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Abstract: The paper proposes a crowdsourcing-based approach for annotated data acquisition and
means to support Active Learning training approach. In the proposed solution, aimed at data
engineers, the knowledge of the crowd serves as an oracle that is able to judge whether the given
sample is informative or not. The proposed solution reduces the amount of work needed to annotate
large sets of data. Furthermore, it allows a perpetual increase in the trained network quality by the
inclusion of new samples, gathered after network deployment. The paper also discusses means
of limiting network training times, especially in the post-deployment stage, where the size of the
training set can increase dramatically. This is done by the introduction of the fourth set composed of
samples gather during network actual usage.
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1. Introduction

Nowadays the world is all about data [1]. Traditional algorithms, due to the constant
development of neural networks, are losing their significance. We tend to rely on such
approaches more and more due to the complexity of current-day problems and the sheer
size of the problem space. These methods, however, require large volumes of properly
annotated data.

Pure data gathering usually can be done easily and can be fully automated. For
example, we can quite easily record bees entering and exiting a hive. On the other hand,
without annotation raw data is in many cases just useless. Data annotation itself usually is
what makes the training process costly and time consuming.

The sheer number of samples needed usually makes this a lengthy task, and the
difficulty of the annotation process is domain-dependent and usually cannot be automated.
In most cases, the process needs to be done by a team of humans. We can rely on the
transductive learning [2] approaches but this requires an already annotated set of data and
would require verification of the newly annotated set. In both cases, either the manual
annotation or the verification of automated annotations, humans have to be involved.
In some cases, they have to be experts in the field who need to be able to distinguish
objects belonging to the particular class that might be very similar to each other, e.g., when
annotating medical data [3]. Decisions on noisy or, e.g., overlapping objects within the
same class can also sometimes be difficult.

In some cases, we can lower the cost and the time needed to prepare the data by
reducing the size of the training set. One of the solutions is an Active Learning [4,5]
approach. It allows better sample preparation by covering the domain with fewer, although
more informative, samples. This way, the cost of generating such a set is also lower. In
this method, the network is trained using only informative samples, both positive and
negative, that is, samples that provide some new information allowing the creation of class
prototypes and their distinction. This way, we can skip the annotation of samples that are
similar to others already present in the training set.
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In this approach, we need still need to prepare the data, albeit in a small volume, and,
more importantly, we need a method to distinguish meaningful samples those not provide
any new information.

In this paper, we propose a crowdsourcing-based approach for not only annotated
data acquisition but also means to support Active Learning in the form of the oracle able
to judge whether the given sample is informative or not. The approach is implemented
as a general-purpose framework for data acquisition and verification. We also propose
a method for improving the classification quality by network-trained Active Learning
approach. Furthermore, thanks to the implementation of the crowdsourcing approach, we
can limit the amount of work needed to annotate large sets of data. We also proposed the
creation of an additional, fourth training set, obtained during the post-deployment stage
when the pre-trained network is actually used by utility applications. Thus, after initial
training, we can perpetually increase the quality of the network by the inclusion of new
samples. The paper also discusses means of limiting network training times, especially in
the post-deployment stage, where the size of the training set can increase dramatically.

The structure of this paper is as follows. First, in Section 2, the Active Learning
approach and the state of the art for Active Learning are presented. This section also
presents the CenHive system and its validation. Next, in Section 3, possible interconnections
with crowdsourcing and our custom crowdsourcing framework are described. Section 4
shows the proposed approach and the results are being discussed. Finally, some conclusions
are given.

2. The State of the Art
2.1. Active Learning Approaches

Traditionally in supervised learning, we train the model using a set of input–output
pairs generated by an unknown target function. We aim at achieving generalization by
providing as many samples as possible so that the network will be trained with different
cases. The generalization capability depends on a number of factors such as network
architecture, the training procedure, and the training data set itself. Traditionally, the
training data are randomly selected according to the probability distribution on the input
set. The current state of the network is completely ignored, and the training data are
not adjusted to the current knowledge of the network. As a result, during the learning
process, new samples provide less and less new information [6]. This leads to increased
training time as redundant training samples slow down the process. Unnecessarily large
training sets also generate additional costs as the acquisition of labeled training data can
be expensive.

