
Abstract— As the industrial sector is becoming ever more 
flexible in order to improve productivity, legacy interfaces for 
industrial applications must evolve to enhance efficiency and 
must adapt to achieve higher elasticity and reliability in harsh 
manufacturing environments. The localization of machines, sen-
sors and workers inside the industrial premises is one of such 
interfaces used by many applications. Current localization-based 
systems are unable to deal with highly variable conditions, 
meaning that the solutions working well in stationary systems 
suffer from considerable difficulties in harsh environments, such 
as factories. As a result, the precision of localization techniques 
is not satisfactory in most industrial applications. This paper 
fills in the existing gap between static approaches and dynamic 
indoor positioning systems, by presenting a solution adapting the 
system to highly changeable conditions. The proposed solution 
makes use of a Machine Learning-based feedback loop that 
learns the variability of the environment. This feedback makes 
continuous fingerprint calibration feasible even in the presence of 
different machines and Industrial Internet of Things sensors that 
introduce variations to the electromagnetic environment. This 
paper also presents a comprehensive indoor positioning system 
solution that reduces complexity of hardware, meaning that a 
multi-standard-transceiver infrastructure may be adopted with 
reduced capital and operational expenditures. We have developed 
the system from scratch and have conducted an extensive 
range of testbed experiments showing that the multi-technology 
transceiver feature is capable of increasing positioning accuracy, 
as well as of introducing permanent fingerprints calibration at 
harsh industrial premises.

Index Terms— Positioning system, Mahalanobis distance, cali-
bration, industrial IoT, industrial interface.

I. INTRODUCTION

IN THE future, industrial robots will need to be flexible in
order to be able to work on different products. Industrial

processes can no longer be a series of defined-from-the-design
static processes in which robots perform the same actions
during their entire lifecycle. Flexibility in manufacturing is
one of the main features of the Industry 4.0 concept and
allows to enhance overall productivity, avoid stagnation and
multiply the potential number of end-to-end processes. The
main technological requirement for achieving the necessary
flexibility of robots is that robots must not be restricted by
any limitations or hindrances. Therefore, factories must be
free from cables and wireless communications are a must
in Industry 4.0. The 5G network is capable of implementing
all-wireless fundamentals at new factories. 5G allows to give
up wired connectivity in industries due to the fact that it is
suitable for the implementation of Ultra-Reliable Low Latency
Communications scenarios. These scenarios are crucial for the
Industrial Internet of Things (IIoT) [1]–[3].

However, the challenges that wireless robots face at indus-
trial premises are countless due to the harsh environment in
which they operate. The management of industrial processes
requires fast and precise responses of all elements connected to
the system. Therefore, precise localization of all such elements
of the wireless production environment is crucial in all indus-
trial applications. Location-based services are crucial for both
performance and safety. Precise robot localization is crucial
for orchestrating all tasks that robots are required to perform
in real-time, as machinery movements depend on the distance
from various sensors. Precise robot and person localization is
crucial for safety, when both people and machine share the
same physical space [4]. Context-awareness is also crucial for
maintenance-related activities performed at automated indus-
trial premises, helping the maintenance personnel to navigate
through the shop floor [5]

Production machinery and equipment poses numerous chal-
lenges when it comes to precise wireless communications,
and, specifically, to localization technologies: electromagnetic
compatibility, which cannot be taken for granted, multi-
ple radio systems working within similar radio frequency
bands, echoes and absorption of electromagnetic signals, etc.
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Traditional indoor localization (positioning) systems, such as
those based on Time of Arrival or Received Signal Strength
in Bluetooth or WiFi, are too imprecise in industrial environ-
ments [6], [7]. Newer positioning techniques using different
radio technologies have appeared in industrial applications.
These work with short range radio technologies on separate
radio spectrum bands. The most popular are Ultra-wideband
(UWB) [8] and Radio-Frequency Identification (RFID) [9].

UWB uses Time of Flight, which is an adaptation of the
classic Time of Arrival systems. Time of Flight estimates the
light transit time between two points, and Time of Arrival
estimates the transit time of other electromagnetic signals
between two points. UWB is very precise (accuracy of approx.
30 cm), but highly cost-ineffective. Moreover, it requires a
line-of-sight between the transceiver and the receiver, which
is very difficult in flexible manufacturing (Industry 4.0). RFID-
based positioning is cost-effective, but the range is very short
(around 1 m); as most industrial applications require much
longer ranges, its use is rather marginal in factories. Because
of the difficulties experienced in implementing these new
technologies, the investigation is coming back to classic posi-
tioning systems and to improving their features for industrial
applications [10]–[12].

