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Graphs in the thermodynamic plane acoustic pressure versus excess acoustic density representing acoustic
hysteresis, are considered as indicators of relaxation processes, equilibrium parameters of a flow, and kinds of
wave exciters. Some flows with deviation from adiabaticity are examined: the Newtonian flow of a thermocon-
ducting gas, the flow of a gas with vibrational relaxation, the flow of liquid electrolyte with a chemical reaction,
and the Bingham plastic flow. The total range of characteristic frequencies of a harmonic exciter is taken into
account. The impulsive sound is considered as well. The peculiarities of hysteretic behaviour are discussed in
dependence with the kind and degree of deviation form adiabaticity. Examples of acoustically active flows are
discussed.
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1. Introduction

Relaxation of thermodynamic processes is a physi-
cal reality. The relaxation processes are excited by an
incident acoustic wave. Each process is characterised
by some relaxation time and strength and takes ener-
gy from the acoustic disturbances. The relaxation pro-
cesses are not the only reason for sound to be atten-
uated but they are not sufficiently understood. The
mechanisms of relaxation are mostly of two kinds, ener-
gy relaxation and volume relaxation, and they both
contribute to the nonequilibrium portion of a medium
entropy. The second law of thermodynamics leads to an
equation which governs acoustic pressure in the wave
processes. While the energy relaxation mechanism is
discussed in a literature extensively, the volume relaxa-
tion is less studied. It was first discussed by Leonard
Hall (1948). The basic theory was mainly developed
by Herzfeld and Rise (1928). The flows are usually
characterized by one of several dominant mechanisms
of relaxation. In particular, a vibrational relaxation of
diatomic molecules is the dominant mechanism for air.
Among the most important kinds, we may mention
the Newtonian attenuation, thermal conduction, re-
laxation of the vibrational degrees of a molecule free-

dom, and relaxation due to a chemical reaction. The
Newtonian attenuation often does not match the ex-
perimental data of attenuation in tissues (Parker,
1983; Duck, 1998). It is actually a high-frequency
limit of the Maxwell relaxation (Hamilton, Black-
stock, 1998). Molecular collisions in a gas are al-
ways accompanied by variations of translational, vibra-
tional, rotational, and electronic energy of the col-
lisioning patterns. Ionisation and chemical reaction
may take place in a gas (Osipov, Uvarov, 1992).
Many multiple processes can take place in complex
fluids. There may be a large amount of different re-
laxation processes with their own intrinsic relaxation
time which have impact on the wave process. The com-
prehensive review concerning various mechanisms of
absorption in gases may be found in many studies,
from old to new (Mandelshtam, Leontowich, 1937;
Hertzfeld, Litowitz, 1959; Eigen, De Mayer,
1963; Makarov, Ochmann, 1996; Pierce, 1981).
The theories including multiple relaxation processes
are developed. The arbitrary number of discrete re-
laxation processes with continuous distribution of rela-
xation times was reviewed by Vilensky et al. (2012).

Since there appears the time heterogeneity para-
meter, wave perturbations reveal a frequency depen-
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dent behaviour. This concerns phase velocity vph and
attenuation of a wave α. A very simplified explana-
tion of features of relaxation process relies on the links
of the complex amplitudes of perturbations of pres-
sure and density in a wave, P̃ and R̃. We can treat
perturbation of pressure and density as a real part
of the complex amplitude times exp(iωt − ikx) (p′ =
P̃ exp(iωt−ikx), ρ′ = R̃ exp(iωt−ikx)). The relaxation
is described by some frequency dependent function
Krelax, so that (1+Krelax)P̃ = c2R̃ (c denotes the speed
of sound at a very low frequency). Hence, the links be-
tween perturbations of thermodynamic variables de-
pend in general on frequency (Rudenko, Soluyan,
1977; Hedberg, Rudenko, 2011; Leble, Perelo-
mova, 2018), and the dispersion relation has the form:

ω = ck (1 − 1

2
Krelax) , (1)

ω = vphk − iαvph, α = ω

2c
Im(Krelax),

vph = c −
c

2
Re(Krelax),

(2)

where ω is the characteristic frequency of perturba-
tions, k is the wave number (Pierce, 2021).