The aforementioned problems are addressed by Active Learning [6]. In this approach,
the network is first trained with a small subset of the training set. Next, based on the
current state of the network, the most informative samples are selected. Those samples are
selected by the so-called oracle—the network asks the oracle whether the given sample
is informative or not, and, if yes, such sample is used to train the network. The process
is repeated until we reach a satisfactory state of the network or until there are no new
informative samples available.

Active learning can use multiple sample selection algorithms. The most common
are membership query synthesis, stream-based selective sampling, and pool-based sam-
pling [5].

Pool-based sampling is used for problems, where a large un-tagged set is easily and
cheaply available. In stream-based selective sampling, each sample is analyzed by the
network and the network decides whether the given sample should be tagged or not. The
third approach, Membership Query Synthesis, allows the network to request a sample
not only from the pool of already available samples but any from the problem space. The
implementation of such an approach is, however, problematic due to the availability of
such samples or the tagging process itself.
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One of the aspects of Active Learning is a way to judge whether a given sample is
informative or not. The most common methods are Uncertainty Sampling, Expected Model
Change, Expected Error Reduction, and Query By Committee. Uncertainty Sampling [7]
allows selection of those samples where the model does not trust the labels.

Expected Model Change [8] selects in turn samples that should introduce the biggest
changes in the model. Similarly Expected Error Reduction [9] prefers the samples that
would introduce the greatest reduction of generalization error. In the Query By Committee,
a set of models present labels that are the most appropriate for the given sample. For
training, the samples are selected for which the committee disagrees the most.

Labels for selected informative samples are provided by the so-called oracle. This
can be implemented using different approaches. The oracle can be a single or group of
experts or some kind of automated system or even a process, depending on the domain.
For classification and detection systems, the oracle, however, is usually implemented in
form of human experts. An automatic system (e.g., a neural network) able to mark the
samples correctly would already be a very well-trained model thus eliminating the need
to create a new system. In some cases, the persons taking part in tagging process have
to be experts in the problem domain, e.g., in medicine. In other cases, we can rely on an
average human being, as usual, a typical, adult human is able to mark certain objects, such
as plants, animals, pedestrians on the street, vehicles, bees, etc., correctly.

Active Learning allows so-called batch-mode learning. Traditionally in each iteration,
only one new sample should be added to the training set. In some cases, this can lead
to inefficient learning and thus to a slow and lengthy training process. Furthermore, in
convolutional neural networks, a single new sample might not have any impact on the
network quality due to the local optimization methods used during training [10]. In batch-
mode Active Learning during each iteration, the training set is extended by a set (batch)
of new informative samples. The batch selection method is also important as not always
selecting the most informative samples is the best approach, as some samples can carry
similar information or they can be unique and not representative or carry a lot of noise.
One of the simplest and most effective solutions is to select samples randomly from the set
of informative objects [5].

Over the recent years Active Learning approach have proved to be highly efficient
in solving specific problems [11]; however, in most cases, the selection algorithms are
not general. Usually they are hand-picked. Some work was done on a generalization
of the selection algorithms, i.e., to “learn how to learn” [12–14]. This field needs to be
explored further in the future as the generalization can still be improved. In the paper, we
propose generalizing the selection algorithm with crowdsourcing. We focus on incremental
pool-based sampling approach and batch-mode Active Learning.