In this paper, we present a system used for positioning
industrial elements, based on the Received Signal Strength
(RSS) technology deployed in harsh and changing environ-
ments. The novelty of this solution compared to other research
studies is that the proposed system is capable of adapting
to changing conditions prevailing in industrial environments.
This means that it is capable of overcoming the limitations
that prevent it from being used in Industry 4.0. The antennas
continuously receive signals from sensors and use Machine
Learning to continuously estimate the position of anchor
elements in the area. Machine Learning plays a crucial role
in changing the conditions, since it is capable of adapting
the results to specific environments. Our algorithm integrates
new and old data, such that it allows to adjust the setup to
the current state of the space under analysis (considering new
objects appearing in the industrial setting and causing interfer-
ence, generating echoes, signal shadows, etc.). A big factory
with free-moving (wireless-guided) robots is a typical scenario
in which our mechanism may outperform other positioning
systems.

The main contributions of this paper are (1) the introduction
of a Machine Learning algorithm to adapt the fingerprints of
Received Signal Strength (RSS) measurements of the signal
sent by the manufacturing machines or sensors and received
by multiple transceivers located within the analyzed space;
(2) the introduction of low-cost transceivers for positioning
purposes across industries. Specifically, we propose a new
approach to transceiver development that consists in separating
radio signal processing from message processing. The former
functionality is almost technology-independent (considering
technologies operating in the 2.4 GHz band), whereas the
latter depends on the technology used; and (3) the limitation
of radio interferences thanks to the integration of multi-
technology with several radio interfaces. Our system operates
with different technologies (Wi-Fi, Bluetooth, RFID and other

beacon-based solutions) and is open to the adoption of other
technologies which could be introduced simply by establishing
communication with the use of appropriate frequencies. The
sensor positioning process is integrated with the technology-
dependent modules, allowing for the implementation of vari-
ous technology-dependent fingerprint maps.

As a result, we present a solution based on medium-range
technologies, achieving the level of accuracy comparable to
that of UWB (at the range of 0.4 m), while maintaining
limited costs (Capital Expenditures) and ensuring effective
power consumption (low Operational Expenditures). Finally,
our solution requires no action on the part of the tracked
sensors, allowing simultaneous positioning with the use of
several radio technologies operating in the 2.4 GHz band,
with measurements performed in an environment with a dense
network of transceivers, therefore limiting the impact of radio
interference between specific technologies and devices.

The next section presents other indoor positioning solu-
tions, with the majority of them based on Wi-Fi radio tech-
nology. Section III presents our solution to such systems,
based on multi-technology multi-antenna hardware and relying
on an advanced fingerprints algorithm with system adapta-
tion feedback, combining calibration and positioning phases.
In Section IV, we present a long list of trials conducted
with the use of our solution that, on the one hand, show the
operational range of the system, and, on the other, demonstrate
its accuracy. In Section V, future work is discussed.

II. STATE OF THE ART

The specificities of industrial environments pose several
challenges to location-based systems. New technologies, such
as UWB, have been introduced, but their high costs and diffi-
culties in adapting them to very changing environments (e.g.
industrial settings) considerably restrict their development.

The majority of solutions positioning indoor devices with
the use of technology-based monitoring rely on the 802.11 net-
work (Wi-Fi). The advantage of that approach consists in a
relatively low-cost of its implementation compared to other
wireless technologies, because many Wi-Fi network locations
already exist within a specific the infrastructure. Although the
Wi-Fi standard did not provide for functional positioning, its
radio signals may be used to assess the location based on
Received Signal Strength (RSS), enabling to identify the dis-
tance between the devices and their base stations and, in con-
sequence, the location of such devices (please note that the
word “device” used in this paper refers to industrial machines,
factory workers’ mobile phones, sensors used in IIoT or any
other hardware that must be localized) in an indoor environ-
ment. A similar technique may be used in other technologies.

RSS-based positioning often requires a compensation model
for minimizing RSS measurement errors and space varia-
tions [13]. The authors of [14], [15] propose to position the
devices by integrating shadowing models into their estima-
tions. In the same way, the solutions of [16], [17] compute
the position by means of a propagation model of the sig-
nal. The development of an accurate propagation model for
each Wi-Fi access point (AP) within a real environment is
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extremely difficult. Therefore, the majority of solutions are
burdened with relatively high accuracy positioning errors [18].
An interesting approach based on graphical signal propagation
modeling (3D graphic model) has been presented in [19]. The
idea is to model propagation by analyzing the environment.
This approach requires considerable computational power, but
offers a short deployment time (it may be used practically
from the very the beginning). This system achieves acceptable
results in simple scenarios, however it is not clear whether its
deployment is feasible in real life scenarios.