A relaxation process reveals itself by means of
a hysteretic (that is, time-dependent) behaviour. In
turn, the hysteretic behaviour specifies thermody-
namic processes in a definite way. This concerns dif-
ferent kinds of relaxation processes with various re-
laxation times and strengths of relaxation. Hedberg
and Rudenko (2011) were first who attracted atten-
tion to the acoustic hysteresis in nonlinear flows with
various relaxation mechanisms. The general approach
is to study the wave features as a response to excita-
tion. This concerns phase velocity and attenuation at
some frequency of a harmonic exciter (Pierce, Mast,
2021). The main idea of this study is to attract atten-
tion to hysteretic curves as indicators of equilibrium
parameters of a medium, relaxation process and the
kind of wave excitation. The hysteretic behaviour spe-
cifies not only harmonic excitation but any other in-
cluding the impulsive one which is a more common
case. The links between the acoustic pressure and den-
sity are determined by thermodynamic relaxation and
are integro-differential in general. We consider hys-
teretic curves in the plane magnitude of acoustic pres-
sure versus magnitude of acoustic perturbation in den-
sity P ⇔ R. Other relations of thermodynamic variab-
les, for example, links between acoustic pressure and
velocity, also reveal hysteretic behaviour. The curves
do not only point at relaxation processes but also at the
kind of excitation in a medium with the known ther-
modynamic properties. The hysteretic curves point im-
pulsive, periodic, or other type of excitation. They de-
termine an irreversible loss in the sound energy which
leads to the enlargement of the background tempera-
ture. This variation in temperature is integral and may

be measured over a period of a signal or after a wave
passes away. The thermodynamic processes in a fluid
may be non-equilibrium. This may lead to an acousti-
cally active flow with the energy taken from the back-
ground into the energy of the wave motion. The hys-
teretic curves are unusual in this case. The bypass
direction of curves in the plane P ⇔ R is opposite
compared to the equilibrium case. The curves may be
used in evaluation of the degree of disequilibrium of
a flow. We consider the links between the acoustic pres-
sure and perturbation in acoustic density in a wave for
any particular case of a flow. The relations describe
a different behaviour in the domains when the acous-
tic pressure grows and gets smaller. This is the reason
for the hysteretic behaviour. The hysteretic behaviour
gives a deeper understanding of the physical pecular-
ities of different irreversible processes accompanying
propagation of moderate and intense acoustic waves.
The mechanisms of relaxation and absorption in liq-
uids in the context of wave dynamics, are still an un-
resolved issue (Liebermann, 1948). The composition
of a liquid has the key role in a variety of relaxation
processes. The processes in the fresh water and sea
water are different. Typically, several kinds of relax-
ation take place in a liquid. Sound absorption in sea
water is dominated by chemical relaxations with con-
tribution of magnesium sulfate at high frequencies of
oscillations. The intermediate-frequency relaxation oc-
curs due to magnesium and carbonic acid (Yeager,
Fisher, 1973; Mellen et al., 1979). The frequency-
dependent relaxation and attenuation of sound in flu-
ids is of importance in many technical and medical
applications, especially in medical imaging and tissue
specification (Nyborg, 1978; Parker, 1983).

We consider acoustic hysteresis associating with re-
laxation in gases and liquids, and specify differences
and applications of hysteretic behaviour in any case.
The unusual scenario may take place in acoustically
active flows. The hysteresis in the flows of Bingham
plastics is also mentioned in Sec. 4. The main idea is to
point at the applicability of the hysteretic curves in de-
tection of the relaxation process and the kind of its ex-
citer.

2. Relations between acoustic pressure
and perturbation in density in various flows

The linear relations between perturbations of ther-
modynamic quantities (pressure p, density ρ, compo-
nents of velocity v, and probably other variables re-
flecting relaxation) follow from the dispersion relations
which characterise thermodynamic processes in a flow.
In fact, the relations determine the mode of a flow to-
gether with the corresponding dispersion relation.
Links of perturbations specifying the acoustic mode are
reflected by the hysteretic curves in the plane magni-
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tude of acoustic pressure versus magnitude of acoustic
perturbation in density. These links and curves indi-
cate damping and relaxation properties of a flow and
may be useful in identifying their patterns. As exam-
ples, some kinds of fluid flows are examined and com-
pared to each other:
1) a fluid with the thermal conduction,
2) a gas with vibrational relaxation of oscillatory de-

grees of a molecule freedom,
3) an electrolyte with a chemical reaction.
In all cases, we consider a one-dimensional planar

flow along axis x, only one wave mode propagating
in the positive direction of axis x, and weak devia-
tion from adiabaticity over the characteristic period of
perturbations. The background parameters in all flows
are constant and subscribed by zero. The bulk flows are
absent. In evaluation of dispersion relations, all pertur-
bations of a flow (f ′) are thought as a sum of planar
waves:

f ′(x, t) = ∫ f̃(k) exp(iω(k)t − ikx)dk. (3)