2.2. The CenHive System

Typically deep neural networks learning includes the usage of three sets of data: the
training set, the test set, and the evaluation set. Each of those sets plays an important role in
the training process. In many cases, we have access to the additional, fourth set, which can
be gathered during the actual usage of the neural network, as after training the network is
usually deployed in a real-life environment. During the usage of the network, many new
data can be gathered, as samples need to be passed to the network, e.g., object detection. If
the detection could be somehow verified, the new data could be added to the training set for
retraining and improvement of the network quality by feeding it with new data and thus
reacting to changing conditions within the problem domain. For annotation verification,
the knowledge of the crowd can be used by employing a crowdsourcing approach via
Games with a Purpose [15] for data verification. Our and other research [16–21] shows that
the approach is viable and can be successfully used.

Constant addition of the new data to the training set would, however, greatly impact
the training time. The annotated data also need to be verified efficiently for the training
process to be valid and not replace one bottleneck with another. In the paper, we aim
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at providing a method for efficient verification of such new data samples and a way to
limit the size of the training set while not sacrificing the quality and generality of the
trained network. Our observation shows that the limitation of the training set can be done
by using the new samples combined with only a subset of the samples used in previous
training iterations. This way, the number of samples remains constant for each iteration
thus limiting the time needed for the whole training process. The question remains what
the proportions should be and how to gather annotated data quickly and without the
requirement of large investments.

CenHive is a web-based solution allowing distribution and aggregation of mappings
verification and creation tasks to human users using a Games with a Purpose approach [15].
The system allows multiple clients and data types. It supports not only text data but audio,
video, images, and any combination of aforementioned input types both in questions
presented to the users and answers generated by them. The amount of answers sent to the
client is also configurable and the client, instead of an answer to a question presented, can
create a new set of data for verification, e.g., by creating some mapping by marking objects
in the image.

The data transferred to the users are aggregated into so-called contents. They can
take the form of e.g., mappings (e.g., sets of connections between Wikipedia articles and a
WordNet synsets), tags (e.g., images with labeled objects), or raw data suitable for labeling,
etc. The tags or descriptions associated with the given content are called phrase. They can
be in any form, including yes/no answers, a set of tags, etc.

The system evaluation was done with help of the faculty students over the span of
3 years, each year consisting of 60 students. With the aforementioned procedure, we tested
the approach in two domains, where we tested the level of annotators agreement on the
provided data:

• Mapping verification [20]—using TGame (https://play.google.com/store/apps/details?
id=pl.gda.eti.kask.tgame accessed on 21 December 2021), an Android platform game,
designed for Wikipedia–WordNet mapping verification. It supports audio, video, text,
and images for both the contents and phrases. The player has to fulfill the task to acti-
vate checkpoints in the game. Our tests showed that the solution is viable for mapping
verification. During the two-month-long test period, players gave 3731 answers in total
to 338 questions. The total number of answers for different mapping types is shown in
Table 1.
During the tests, we established a procedure for dealing with malicious users. As
in the crowdsourcing approach, we have no control over the user actions, and we
decided to consider only tasks with multiple solutions. To eliminate blind shots, we
took into account only questions that were displayed for at least 5 s—the time needed
to actually read the question.

• Image tagging/verification—using 2048 clone (https://kask.eti.pg.gda.pl/cenhive2
/2048/ accessed on 21 December 2021). The player, during the game, donates some of
his or her computer computation power to create new data in the volunteer computing
approach. The downloaded photos were analyzed using Viola-Jones Feature Detection
Algorithm using the Haar Cascades [22] algorithm (more specifically using HAAR.js
implementation (https://github.com/foo123/HAAR.js accessed on 21 December
2021)). Detected faces were sent back to CenHive and stored as tags, where the
original image was tagged with coordinates of the rectangle containing the detected
face. The player, when he or she wanted to undo a move, needed to verify the
correctness of faces detects. He or she was presented with a random image selected
from all of the detection done by any player.
During the test period, where tests were done with the help of the research team and
students, for 64 multi-person photos, the game players generated 628 face-detects
(giving 303 distinct face detects). In this case, multiple face-detects are not necessary
as they are done arithmetically using the player’s device’s processing power. The
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detected faces were further verified—for 92 images, we received 181 verification
responses and 7 reports.