Fingerprinting is another common localization method that
is based on measuring RSS [20]–[25]. The authors of [20]
use machine learning methods to localize minimum variable
environments, whereas in [21], the authors propose deep
learning. Paper [22] proposes that localization be based on
employing fuzzy logic, while the method proposed in [23]
is based on deep neural networks. In [24], ï'ngerprints are
estimated using latent semantic analysis (LSA) and singular
value decomposition (SVD). All these solutions envisage only
one type of wireless technology (Wi-Fi, BLE, etc.). This
type of localization is based largely on the use of empirical
data. Under this method, localization is usually carried out
in two phases: calibration and positioning. In the calibration
phase, the APs measure RSS of the signal emitted by a
test device. The average from several measurements is used
as an RSS reference value. Each test becomes a point on
the radio map in which individual locations are defined by
geographical coordinates and by the specific value of feed
for each AP. During the positioning phase, the mobile device
measures the value of RSS at an unknown location and uses an
algorithm to estimate the location, using the radio maps that
have been created previously. Because factory premises are
characterized by unique features affecting propagation of the
signal, one may assume that each location may be determined
by a unique combination of RSS. Such an assumption is faced
with numerous obstacles during real-life implementation, since
the calibration conditions and positioning vary significantly,
as will be shown below. All that considered, one needs to
mention an interesting approach presented by Pendão and
Moreira in [26]. They proposed to calibrate the system under
the same conditions as prevail during localization phase,
by using some anchor nodes that are sniffed (as in our solution)
and their position is estimated. This estimated position is used
to estimate the position of the device (e.g. machine, sensor).
The results shown in [26] reveal that the solution achieves the
objectives (calibration and positioning are performed under
similar conditions), but fails in achieving a decisively higher
level of accuracy due to the fact that the estimation of the
device position is based not on real position of anchor nodes,
but on their estimated position. In this sense, our approach is
a step forward and achieves better results, however we need a
more complex infrastructure by adding, to the infrastructure,
these anchor nodes (in [26] the role of anchor nodes was
played by devices).

Considering the accuracy of the fingerprinting measurement
method, correlation between the result of RSS measurements
and the individual items on the radio map seems to be the
key element. In practice, it all boils down to determining

the distance between the two abovementioned points which,
in statistical terms, maps contributions of the individual com-
ponents and uses the correlation between them. In this context,
it is essential to select the appropriate measure of distance,
as pointed out by the authors in [27], because positioning accu-
racy is closely related thereto. The authors of [28] analyze two
different distance measurements in terms of their application
to fingerprinting-based positioning using Wi-Fi networks and
magnetic fields. These are Euclidean distance and Mahalanobis
distance, showing that the highest accuracy was achieved,
in both cases, by using Mahalanobis distance. Similar results
are obtained in [29]. In [30], the authors analyze fingerprinting
localization with RSRP signals (RSS standardized for LTE)
by means of MD and Kullback-Leibler divergence methods,
setting MD as a par excellence solution, showing that only
specific situations may be overcome. In [31], MD is used to
filter those values that are severely different from standard
values, based on that probability of this distance being differ-
ent from others. The use of Mahalanobis distances (MD) in
several other solutions that do not rely on fingerprints [30]–
[33] is a confirmation of this thesis. In [32], MD and Euclidean
distance are compared for localization classification scope.
In [33], effectiveness of MD is compared with vs Euclidean
distance by means of RFID-based location, showing, in both
cases, the superiority of MD.

A number of enhancements designed to increase accu-
racy have been proposed [34] over the recent years. These
extensions generally concern volatility of RRS values, often
encountered in real conditions. Therefore, other sources of
measurements are added in order to increase their accuracy.
These include, for instance, data received from the Inertial
Measurement Unit (IMU) module [35], which is an accelerom-
eter or a magnetometer, or from ultrasound [36] devices.
However, it is worth mentioning that in these approaches
([35] and [36]), the measurement data is obtained with the
use of the device (which actively participates in performing
the measurements, see [17]) whose consent might exclude
the possibility of using this method for information-related
purposes of vendor. In fact, active measurements provide
higher accuracy levels but require the implementation of a
positioning protocol between the sensor and the antenna in
order to exchange information about the location. Instead,
in passive measurements, localization is based solely on mea-
surements taken at the transceiver side while establishing the
connection between the device and the base station, i.e. before
any application is run on the machine. Many other localization
methods relying on active device participation exists. The most
important of these include methods based on Link Quality
[37] and Transmission Power Level [38], [39]. The remaining
ones include TOA (Time of Arrival) [40] and 2.4 GHz Phase
Thistle. The TOA method is based on measuring the time of
propagation of radio waves between the transmitting device
whose location is determined and the receivers installed in the
Wi-Fi access points.