2.1. Thermoconducting fluid

The thermodynamic processes in the Newtonal
fluids may be considered as a limiting case of the
Maxwellian viscous model of relaxation with the vis-
cous stress tensor σ depending on the shear rate as
follows:

σ ∼
t

∫
−∞

exp( t
′ − t
ωτ
) ∂v
∂x

dt′. (4)

In the high-frequency regime when the characteristic
frequency of perturbations is much higher than the in-
verse time of relaxation, the Maxwellian fluid behaves
as a classic Newtonian fluid. The acoustic dispersion
relation in a Newtonian flow with the thermal conduc-
tion takes the form:

ω = ck + ib
2
k2, (5)

where c =
√
(∂p
∂ρ
)
s
designates the speed of an infinitely-

small magnitude sound in equilibrium and b is the
total attenuation which consists of parts relating to
the shear viscosity, bulk viscosity, and thermal conduc-
tion (Landau, Lifshitz, 1987; Rudenko, Soluyan,
1977). It turns out that the leading-order link between
the acoustic pressure and excess acoustic density de-
pends exclusively on the thermal conduction χ, but
not on the shear and bulk viscosity contributing to the
total attenuation b:

p′ = c2ρ′ − ( 1

CV
− 1

CP
) χc
ρ0

∂ρ′

∂x

≈ c2ρ′ + ( 1

CV
− 1

CP
) χ
ρ0

∂ρ′

∂t
, (6)

where CP and CV designate the heat capacities under
constant pressure and constant volume per unit mass,
respectively. Velocity of a gas is connected to pertur-
bation in density in the following way:

v = c

ρ0
ρ′ + b

2cρ20

∂ρ′

∂t
. (7)

Hence the curves in the plane velocity versus pertur-
bation in density also reveal hysteretic character which
is conditioned by the total attenuation, the difference
in the behaviour of p′(ρ′) and v(ρ′) points the ther-
mal conduction coefficient and mechanical viscosity.
Hedberg and Rudenko (2011) considered Eq. (6)
with the link depending on the total viscosity but not
on the thermal conduction individually.

2.2. A gas with excited vibrational degrees
of a molecule

The dispersion relation for an acoustic mode in
a gas with a relaxation process associating with the
excited vibrational degrees of a molecule sounds as
(Osipov, Uvarov, 1992; Molevich, 2001):

ω = ck − (γ − 1)2T0kτ
2c(1 + ickτ) Φ, (8)

where T0 is the equilibrium temperature of a gas and
Φ measures the degree of deviation from adiabaticity
of a wave process, γ = CP

CV
is the ratio of specific heats

under constant pressure and constant volume, respec-
tively:

Φ = 1

τ

dεeq
dT

+ ε − εeq
τ2

dτ
T
, (9)

where ε denotes the internal energy of a gas, τ is the
relaxation time, and the equilibrium internal energy
εeq(T ) in the case of the system of harmonic oscillators
equals:

εeq(T ) =
h̵Ω

m (exp(h̵Ω/kBT ) − 1) , (10)

where m is the mass of a molecule, h̵Ω is the mag-
nitude of the vibrational quantum, and kB designates
the Boltzmann constant. The relaxation time in the
most cases is a function of temperature, ln τ ∼ T −1/3
(Landau, Lifshitz, 1987). The leading-order link be-
tween the acoustic pressure and excess acoustic density
takes the form (Perelomova, 2017):

p′ = c2ρ′ − (γ − 1)2T0
c

Φ

∞

∫
x

exp(x − x
′

cτ
)ρ′ dx′

≡ c2ρ′ − cαV
τ

∞

∫
x

exp(x − x
′

cτ
)ρ′ dx′, (11)

where

αV = (γ − 1)2T0τΦ
c2

(12)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


522 Archives of Acoustics – Volume 47, Number 4, 2022

is a dimensionless small parameter responsible for de-
viation from adiabaticity of a flow due to relaxation.
It is negative in an acoustically active flow due to the
negative Φ. The connection linking velocity and per-
turbation in density takes the form:

v = c

ρ0
ρ′ − αV

2τρ0

∞

∫
x

exp(x − x
′

cτ
)ρ′ dx′. (13)