Table 1. Number of answers for different type of questions.

Question Type Questions Answers Answers per
Question Reports Blind Shots Blind Shots %

Extended
mappings 239 3308 13.84 625 16 0.48

Yes/No 99 423 4.27 10 12 2.84

Total 338 3731 11.04 685 62 1.34

Two other clients are implemented that support general image tagging and aim at
producing data for training neural networks using an active learning approach. Through
both clients, users can verify bee detection done by a neural network and have the ability to
tag bees on random images. One of the clients is a captcha element, which in its current form
can be seen on the CenHive registration page (https://kask.eti.pg.gda.pl/cenhive2/?page=
register accessed on 21 December 2021). The other client is an Android game that should
be available for the general public in the coming weeks. This work is a part of our wider
idea for a beehive monitoring system using both audio and video for hive supervision [23].
The approach was validated and shows promising results [18], which allows us to propose
a generalized model for crowdsourcing supported Active Learning approach.

3. Crowdsourcing Enabled Active Learning

The proposed solution is aimed at data engineers, who can use a crowdsourcing
approach, based on unqualified users, to obtain high-quality annotated data. We maintain
the credibility of the obtained data by handing out the same task to multiple users, thus
eliminating incorrect, either intentionally or by accident, answers. The significance of the
proposed approach is backed up by the universal difficulty of obtaining proper volumes
of training data. The proposed approach allows the data engineers to gather the data
relatively fast and cheaply.

The introduction of the fourth set, mentioned in the previous section, allows neural
network optimization and further generalization beyond the initial training stage. To
further limit the data needed, we decided to use Active Learning, and the data annotation
verification is done using crowdsourcing approach via CenHive system [18–21] (https:
//kask.eti.pg.gda.pl/cenhive2/ accessed on 21 December 2021).

In our tests, we used the fourth-set approach for image recognition. The proposed solu-
tion can be, however, applied to multiple domains and types of data. This is independent of
whether the network is used for image detection, signal recognition, or other applications,
and it is also independent of whether the data can be annotated easily without the use of
an expert or if some expert knowledge is needed, such as medical expertise, to properly
annotate the data. Our previous research shows that crowdsourcing can be successfully
applied for mapping verification and data tagging. Furthermore, the knowledge gathered
from the crowd can be successfully used in the Active Learning approach [18]. In this
section, we present the general system for sample acquisition and its role in the Active
Learning approach.

3.1. The Data

During our research, we used video recordings of bees entering and exiting from the
hive [24] that were recorded in Spring 2017 and 2018. The videos were available in .mov
and .mp4 formats and thus were of different quality. The images were tagged using the
CenHive system using the crowdsourcing approach.
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The bees were marked on Full HD images that were too big to serve as direct input for
neural networks. As such the images were split into fragments measuring 500 × 500 pixels.
Each image could have any number of bees. The total number of images and bees in
training, validation, and test sets can be seen in Table 2. Sample images are shown in
Figure 1.

Table 2. The training data.

Training Set Validation Set Test Set

Images 60,422 17,292 7458
Bees 71,105 19,841 6741

The tagged images included some hard cases such as the following:

• Over 17% of the bees located near the entrances to the hive are partially visible;
• In around 4.2% of cases, the bees overlap;
• About 3% of spotted bees are hard to distinguish from the background due to the

color of the surrounding environment;
• Almost 37% of the bees were blurred as they moved faster than the camera frame rate.

Figure 1. Sample images used as a training set.

3.2. Network Topology and the Training Process

The network topology used for object recognition is constantly changed and improved;
thus, one of the aims of the proposed approach is to develop a solution that is topology-
independent. During our research, we decided to use Faster R-CNN [25] network as it is
often used as a base for other modern solutions and thus will be easier to replace in the
future. It also scores very high in different rankings [25,26]. The network was implemented
using the Facebook Detectron system [27]. As a base for the network, we decided to use
the ResNet-50 based model shipped with the Detectron system, which was trained on the
ImageNet-1k set [28,29].