In order to achieve a high level of accuracy while using
those methods (accuracy of 0.3 meters), it should be empha-
sized that a precise time synchronization is required between
the transmitting and the receiving device, which is obtained
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only by installing appropriate software in the device. It needs
to be added that despite the use of advanced computational
algorithms for ranging techniques, a number of limitations
are encountered in practice that greatly affect the accuracy of
positioning. Studies in [31], [41] have shown that RSS values,
and thus the accuracy of positioning, greatly depend on the
orientation (rotation) of the measuring device.

As explained above, the major advantage of passive mea-
surements is that the device does not have to be aware of the
communication (at the application level). This is the reason
why the fingerprints technique relying on passive measure-
ments is so popular. However, high accuracy of fingerprints
depends on stable conditions, which are not easily achievable.
One of the main drawbacks of this technique is that calibration
and positioning are decoupled [42], [43], which results in
different conditions under which the two processes are run,
caused, for instance, by multi-device interference, changes in
indoor furniture layout, etc. It must not be forgotten sources of
error affecting this technique exist as well, such as shadowing
channel effects [20], [44], or multipath effects [45], just to
name a few. But at this particular time, we are going to focus
on the first of the drawbacks mentioned above, since small
changes in the environment result in a serious reduction of
positioning efficiency [46]. Therefore, in this paper, we pro-
pose to combine calibration and positioning and dynamically
adapt the fingerprints map during as the positioning system
continues to operate.

The examples illustrating the technical advancement of
existing solutions are results of a competition organized by
Microsoft [47]. The main objective of the competition was
to compare the results obtained with the use of different
positioning technologies deployed inside buildings. 22 teams
participated in this competition, representing both the acad-
emic community and the world of industry. From the technical
point of view, different approaches were presented - from
the deployment of a Wi-Fi network at existing premises,
to the use of dedicated infrastructures, e.g. Bluetooth, magnetic
resonators or ultrasonic transmitters.

The results of this competition can be regarded as a good
benchmark for the existing solutions. It shows that the aver-
age positioning error rate that was achieved by the specific
solutions ranged from 0.72 m to 10.22 m. Only 3 teams
were able to achieve an accuracy of less than 2 m, while the
accuracy of 3 m was achieved by half of all teams. In most
cases, a significant increase in the share of faulty positioning
results was observed when location/orientation of furniture
changed. The 2017 IPIN Competition [48] is another occasion
at which the existing solutions were presented. From all shown
during this competition, only the AraraDS positioning system
resembles our approach, but it is solely based on Wi-Fi. The
remaining competitors used active location methods, as they
requested information from the end device (accelerometer,
magnetometer, gyroscope, compass, etc.).

III. ADAPTIVE INDOOR POSITIONING SYSTEM

In this section, we provide implementation-related details
of the location-based system for changing industrial envi-
ronments. The system revolves around two main ideas:

(a) enhanced multi-technology multi-antenna hardware based
on separation of network access and communication layers,
and (b) an advanced fingerprints Machine Learning algorithm
with system adaptation feedback, combining both calibration
and positioning phases.

The requirements applicable to location-based systems oper-
ating in industrial environments are as follows:

• maximizing simplicity of the solution,
• minimizing the necessary investment,
• achieving positioning precision of less than 0.5 m,
• maximizing the number of technologies that may be used

for localization purposes, in order to avoid interference.
With the above requirements taken into consideration,

we designed a system based on the following assumptions:
• The activity at the premises would be monitored using the

network available at the premises– WI-FI, RFID, IEEE
802.15.4, Bluetooth. Moreover, the system will be open
to other, new technologies, meaning that the integration
of these technologies will be as easy as possible. It is
worth noting that the use of the RFID technology is
legitimate in this context, as RFID systems operating in
the 2.4 GHz band and using active tags (with their own
power supply) are available, meaning that they can be
used for monitoring purposes as well,

• The role of transceivers transmitting location signals must
be performed by Industrial Internet of Things sensors,

• The role of a receiving device that collects and analyzes
the location information must be performed by multi-
technology controllers(at the under layer).