Hence, the hysteretic curves determined by Eqs (11)
and (13) reveal a different behaviour. Their comparison
can give information about αV . It follows from Eqs (11)
and (13) that:

p′

cρ0
+ cρ

′

ρ0
− 2v′ = 0. (14)

All quantities in Eq. (14) are local and easy to mea-
sure. The relation does not include an integral which
reflects the time dependent behaviour of perturbations
but points at the kind of thermodynamic relaxation.

2.3. An electrolyte

Following Nachman et al. (1990), one relaxation
process with the characteristic time of relaxation τ
for the vibrational energy in an electrolyte is consi-
dered. The entropy is a sum of an equilibrium part se

and of an irreversible part associating with one re-
laxation process (Eigen, Tamm, 1962; Pierce, 1981;
Nachman, 1990):

s(p, ρ, n) = se(p, ρ) + CPκ
βPT

∆ξ, (15)

where
∆ξ = n − ne(p, T )

∂ne(p, T )/∂p , (16)

where n designates the number of molecules per unit
mass, κ denotes the contribution of the dissolved mo-
lecules to the isothermal compressibility (reciprocal of
the bulk modulus), and βP is the isobaric volumetric
thermal expansion coefficient:

βP = − 1

ρ0
( ∂ρ
∂T
)
p
. (17)

∆ξ satifies the relaxation equation:

( ∂
∂t

+ 1

τ
)∆ξ = −∂p

′

∂t
. (18)

Equilibrium quantities are supplied by the upper index e.
A principal result by Nachman (1990) is the genera-
lised frequency domain compressibility expressed in his
work in Eq. (37) as:

1

c2ρ0
− κ iω

iω − 1/τ . (19)

The compressibility at zero frequency equals 1
c2ρ0

and at
the infinite frequency it takes the form 1

c2ρ0
− κ. At the

presence of relaxation, the compressibility at zero fre-
quency is always larger than that at the infinite
frequency. These thermodynamic premises lead to the
dispersion relation:

ω = ck + iκ c4k2ρ0τ

2(1 + ickτ) ≡ ck + iαE
c2k2τ

2(1 + ickτ) . (20)

Equation (20) introduces a dimensionless parameter
responsible for the small impact of relaxation:

αE = c2ρ0κ≪ 1. (21)

The dispersion relation (20) determines links between
the Fourier transforms of thermodynamic perturba-
tions in the sound mode, and the correspondent links
in x, t space. In particular, the relation between the
acoustic pressure and excess density in the sound mode
takes the form:

p′ = c2ρ′ − αEc2
∞

∫
x

exp(x − x
′

cτ
) ∂ρ

′

∂x′
dx′. (22)

Velocity relates to the perturbation of density as
(Perelomova, 2015):

v = c

ρ0
ρ′ − αEc

2ρ0

∞

∫
x

exp(x − x
′

cτ
) ∂ρ

′

∂x′
dx′. (23)

The hysteretic curves determined by Eqs (22) and (23)
also reveal different hysteretic behaviour which may
ensure evaluations of αE . In spite of different mecha-
nisms of relaxation, the equality (14) is valid in this
case as well.

3. Hysteretic behaviour

Relations between the acoustic pressure and ex-
cess acoustic density (6), (11), (22) are specified dif-
ferent hysteretic graphs in the thermodynamic plane.
The hysteresis is due to a different thermodynamic be-
haviour in the domains when p′ enlarges in time, and
in the domains when p′ gets smaller. The hysteretic
curves depend on the kinds of thermodynamic relax-
ation and excitation. A similar hysteretic behaviour is
revealed by curves v(ρ′) for all cases of relaxation. In
this section, we do not consider nonlinear effects which
bring corrections to the links of thermodynamic vari-
ables and distort the form of hysteretic curves.