The training process is iterative in nature. Before the first iteration, all available
samples are put into the global set, and the network is initialized. With each iteration, the
network quality is increased. Each iteration consists of the following steps:
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1. All images available in the global set are passed to the network, and the bee detection
is done;

2. All network annotated images are passed to CenHive platform;
3. The network annotated images are forwarded to the users, who verify the correctness

of the annotation;
4. The user answers are used to determine the informative value of each sample and

prepare the corrected samples;
5. Random subset of user verified and annotated images are added to the training set

and removed from the global set;
6. The network is trained using the training set obtained in the previous step.

3.3. Active Learning Variant

In our approach, we assume that as people verify or tag new images new samples
appear that can be used to further train the network. We also plan on acquiring new
recordings from different hives and using them to extend the network. For this reason,
we decided on using an incremental pool-based sampling approach. Due to the nature of
convolutional neural networks, based on observations done by Settles [5] and Senera and
Savares [10], we decided to use batch-mode Active Learning. The size of the batch and its
composition will be explained in detail in the following sections.

3.4. The Knowledge of the Crowd—An Oracle

An important part of Active Learning is the oracle that is able to state whether the
given sample is informative or not. In our case, we decided to use the knowledge of the
crowd to determine the quality of the given sample. For that purpose, we used our own
CenHive system [18–21]. We assume here, that by reaching a wider audience, we are able to
annotate more images with smaller costs than by using the work of experts. The drawback
here is the initial small pace of the annotation process; however, by embedding the tasks
into games or captcha [16] components on commonly used websites, such as laboratory
user management, we observed that despite the initial slow start we managed to gather
enough users for quick and cheap data annotation.

In our approach, the current state of the network knowledge, represented by network
tagged images, is passed to the system in form of tasks for the users. The tasks can be of a
different type:

• Simple Yes/No question allowing the user to verify whether the picture contains a
bee or not;

• Question about how many bees the user sees on the image and thus allowing verifica-
tion with the number of objects detected by the network;

• More complex tasks allowing marking of the bees on the images never before seen by
the network.

The images, with the appropriate question, are forwarded to the users via dedicated
clients in the form of a so-called Games with a Purpose [15]. The CenHive system currently
has multiple clients implemented; for this research, we decided to use an Android-based
mobile game and captcha component on our computer laboratory user management sys-
tem.

The users of the systems via the client applications either verify if the network correctly
detected bees on the pictures or create new data that is used to train the network. By
verification of the network results, we can easily determine whether the given sample
is informative or not. For example, if most of the users state that the image does not
contain a bee (where the network marked such) or the number of bees is different from
the number returned by the network, we can use the image to extend the network quality.
The images marked differently by the users and the network are selected for training as
informative samples.
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4. The Proposed Model Improvement Process

The introduction of the fourth set, as proposed in the previous sections, allowed us
to improve the network quality originally trained with a limited set of samples. With a
constantly growing number of available samples, both the verification and the training will
take more and more time nullifying all benefits gained from this approach. The constant
flow of new training data can easily lead to extended training times and overfitting. In
a very large training set, the original training data can be underrepresented (e.g., due to
excess flow of data from only one source), and thus the network can lose generality; thus,
constant network improvement, based on the crowdsourcing verified state of the network,
requires a specific approach to the training process. In this paper, we focus on limiting the
training time without sacrificing the network quality.

We compared the obtained network quality with a traditionally trained network
(related to as a reference model in the following sections), where a full training set was
used during each epoch. During the tests, we aimed at maintaining the network accuracy
while keeping training time in check. The proposed model allows the limitation of the time
needed for network training without sacrificing the final network quality.