A. Multi-Technology Multi-Antenna Scenario Based on
Separation of Network Access and Communication With
Devices

The proposed positioning system is based on the measure-
ment of the power of radio signal sent by the sensor of the
monitored machine, using different 2.4 GHz band technolo-
gies, i.e. Wi-Fi, Bluetooth, RFID or IEEE 802.15.4 networks.
It should be emphasized that while there are systems for
localizing objects inside industrial premises using more than
one technology, we are not aware of any solution (based on
passive measurements) providing support for all the above-
mentioned technologies.

Localization analysis based on measurements performed
by sets of antennas shows a high positioning efficiency in
indoor scenarios, but the most important inconvenience of
using antenna arrays in the multi-technology approach is the
extra price that this hardware carries with it. Each tech-
nology requires a number of antennas, each one with its
own transceiver. Therefore, we provided a multi-technology
antenna with a single physical transceiver, with its control
being centralized and fully softwarized, as described in [49].
The softwarized platform ensures that all technologies use a
single transceiver in TDD, which is a cost-saving solution.
While designing this system, we used some of our previous
ideas presented in [50]–[53].

The idea is to clearly separate network access and device
communication functionalities. This means that multiple
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Fig. 1. Multi-technology multi-antenna functional architecture.

protocols making up a part of the array module include simple
hardware tasked with receiving beacons signals from the
mobile devices and with forwarding them to the intelligence
portion of the system. No other action is required on the
part of the transceiver, which considerably reduces its cost
and makes it possible to populate the analyzed space with a
high number of small, single-transceiver modules performing
a small number of functions.

The intelligence portion of the system considers all poten-
tial technologies and develops different virtualized nodes for
managing device identification processes (based on different
technologies) [54]. In our solution, we develop a virtualized
software platform containing a number of nodes, with each
one of them managing a different technology.

In the multi-technology multi-antenna solution presented
in this paper, we introduced the most important 2,4 GHz
technologies. Fig. 1 shows the operation of a multi-technology
multi-antenna system. Its functioning is explicitly described in
[50], with the technologies co-habiting via software. The use
of a simple transmitter is sufficient to implement the solution.
The radio portion will alternately perform the function of
the devices operating in the abovementioned technologies
(a time division will be applied). According to [55], the co-
existence of many radio technologies depends on three factors:
frequency, location in space and time. If the individual radio
networks differ at least with regard to one of the aforemen-
tioned factors, they will be able to function properly. In our
case, as we use the same transceivers (which means the same
frequency and location), coexistence of multiple technologies
may only be achieved through the introduction of a time-
division. The two main advantages of this solution are the lack
of interference between different technology devices (since the
transceiver kit performs the function of one technology only
during a certain period of time, it does not affect the accuracy
of device positioning by generating interference).

Wi-Fi and 802.15.4 transceivers perform a few function-
alities related to signal demodulation and to transmission of
digital information to the central virtualized platform that
will address the digital information to the appropriate virtual
machine, depending on the technology used.

Wi-Fi transceivers contain the Physical Medium Dependent
(PMD) layer only, responsible of converting electrical signals
into arrays of bits. Different encoding techniques may be
used here (including, inter alia, DBPSK, DQPSK, BPSK,
QPSK, CCK, QAM), depending on the version of the standard
used and the distance between the mobile device and the
transceivers. The encoding technique (and modulation) used
defines the maximum bitrate in each channel and, in conse-
quence, the bitrate necessary to transport information from the
transceiver to the platform.

From the point of view of 802.15.4, the transceivers only
manage the baseband chip sequence at the physical layer.
The chip sequence is a direct mapping of raw data into
a set of ones and zeros that are afterwards modulated by
the electrical signal (half-sine pulse factor used in offset
quadrature phase-shift keying, O-QPSK). In our solution, this
sequence is sent directly from the transceiver to the platform,
where the sequence is converted into raw data. The baseband
chip sequence contains the same information as raw data but
requires a higher bitrate due to the high overhead introduced
by the physical layer, which limits the transmission capacity
between the transceiver and the platform, while simultaneously
reducing complexity of the modules. In fact, the baseband
chip sequence includes the PHY Protocol Data Unit (PPDU)
for synchronizing the signal within the receptor, as well as
additional information, e.g., frame length. The baseband chip
sequence contains more than eight times more bits than raw
data, since each 4 bits of raw data are encoded in 32 chip
values and, in addition, PPDU is added.