3.1. Harmonic variations of pressure

We consider dimensionless variations in pressure in
the form:

P ≡ p′

Mc20ρ0
= sin(ωt − kx), (24)
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which is the leading-order approximation solution to
a linear wave equation without relaxation and attenu-
ation of any kind (the Mach number M measures the
magnitude of perturbations; it represents the ratio of
magnitude of velocity to the local speed of sound), and
dimensionless perturbation of density:

R = ρ′

Mρ0
. (25)

Making use of Eqs (6), (11), (22), the hysteretic curves
at x = 0 are determined in the parametric forms as
follows (θ = ωt designates the dimensionless time):
a) thermoconducting

P = sin(θ),

R = sin(θ) − αT cos(θ),

αT = ( 1

CV
− 1

CP
) χω

ρ0c2
,

b) vibrational

P = sin(θ),

R = sin(θ) − αV
ωτ cos(θ) − sin(θ)

1 + ω2τ2
,

c) electrolyte

P = sin(θ),

R = sin(θ) − αE
ωτ cos(θ) + (ωτ)2 sin(θ)

1 + ω2τ2
.

Figure 1 shows hystresis curves at ωτ = 1 for all
kinds of relaxation and attenuation considered in Sub-
secs 2.1, 2.2, and 2.3. All curves start at the negative
R at zero P . The “vertical” (the difference between
maximum and minimum magnitudes of R at zero P )
and “horizontal” (the difference between maximum and
minimum magnitudes of P at zero R) widths of curves
are equal but vary with ωτ :
a) thermoconducting 2αT ,

b) vibrational
2∣αV ∣ωτ
1 + (ωτ)2 ,

c) electrolyte
2αEωτ

1 + (ωτ)2 .

The case of vibrational relaxation is special since αV
may take zero and negative (in acoustically active flow)
values. Negative αV specifies the clockwise direction of
the hysteretic curve. The amplitude of R varies with α
and ωτ :

RT,A ≈ 1, RV,A = 1 + αV
1 + (ωτ)2 ,

RE,A ≈ 1 − αE(ωτ)2
1 + (ωτ)2 ,

(26)

where RV,A and RE,A constantly but differently de-
crease as functions of ωτ .

a) b)
R

P P

R

c)
R

P

Fig. 1. Hysteretic curves reflecting different mechanisms of
attenuation. The case of harmonic acoustic pressure at an
exciter, x = 0. αT = αE = 0.2, αV = 0.2 (normal line),

αV = −0.2 (dashed line), ωτ = 1.

3.2. Impulsive variations of pressure

Let the variation in pressure takes the Gaussian
form

P = exp(−(ωt − kx)2). (27)

Making use of (2.6), (2.11), (2.22) we arrive at the
hysteretic curves at x = 0 in the parametric forms:
a) thermoconducting

P = exp(−θ2),

R = exp(−θ2) + 2αT θ exp(−θ2),

b) vibrational

P = exp(−θ2),

R = exp(−θ2) + αV
√
π

2ωτ
exp(1 − 4ωτθ

4ω2τ2
)

⋅ (1 − erf ( 1

2ωτ
− θ)) ,

c) electrolyte

P = exp(−θ2),

R = exp(−θ2) − αE
2ωτ

exp(−θ (θ + 1

ωτ
))

⋅ (2 exp( θ
ωτ
)ωτ +

√
π exp(θ2 + 1

4ω2τ2
)

⋅ (1 − erf ( 1

2ωτ
− θ))) .
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Figure 2 shows hysteretic curves as an impulse
evolves from −∞ till ∞ in time. The starting and resi-
dual values of R in all cases equal zero. In the case of
non-equilibrium vibrational relaxation, αV < 0 corre-
sponds to unusual direction of the loop traversal. The
correspondent curve reveal smaller amplitudes R for
the equal magnitudes P .

a) b)
R

P

R

P

c)
R

P

Fig. 2. Hysteretic curves reflecting different mechanisms
of attenuation. The case of acoustic pressure in the form of
a Gaussian impulse: αT = αE = 0.2, αV = 0.2 (normal line),

αV = −0.2 (dashed line), ωτ = 1 .

