2 (1 +D1 +D2)2 ∂2
∂x2 v2

a

−µ
( (1 +D1 +D2)4 ∂2

∂x2 v2
a + 1

E1
(
∂va
∂x

)2)+ Φ(D1 + 3D2 + 3)4 ∂
∂x v

2
a.

(22)

It is remarkable that the dynamic equation for acousticheating is a result of combining the energy and continuity equations in the absence of thermal conduction. Other-wise, it is a result of combining the energy, continuity,
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and momentum equations in accordance with Eq. (18). Theacoustic terms of the leftward propagating sound becomecompletely reduced in the linear part of the final equation.Consideration in this chapter is restricted to an acousticfield represented by rightward propagating sound (i.e, inthe positive direction of the Ox axis), though it may beeasily expanded to leftward propagation or any mixture ofthe two acoustic branches.
5. Heating of a Bingham plastic by a
bipolar impulse
Solving Eq. (22), governing the decrease in the ambientdensity ρe, is a fairly complex problem, because the ex-cess acoustic density itself should satisfy Eq. (17). Bothdynamic equations are nonlinear and account for attenu-ation due to thermal conduction and viscosity. The equa-tion governing dynamics of ρe includes nonlinear acousticterms standing by dissipative coefficients. They form thenonlinear source of acoustic heating and reflect the factthat the origins of the phenomenon are both nonlinearityand absorption. The diffusion equation (22) is instanta-neous: it describes dynamics of the thermal mode in anytime and does not require periodic sounds. Let us consideronly terms originating from the plastic viscosity both in thegoverning equations of sound and for the excess densityattributable to the entropy mode (Eqs. (17, 22)). We arriveat the following system of equations governing sound:
∂va
∂t + (1− Φ0)∂va∂x − µ2 ∂2va

∂x2 = −1−D1 −D22 va
∂
∂x va,

∂va
∂x > 0,

∂va
∂t + (1 + Φ0)∂va∂x − µ2 ∂2va

∂x2 = −1−D1 −D22 va
∂
∂x va,

∂va
∂x < 0,(23)and the excess density of the entropy mode

∂
∂t ρe = −µ( (1 +D1 +D2)2 ∂2

∂x2 v2
a + 1

E1
(
∂va
∂x

)2)
−Φ0 (D1 + 3D2 + 3)4 ∂

∂x v
2
a,

∂va
∂x > 0,

∂
∂t ρe = −µ( (1 +D1 +D2)2 ∂2

∂x2 v2
a + 1

E1
(
∂va
∂x

)2)
+Φ0 (D1 + 3D2 + 3)4 ∂

∂x v
2
a,

∂va
∂x < 0.

(24)

Eqs. (24) describe differently domains of positive and neg-ative velocity gradients. To simplify estimation, we will

refer to an acoustic pulse satisfying the linear wave equa-tions (15). The excess temperature Te,0 (a non-wave quan-tity after a pulse passes), takes the following form in viewof Eqs. (3):
Te,0(x) = Θ2p0

ρ0Cv ρe,0(x) = − 1
β ρe,0 = − 1

β

∫ ∞
−∞

∂
∂t ρedt

= µ
βE1S1 + Φ0 (D1 + 3D2 + 3)4β S2 + µ (1 +D1 +D2)2β S3,(25)where

S1(x) = ∫ ∞
−∞

dt
(
∂va
∂x

)2
,

S2(x) = { ∫∞−∞ dt ∂∂x v2
a, ∂

∂x va > 0,
−
∫∞
−∞ dt

∂
∂x v

2
a, ∂

∂x va < 0,
S3(x) = ∫ ∞

−∞
dt ∂

2
∂x2 v2

a.

It is remarkable that evaluation of S2 is different for posi-tive and negative velocity gradients. As example, we con-sider an initially bipolar symmetric pulse
12Mv(t, x = 0) =