The platform contains higher layer functionalities of the
considered technologies. When relying on Wi-Fi, the platform
assumes the functionalities of the Physical Layer Conver-
gence Procedure (PLCP) that is responsible for analyzing the
preamble and PHY headers, and the functionalities of layer
2 and layer 3. In fact, the transceiver continuously sends
demodulated bits, but it does not interpret the sequence of
bits. Upon receiving the bit sequence, the platform analyzes
that sequence and extracts information related to the entire
transmission (starting from the understanding of the bounds of
the transmission in the sequence of bits based on the location
of the preamble).

The platform responsible for managing the technologies is
based on a virtualized machine, where each Virtual Machine
(VM) hosts one of the technologies. The hypervisor is in
charge of controlling the functioning of the VMs, as well as
for managing communication with the network adapter. The
frames arriving from NIC (Network Interface Card) are copied
in all VMs, irrespective of the technology of the frame. The
VM is in charge of discarding/accepting the frame if it is/is not
compatible with the technology of the VM. The MAC layer
has been implemented in all technologies, taking decisions
about discarding/accepting specific frames.

In addition to MAC functionalities, each VM operates as
a positioning module. These modules are responsible for exe-
cuting the positioning process, which is technology-dependent
(fingerprints are different for each of the technologies). Let us
remark that technology-dependence is a factor affecting all
technologies, which makes the implementation process easier.
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To recapitulate - the proposed modulated system is based
on softwarization of the primary (device) communication func-
tionalities – a solution that is possible thanks to the reduced
communication load (based on beacons only) required in the
indoor positioning system, and allows to reduce CAPEX and
OPEX thanks to the simplicity of the radio system. The result
is a cost-saving multi-antenna and flexible (softwarization)
multi-technology system that may be easily adapted to any
harsh industrial scenario. Currently, the price of hardware
for the presented solution is in the tens of thousand of euro
range, making the complete solution an affordable investment
in practically any industrial environment.

B. Fingerprints Based on the Machine Learning Algorithm

We introduced fingerprints that are based on Machine Learn-
ing, meaning that the algorithm creating the fingerprints map
is continuously learning the environment. Our method uses
passive measurements based on beacons sent by the sensors.
From such signals, the receivers measure RSS and, based
thereon, location of the devices is estimated.

In the traditional two-phase approach to fingerprints, a test
device is initially positioned at many physical locations (a grid
of physical points) of the testbed. The device is connected
and RSS of the signal received from the device (for each
message within the connection setup) is measured at the
transceiver (this process is referred to as calibration). The map
of all RSS measurements serves as a basis for positioning
the devices, i.e. for the second stage of the process (referred
to as localization). The change in the conditions occurring
between the two processes (calibration and localization) is
the main disadvantage of such an approach; a situation in
which obstacles are introduced (e.g. factory workers) during
the localization process, not present at the map building stage
(calibration), is a good example here.

Therefore, we propose a fingerprints methodology that
learns about the environment in a continuous manner. Machine
learning is achieved thanks to a high number of RSS measure-
ments taken during the whole lifecycle of the system at the
specific industrial premises, so these measurements provide
feedback about the electromagnetic environment during the
communication process.

In our solution, the calibration process is divided into two
stages. The first one occurs “off-line”, i.e. when no activities
take place at the factory. These measurements are very precise
and the process is slow due to numerous repetitions during
which good samples are collected. The second phase of the
calibration process is performed during the positioning stage
(and is known as “on-line” calibration), when the factory oper-
ates normally. Several testing devices are located throughout
the premises and they operate jointly with the sensors that need
to be localized, which provokes interference, echoes, obstacle
effects, etc. The test devices continuously provide feedback
about the environment. On-line calibration measurements are
interpolated into their off-line counterparts in order to obtain
the final fingerprints map.

In the localization process, the sensors (to be localized) are
positioned at a given point of the analyzed space by comparing

Fig. 2. Phases of the proposed fingerprints localization method.

the signal arriving from the sensor with the final fingerprints
map. Statistical tools are used for obtaining the position with
the highest degree of accuracy possible.

The diagram of the entire process is presented in Fig. 2.
1) Off-Line Calibration: Off-line calibration is the classic

calibration performed as part of the fingerprints method.
Estimation of fingerprints consists in taking statistically

significant RSS measurements from all test points within the
analyzed area. The minimum distance between two neighbor-
ing test points is lower-bounded by the positioning accuracy
required by the manufacturing application, as well as by the
limits applicable to hardware and statistical tools. Details con-
cerning the minimum distance are discussed in the following
sub-section. For the moment, let us assume that we have,
in off-line calibration, P test points located throughout the
analyzed surface.