4. Conclusions

The hysteretic curves are manifestation of irre-
versible thermodynamic processes, in particular, relax-
ation processes. They are useful in identification not
only of individual but multiple relaxation processes. As
usual, all of them have small impact on a wave process
and are considered as linear and independent. Hence
the attenuation coefficients and links of wave pertur-
bations are corrected by the sum of terms responsible
for any kind of attenuation. For processes with contin-
uously distributed times of relaxation, the weighting
function G(τ) is introduced (Pierce, 2021) which is
used in integrals over the whole range of physically
meaningful times of relaxation. The rates of individual
relaxation processes vary and form a hierarchy from
short (establishment of the equilibrium between trans-
lational degrees of molecules) till large (relaxation of
chemical processes) ones. The non-equilibrium distri-
bution of energy has impact on adiabatic compressi-
bility and by means of that on the sound speed. The
relaxation processes and all that follows (dispersion re-
lations, sound speed, attenuation coefficients, relations

between specific perturbations, hysteretic curves) are
dependent on a characteristic frequency of the exciter.
In this study, we consider acoustic hysteretic behaviour
of flows with different individual mechanisms of non-
adiabaticity:
1) the Newtonian ones with the thermal conduction;
2) flows where the vibrational degrees of molecules

are excited;
3) flows of electrolytes with a chemical reaction.
The total range of sound frequencies is considered.

The case of vibrational relaxation has much in com-
mon with the relaxation due to a chemical reaction in
a gas. There is an evident analogy in the dispersion
relations and links between the acoustic pressure and
excess acoustic density (Leble, Perelomova, 2018;
Perelomova, 2013; 2019). The dispersion relation for
the wave propagating in the positive direction of axis x
and corresponding link of thermodynamic perturba-
tions in a gas with a chemical reaction are very similar
to Eqs (8) and (11):

ω = ck + ckτQ0(γ − 1)(Qρ + (γ − 1)QT )
2γT0(1 + ickτ)

,

p′1 = c2ρ′ +
Q0CV (γ − 1)2(Qρ + (γ − 1)QT )

c

⋅
∞

∫
x

dx1 exp(x − x1
cτc

)ρ′1,

(28)

where τ is the characteristic duration of a chemical
reaction, Q is the heat produced in a gas per one
molecule due to a chemical reaction, and the dimen-
sionless quantities QT , Qρ, QY are expressed in terms
of partial derivatives of the heat produced in a chemi-
cal reaction, Q:

QT = T0
Q0
(∂Q
∂T
)
T0,ρ0,Y0

,

Qρ =
ρ0
Q0
(∂Q
∂ρ
)
T0,ρ0,Y0

,

QY = Y0
Q0
(∂Q
∂Y
)
T0,ρ0,Y0

(29)

at equilibrium temperature T0, density ρ0 and the mass
fraction of reagent Y0. CV , γ, and c designate “frozen”
values, corresponding to processes which take place at
infinitely high frequencies. The hysteresis occurs un-
usually in an acoustically active flow, that is, if

Qρ + (γ − 1)QT > 0. (30)

In general, relaxation processes such as molecular re-
laxations, energy exchanges between translational and
internal degrees of molecules freedom and chemical re-
actions, determine the form of the kernel in an inte-
gral relation of acoustic pressure and perturbation in
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the acoustic density. This kernel is responsible for the
frequency dependent absorption and may be recon-
structed basing on experimental data. Acoustic hys-
teresis may be readily detected experimentally. It may
be useful in evaluations of different relaxation mecha-
nisms in a medium by means of observing excitation
at different frequencies during the nondestructive test-
ing of materials. The width of a hysteretic curve and
the magnitude of excess acoustic density (26) in har-
monic excitation may be the indicators. Often, some
relaxation mechanisms contribute to a hysteresis. This
leads to a sum of integrals in the link R(P ) with dif-
ferent kernels. Hence, the hysteretic curves may be
useful in the detection of individual relaxation mech-
anisms and comparative analysis of the relaxation pa-
rameters. The bypass direction of a hysteretic curve is
usually counter clockwise (clockwise in acoustically ac-
tive flows). That ensures negative (positive in acousti-
cally active flows) work done by a liquid element along
the pass ∫ pdV = − 1

ρ2 ∫ pdρ < 0 and hence positive
(negative) variation in the internal energy in the quasi-
adiabatic processes:

dU = −∫ pdV = 1

ρ2
∫ pdρ, (31)

which reflects an irreversible transform of acoustic en-
ergy into that of the chaotic motion. The dimension-
less variation of the internal energy over the period dU
takes the form in the case of harmonic excitation:
a) thermoconducting παT ,

b) vibrational
παV ωτ

1 + (ωτ)2 ,

c) electrolyte
παEωτ

1 + (ωτ)2 .