4.1. Number of Epochs in Each Iterations

Usually, the training length has an impact on the learning process quality [30,31].
Additional epochs, however, might not contribute to the training time. We trained the
network for 1, 5, 10, 15, and 20 epochs in each iteration. In each case, we added 10 photos
to the training set in each iteration. During the first iterations, the best result could be
observed for the networks trained for the greater number of epochs—15 and 20, respectively.
The best final quality was obtained by the network trained for 10, 15, and 20 epochs in
each iteration. The lower number of epochs resulted in poor network quality (around
20% lower quality for 1- and 5-epoch networks). Fifteen- and twenty-epoch networks
achieved similar quality as the ten-epoch network, but the training time increased by about
30% for every five new epochs. Further training of the 5-, 10-, and 15-epoch networks for
another six iterations resulted in a similar increase in network quality for 10- and 15- epoch
networks. The 5-epoch network achieved 13% worse quality than the 10-epoch network.
The results can be seen in Figure 2.

Figure 2. AP to the number of iterations for network trained with batch size of 10.

We repeated the tests for 5-, 10-epoch networks, with batch sizes of 100, 500, and
1000 images. The network quality increased more with the batch size rather than the
number of epochs. For batch sizes of 500 and 1000 samples, the five-epoch network reached
similar quality as the other networks trained with a higher number of epochs. The obtained
results are presented in Figure 3.
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Figure 3. AP to the number of iterations for network trained with batch size of 500 and 1000.

4.2. The Batch Size

In the previous section, we showed that we can limit the number of epochs by increas-
ing the batch size. When crowdsourcing is involved, however, the bigger the batch size, the
longer it takes to distribute and verify the samples. In this section, we show how the batch
size influences the network quality and thus establishes the correct value of the batch size.

The network was trained for 15 iterations, 10 epochs each, using the batch sizes of
10, 100, 500, and 1000 images that were added to the training set with each iteration. As
expected, with the increasing batch size, the Average Precision (AP) also increased, and the
1000-batch network achieved the best results. The 500-batch network had its AP worsen by
only 6%, and the difference narrowed with each iteration. The 100-batch network, however,
was much worse, with AP only at 75% of the 1000-batch network. This time, the difference
in AP did not diminish with further iterations.

When we compare the networks with respect to the ratio of achieved AP to the number
of images used, the best results can be achieved for the 100-batch network. This, however,
requires training for the whole 15 iterations. The 1000-batch network achieves a similar
result, worse only by 6% right after the second iteration.

We also tested the networks with respect to the “understanding” of the images, i.e.,
the number of the informative samples available to the number of images in the training set.
As can be seen in Figure 4, the networks trained using smaller batch sizes reach a similar
level of data “understanding” as other networks but require a smaller number of samples.
For example for a training set of size 1000 the 1000-batch network “understood” around
50% of the images, whereas the 100-batch network correctly recognized objects on 64% of
the images.

Figure 4. Known to all samples ratio for given batch size.
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4.3. Iteration Time Optimization

Te tests presented in Sections 4.1 and 4.2 allowed us to check how different training
process parameters impact the quality of the resulting network. The main observation is
that using smaller batch sizes allows better sample management, thereby providing similar
results; however, this requires a longer learning process, mainly due to the need to use
more iterations during network training. To reach an AP of 0.5, our 100-batch network
needed 16 iterations, whereas 500- and 1000-batch networks required only 4 and 3 iterations,
respectively. We tried to find a way to shorten the iteration time. Our analysis shows that
this can be done during the detection phase of our approach and during the training itself.

4.3.1. Detection Optimization

As shown in Section 3.2, the first step of each iteration is an annotation of all available
images by the network by locations where bees can be found. In previously described tests,
in all cases, each time we performed the detection on all images independently of whether
they were considered informative or not in the previous iteration. We observed (Figure 5)
that after the second iteration, the number of informative samples drop by 50%. In the
following iterations, the number of such samples decreases further. However, care needs to
be taken as in cases with small batch sizes the number of informative samples can be in
some cases higher.