t + 1/Φ0, −1/Φ0 ≤ t < −1/2Φ0,
−t, −1/2Φ0 ≤ t ≤ 1/2Φ0,
t − 1/Φ0, 1/2Φ0 < t ≤ 1/Φ0. (26)In order to consider the exclusive properties of heatingin a Bingham plastic, we account for variations in thespeed of the pulse caused by Φ. That means that onlytwo first terms in the governing equations (23) are takeninto account. The parts with positive velocity gradientmove slower than those with negative velocity gradients.Fig. 1a shows the initial waveform as a function of theretarded time t− x at x = 0 and waveforms at x = 0.2/Φ0and x = 0.5/Φ0 (marked by 1, 2 and 3, correspondingly).It is also remarkable that a bipolar pulse transforms intoa unipolar one. A similar behavior for acoustic pulses hasbeen observed experimentally and explained theoreticallyin continuum solid media with hysteresis [13]. Fig. 1b il-lustrates the terms in the right-hand part of Eq. (25). Thelast term in the right-hand part of Eq. (25), proportionalto S3, is zero, but S1 and S2 are positive. Evaluationof the factors standing by S1 and S2 requires knowledgeabout the thermodynamic state of the Bingham liquid. Un-fortunately, the thermodynamic data which would makepossible the evaluation of the compressibility β and thecoefficients D1, D2, and E1 are absent in the literature.The only kind of a fluid where the equations of state areknown analytically along with all relative coefficients is anideal gas [4, 5]. The thermodynamics of a Bingham plasticcertainly differs from those of an ideal gas, but it seems
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Acoustic heating produced in the thermoviscous flow of a Bingham plastic

useful to recall the properties of an ideal gas in evaluat-ing at least the sign of terms depending on S1, S2 or S3.Thermodynamics of an ideal gas gives D1 = −γ, D2 = 0,and E1 = 1/(γ−1), where γ is the ratio of specific heats inan ideal gas. Hence, coefficients depending on S2 and S3are positive in an ideal gas. They are expected to be pos-itive in the case of a Bingham plastic, providing a positivevariation in temperature due to loss in acoustic energy.The term associated with S1 relates to the standard shearviscosity [9], but the origin of the term associated with S2is specific for a Bingham plastic’s yield stress. This lastterm depends on the sign of the shear rate.

Figure 1. (a) Velocity in an acoustic pulse 12M va(t − x, x) at x = 0
(1, Eq. (26)), x = 0.2/Φ0 (2), x = 0.5/Φ0 (3). (b) Parts
of the increase in temperature attributable to the entropy
mode after the pulse passes in accordance to Eq. (25). S3
equals zero.

Eqs. (24) and (25) coincide with the well-known equa-

tion governing acoustic heating in the limiting case of aNewtonian ideal gas and periodic sound as an origin ofthe heating [4, 5]. The yield stress in a Newtonian idealgas is equals zero, and its internal energy is the well-established function of pressure and density,
P0 = 0, e = p(γ − 1)ρ . (27)

Traditionally, only this case is considered in the theoryof nonlinear acoustics. The dimensionless perturbation ofvelocity in the periodic sound propagating in the positivedirection of the Ox axis takes the form
va = M exp(−µx/2) sin(t − x), (28)

and the excess density attributable to the thermal modeaveraged over the sound period decreases with time inaccordance to the following equation:
∂
∂t 〈ρe〉 = −µ2 (γ − 1)M2 exp(−µx), (29)

where angle brackets denote averaging over the soundperiod. It may be easily concluded from Eq. (22) that ac-counting for the thermal conductivity would lead to thesame equations as the latter two, but with the overallattenuation µ + δ replacing µ. That agrees with the con-clusions of studies [4, 5].
6. Conclusions
The main result of this study is the equation governingacoustic heating, Eq. (22). It is a result of consequentdecomposition of weakly nonlinear equations governingsound and the entropy mode. The method developed bythe author results in instantaneous dynamic equations:it does not need temporal averaging of the conservativeequations with respect to sound period. That differs themethod from the traditional decomposition of equations foracoustic and non-acoustic motions [4, 5]. Acoustic heat-ing grows with increase of the acoustic Mach number Mand the parameters responsible for attenuation and yieldstress, µ and Φ0. It increases also with increasing thermalconductivity δ. In view of the mathematical difficulties, theinfluence of the thermal conductivity on acoustic heatingis not considered in the example.A very important peculiarity of the dynamics of a Bing-ham plastic is dependence of the equations governing bothsound and the entropy modes on the sign of the shearrate. That requires individual evaluation of the dynamics
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of every waveform as well as the heating generated by it.Bipolar waveforms become monopolar beginning at somedistance from a transducer. The width of a pulse enlargeswith increase of distance from a transducer. In general,the third term forming the acoustic force of heating, pro-portional to S3, differs from zero. The pairwise ratios ofthe three terms in the right-hand side of Eq. (25) dependon a number of quantities describing the thermodynamicstate of a Bingham liquid, such as E1, D1, and D2 (Eqs. (3,10)).
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