A test device sends an identifiable data sample and RSS
of the signal arriving at, say N transceivers, is measured.
The test device repeats this operation in order to obtain a
number (say M) of RSS measurements at the transceivers,
so that a consistent average may be obtained. The off-line
calibration map contains N-dimensional mean values (of M
measurements) for each testing point, along with the physical
location of the test point.

2) On-Line Calibration: Q test devices, which are fixed
devices that emit signals periodically, are located throughout
the analyzed area, so that on-line calibration is performed
with Q test points whose number is lower than that of
P test points in off-line calibration. Each of the Q test
devices sends beacon request samples in intervals. Based
on RSS measurements related to these signals, the cali-
bration map is recalculated by using an interpolation algo-
rithm (see Fig. 2). This algorithm takes the old calibration
map values and updates them by introducing information
from the new RSS measurements, in the manner described
below.

For the purpose of the algorithm, fingerprints values are
taken only based on the most recent M samples, whereas the
previous samples are discarded. This signal is received at all
N transceivers and RSS is measured. Let RSS

−→xq
m,n be the

RSS value of the signal emitted by the test device located
at −→xq, (q = 1..Q) at a time equal to the current timer:
(M − m) × τ, (m = 1..M), and measured in transceiver
n, (n = 1..N).

Authorized licensed use limited to: National Institute of Telecommunications. Downloaded on May 13,2020 at 12:23:38 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Due to the changing environmental conditions, the last
(time-wise) calibration measurements are likely to be more
precise than their predecessors, as the former have been
taken in conditions that are much more similar to the current
conditions (compared to previous measurements). Therefore,
we introduce a moving average of the calibrated measure-
ments for updating the calibration map. We consider Weighted
Moving Average (WMA) and Exponential Moving Average
(EMA) of the new RSS (from Q-test devices) measurements.
Suitability of the moving average depends on the scenario
and, specifically, on the impact the environment exerts on the
measurements during measuring interval τ . If the environment
is affected by numerous changes that rapidly change the
measurement values, then EMA should be used, otherwise
WMA will be appropriate. So, in principle, for very harsh
manufacturing environments, EMA is better than WMA.

Let

�
WMA

−→xq

�
and

�
EMA

−→xq

�
be the vectors of Weighted

Moving Averages and Exponential Moving Averages of RSS
measurements arriving from a test device located at −→xq:

�
WMA

−→xq

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�M−1
m=0 (M − m) × RSS

−→xq

(M−m),1

M × M+1
2�M−1

m=0 (M − m) × RSS
−→xq

(M−m),2

M × M+1
2

...�M−1
m=0 (M − m) × RSS

−→xq

(M−m),N

M × M+1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
EMA

−→xq

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

α ×
�M

m=1
(1 − α)M−m × RSS

−→xq

m,1

α ×
�M

m=1
(1 − α)M−m × RSS

−→xq

m,2

...

α ×
�M

m=1
(1 − α)M−m × RSS

−→xq

m,N

⎤
⎥⎥⎥⎥⎥⎥⎦

with α = 1 − 0.05M (1)

The value α = 1−0.05M ensures that the sum of the weights
of the M last samples equals 95% of all the measurement
samples recorded. With RSS values of the on-line test points,
we may estimate the RSS values of other (P-Q) test points
within the investigated area (these P-Q test points were present
in off-line, but not in on-line calibration. However they are
a part of the calibration map). For estimating RSS values
of −→xp, (p = 1..P ) (say RSS

−→xp∗), we scale the off-line
fingerprints values RSS

−→xp by observing the scaling trend of
the (physically) nearest on-line test points. In other words,
by observing how RSS varies at the on-line test points, we can
estimate how much RSS changes at off-line test points. This
methodology assumes that close test points behave similarly to
environmental changes (e.g. a new obstacle in the room). For
the purpose of estimating RSS values of P points, we perform
an interpolation of the Q nearest on-line test points (see Fig. 3).

For each measurement of on-line test devices, we estimate
the RSS values at P-Q off-line points together with moving

average values (

�
WMA

−→xq

�
or

�
EMA

−→xq

�
) of the off-line

Fig. 3. Example of an indoor localization scenario (N = 6; P = 60; Q = 6).

points. Specifically, the estimation of RSS for testing point−→xp, i.e. RSS
−→xp∗, considers the relation of averages between

itself and each on-line test point, so:

RSS
−→xp∗α

MA
−→xp

MA
−→xq

, (2)

where MA
−→xp is any of the moving averages’ vectors

(

�
WMA

−→xp

�
or

�
EMA

−→xp

�
).