Figure 5. Ratio of informative samples to all samples in the training pool for given batch size.

We decided to modify the process described in Section 3.2. Step 4 of the algorithm
was extended with the removal of non-informative samples from the global set. We then
performed the training using a batch size of 100, with each iteration lasting 10 epochs. As
can be seen in Figures 6 and 7, the removal of non-informative images not only did not
impact the AP of the resulting network but also allowed a reduction in the number of
detection operations by around 60%.

4.3.2. Training Time

Training time highly depends on the hardware used and the number of other processes
running in the system. For this reason, we decided to consider training time as the number
of gradient calculations that need to be done during the learning process. The number of
calculations for 10-epoch training for a different number of added samples can be seen in
Figure 8. During the first iterations, especially for small batch sizes, the training time is
relatively short. As we can observe, however, it quickly rises as new samples are added
to the training set. We followed observations found in [30] and decided to use a constant
number of training samples in the following iterations. For that purpose, we modified our
algorithm once again. We introduced a new training set, a global training set, containing all
selected training samples. The training set actually used for training contains new randomly
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selected images and a constant amount of random images from the global training set.
This way, we aim at training the network with new, informative images and a subset of
previously used samples, thus limiting the time needed for training and eliminating the
overfitting effect that can occur when we would use only new images for a given iteration.

Figure 6. AP for network trained with batch 100 and network trained with modified algorithm with
non-informative samples removed.

Figure 7. Number of detections done during training of the network with batch 100 and training of
the network using modified algorithm with non-informative samples removed.

Figure 8. Gradient calculations for given batch size.
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The crucial aspect of this modification is the selection of proper ratios between new
samples and those from the global training set. We tested the following configurations:

• 50:50—50 known samples and 50 new samples,
• 150:50—150 known samples and 50 new samples,
• 300:50—300 known samples and 50 new samples.

As a reference, we used a network trained using the original approach with a batch
size of 50. To eliminate the problem of not enough images in the global training set, we first
trained the network for five iterations with a batch size of 100 using the original approach
and used the training set created by this approach as the global training set in following
iterations, which were done with the aforementioned configurations.

As we can see in Figure 9, not using all previous training samples does not introduce
a heavy impact on the training process, and the AP is on similar levels. The best results
were obtained during training of the 300:50 network. They were similar to full training of a
50-batch network but required 62% fewer gradient calculations. The remaining 150:50 and
50:50 networks achieved similar results with AP around 98% and 97.6% of the reference
network, respectively. During the training of the aforementioned networks, we had to do
78% and 22% fewer gradient calculations, respectively.

Figure 9. AP for networks trained with only part of the samples used in previous iterations.

The aforementioned changes increased the number of informative samples slightly
(Figure 10), especially for 50:50 and 150:50 configurations.

Figure 10. The number of informative samples in the pool for networks trained with only part of the
samples used in previous iterations.
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To verify the observations we repeated the training adding 100 samples per iteration.
The configurations used were 300:100 and 600:100, and the results were compared to a
previously trained 100-batch network. The results are presented in Figures 11–13, showing
the achieved AP, informative samples count and gradient calculations, respectively. As we
can see, the achieved AP was similar to the reference network, reaching 98.6% and 99.2%
for 300:100 and 600:100 networks, respectively. The number of gradient calculations is
also smaller, by 31% and 53.8%, respectively, of the number required to train the reference
network. For the 300:100 network, however, the number of informative samples increased
showing that either the sample ratio or the total number of samples was too low.

Figure 11. AP for batch 100, 300:100, and 600:100 networks.

Figure 12. Number of informative samples for batch 100, 300:100, and 600:100 networks.