The macroscopic sound energy increases in acousti-
cally active media taking energy from the background.
This leads to a cooling of a medium (Molevich, 2011;
Leble, Perelomova, 2018).

The hysteretic behaviour also specifies flows of flu-
ids which are at the boundary between liquids and
solids. A stand-alone example is a Bingham plastic,
a liquid rigid for shear stress less than some critical
value Pc. The leading-order relation between the acous-
tic pressure and excess acoustic density in the Bingham
flows is:

R = (1 − F )P, if
∂P

∂T
> 0,

R = (1 + F )P, if
∂P

∂T
< 0,

(32)

where F = PcβP

Kρ20CV c2
and K = 1

ρ0
(∂ρ
∂p
)
T
(Perelomova,

2011a; 2011b). The hysteretic curves in the case of har-
monic and impulsive exciters are shown in Fig. 3 for
the exemplary value F = 0.1.

a) b)
R

P

R

P

Fig. 3. Hysteretic curves in a flow of a Bingham plastic. The
case of acoustic pressure in the form of harmonic wave (24)
(one period of oscillations (a)) and a Gaussian impulse (27)

(evolution in time from −∞ till ∞ (b)), F = 0.1.

The dimensionless variation of the internal energy
∫ P dR over a period in the case of harmonic excita-
tion of a Bingham plastic equals 2F . It equals F in the
case of an impulsive excitation. The example of flows of
the Maxwell liquids also reveals relaxation. The links
between acoustic pressure and perturbation of acous-
tic density does not contain an integral term but in-
cludes only a term proportional to the thermal con-
duction (Perelomova, 2008). Hence, the hysteretic
behaviour is the same that in the case of the Newto-
nian flows with the thermal conduction.

We do not take into account nonlinearity in the
links of thermodynamic perturbations. The quadratic
nonlinearity deforms an elliptic diagram into a crescent
with the downcast ends (Hedberg, Rudenko, 2011;
Perelomova, 2020). Hysteretic processes due to the
pure nonlinear losses at the front of the shock wave
were considered in detail by Hedberg and Rudenko
(2011). Also, the nonlinearity of a flow and some kind
of damping (including relaxation of thermodynamic
processes) are the necessary conditions for interaction
of modes and excitation of the secondary entropy mode
in the field of intense sound. The entropy mode con-
tributes to the hysteretic behaviour in the plane total
excess pressure⇔ total perturbation of density (since
it is specified by the non-zero perturbation in density),
but does not contribute to the acoustic hysteresis. An
excess density associating with the entropy mode is
usually negative (this corresponds to the positive ex-
cess temperature due to the transform of the macro-
scopic energy into the microscopic one) but may be
positive in the acoustically active flows. This deter-
mines two kinds of behaviour of the hysteretic curves
in the plane perturbation of pressure ⇔ total pertur-
bation of density. In particular, harmonic variation in
pressure yields a shift of total excess density (nega-
tive of positive) over every period which enlarges with
the number of periods. The peculiarities introduced by
an acoustic heating (cooling) in the thermodynamic
relations and hysteretic curves have been discussed
by Perelomova (2013) regarding the flows of non-
equilibrium gas and a gas with an exothermic chemical
reaction. A fairly complex case of magnetoacoustic hys-
teresis in flows of a magnetised gas which incorporates
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deviation form adiabaticity due to thermal conduction
and some heating-cooling function, is considered by
Perelomova (2020). This case is of a special interest
due to different scenarios of hysteresis necessary to bal-
ance the thermal conduction and the heating-cooling
function and due to dependence of the hysteretic be-
haviour on the ratio of magnetic and hydrostatic pres-
sures and the angle between the equilibrium magnetic
field and the wave vector.

The results are formulated in general. The dimen-
sionless parameters αT , αV , αE may vary in different
flows. The most interesting case is a flow in the vibra-
tionally relaxing gas which may be acoustically active.
This corresponds to the negative αV . Evaluations for the
typical laser mixture CO2 : N2 : He = 1 : 2 : 3 at normal
conditions p0 = 101 325 Pa, T = 300 K, give τ = 5 ⋅10−5 s
and the threshold pumping intensity 1.5 ⋅ 106 W ⋅m−3.
The pumping intensity 5.3 ⋅ 108 W ⋅m−3 corresponds to
αV = −0.07. The absolute value of αV increases when
the pumping intensity grows.
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