Figure 13. Number of gradient calculations for batch 100, 300:100, and 600:100 networks.
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4.4. Final Model Parameters

Finally, we decided to use a batch size of 100. The model trained with such a batch
reached AP equal to around 85% of the reference network AP after 15 iterations and
required 30% fewer samples than the 1000-batch trained model. Selecting a smaller batch
size allows us a more effective usage of gathered samples, thus lowering the time needed to
get them and lowering the total training time. The ability to use smaller batch sizes is crucial
in regard to the crowdsourcing approach, as it allows us to update the network quality
with fewer responses needed from the users, thus allowing more often network updates.
Unfortunately, smaller batch sizes also require more iterations to reach proper values of
AP. Considering that gathering responses from users can take some time, usually a slightly
increased training time is worth the benefit from a smaller number of samples required.

To mitigate the need for an increased iterations count, we also employed observations
presented in Section 4.3. In this case, the removal of noninformative samples lowered the
number of detections by up to 60%, and keeping the new to known training samples ratio
at 600:100 allowed lowering the number of gradient calculations by 43%, with each iteration
lasting 10 epochs.

5. Results

The training process lasted until there were no new informative samples available.
The results against the validation set are presented in Figure 14.

Figure 14. AP in each epoch while training a network with full training set.

After 15 iterations, the model reached a similar AP to the 100-batch model (0.498)
with 63% fewer detections and 58% fewer gradient calculations. The whole training lasted
83 iterations, and the model trained during this iteration was the best one. We used
8266 samples during the training (13.7% of all available images). The comparison between
the model and the model trained conventionally is presented in Table 3. For both validation
and test sets the network reached over 90% of reference network AP. This shows that we
can achieve similar network quality with a smaller number of samples. The comparison
between detections done by the reference network and the proposed model can be seen
in Figures 15 and 16. As we can see, the proposed model in most cases generates similar
mappings. It performs worse only in some edge cases such as when a lot of bees are
overlapping or only a small part of the insect is visible.

Table 3. Comparison of models trained conventionally and using Active Learning approach.

Approach AP—Validation Set AP—Test Set No of Photos

Conventional 0.61 0.457 60,422
Active Learning 0.572 0.425 8266

Active Learning/Conventional (%) 93.8 93.0 13.7
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Figure 15. Bees detected by reference network (left) and the proposed model (right)—image 1.

Figure 16. Bees detected by reference network (left) and the proposed model (right)—image 2.
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6. Conclusions and Future Works

In this paper, we proposed a crowdsourcing-based approach for annotated data acqui-
sition and means to support an Active Learning training approach. The knowledge of the
crowd serves here as an oracle able to judge whether the given sample is informative or
not. The proposed approach was implemented as a general-purpose framework for data
acquisition and verification. The system can be used for data gathering and annotation by
both experts and volunteers alike, allowing the generation of high-quality data annotations
without the need for special knowledge or expertise. This way, the time and cost needed to
prepare training data can be limited in many everyday scenarios and fields of applications.
The paper also introduced a fourth set concept to the training process. This set consists of
voluntarily provided classification samples obtained during the post-deployment stage
when the pre-trained network is actually used in real-life applications and allows a perpet-
ual increase in the quality of the network thanks to new samples provided by the users.
The paper also discusses hyper-parameters used during the network training. This way we
were able to limit the time needed to train the network, especially in the post-deployment
quality update stages. This is done by keeping the size of the new training set while still
maintaining the network generality.

The final model obtained proved to be comparable with the model trained traditionally,
reaching 93% of AP of the traditional model while using only 13.7% of the available
training data.

In further research, we plan on using the approach not only for image-based data but
also for text data (for which we already have some promising results [18,19]) and for pure
data gathering, where the users are tasked with annotating data with custom tags. We also
plan on exploring weakly supervised learning as an addition to the process. For that, we
plan on using an approach similar to the Soft Switch proposed by Desai et al. [32]. This
would allow further decreasing the number of samples needed for the training.
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