Moreover, as stated above, the interpolation formula con-
siders that an off-line point suffers similar variations as the
on-line test points that are close to it (the closer, the more
similar the variations become). In order to understand the
effect of proximity of on-line points, let us remark that
RSS decreases proportionally to the square of the distance
from the test device, as is described in the well-known Friis
transmission equation. Therefore, we consider that:

RSS
−→xp∗α

1
(d−→xp

−→xq)2
, (3)

where d
−→xp

−→xq is the Euclidean physical distance (in meters)
between the off-line test point to be estimated (−→xp) and each
one of the on-line test points (−→xq).

So, RSS
−→xp∗ is estimated from the values RSS

−→xq by using
the following interpolation formula:

RSS
−→xp∗ =

Q�
i=1

�
1
Q

× RSS
−→xi × MA

−→xp

MA
−→xi

×
�Q

j=1 (d
−→xp

−→xj )2

(d−→xp
−→xi)2

�
,

(4)

where terms 1
Q and

�Q
j=1 (d

−→xp
−→xj)2 are normalizing factors.

The normalizing factor 1
Q averages out the effect of Q mea-

surements (from off-line point p to each one of the Q on-line
points), whereas factor

�Q
j=1 (d

−→xp
−→xj )2 introduces information

about the distance between p and each one of the Q on-line
points.

Let us remark that formula (4) is our proposal related to
interpolation, but it is not unique. Many other interpolation
formulas may be found in literature, but the one presented
here is the simplest one that takes into account the effect of
distance in Q measurements.
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The value of RSS
−→xp∗ is estimated for each new measure-

ment of on-line test devices. So, when a new estimation is
calculated, then we can also calculate the moving average

values (

�
WMA

−→xp

�
or

�
EMA

−→xp

�
) of P-Q off-line points,

from the last M estimated values of RSS
−→xp∗, as indicated

in (1). This average (

�
WMA

−→xp

�
or

�
EMA

−→xp

�
) is used in

formula (4).
As a result of the abovementioned operations, we obtain

a full fingerprints map, with measurements and estimations
performed in the real operating conditions. The map considers
interference, signal shadowing and other effects caused by
other machines present within the area under analysis.

The process of updating the map requires considerable
processing power, since large amounts of data are processed
in each time interval τ . The same will be the case with the
localization process. However, the latter will be run only when
device signal is received by the transceivers.

3) Device Positioning: Once the fingerprints map is ready,
the device (e.g. a machine) may be positioned within the ana-
lyzed space by comparing its RSS (arriving at the transceivers)
with the calibrated fingerprints map. Let

�
RSSd


be the N-

vector of RSS values of the signal arriving from the device to
be localized, d.

In order to estimate the location of the device, we calculate
the Mahalanobis distance, dMpd, between RSSd and each

one of the P vectors

�
WMA

−→xp

�
or

�
EMA

−→xp

�
, p = 1..P

obtained from P test points, as indicated in (5). The location
of the device to be localized will be the same as that of test
device p�, p� ∈ [1, P ], whose Mahalanobis distance dMp�d
is minor. The Mahalanobis distance takes into account not
only the N-dimensional distance between two N-dimensional
measurements, but also the variance that the measurements
suffer in each one of the N dimensions. In our case, the Maha-
lanobis distance takes into account the variance of the different
measurement points (transceivers), because those with high
variability of RSS measurements are considered to be exposed

to uncertainty, meaning that this distance also takes into
account which transceivers provide more (secure) information
for localizing a given point.

The Mahalanobis distance is calculated as follows:

dMpd =

���
RSSd

� − MA
−→xp

�T

×
��

CoV
−→xp

�−1 ×
��

RSSd
� − MA

−→xp

�
, (5)

where MA
−→xp [i] is the i-element of any of the moving average

vectors:

�
WMA

−→xp

�
or

�
EMA

−→xp

�
, and

�
CoV

−→xp
�

is the

covariance matrix, which is calculated with the last M RSS
values of all P test points.

�
CoV

−→xp
�

is formulated in (6), as
shown at the bottom of this page.

The co-variance matrix computes the correlation between
the RSS samples measured at the transceivers, so that the
matrix shows how uniform the samples arriving at each
module are.

4) Discussion Concerning Assumptions: The efficiency of
the system may be restricted by hardware and software
limitations, and by variability of the environment. Hardware
limitations affect measurement accuracy, influencing the min-
imum physical distance that may be distinguished by the
system. As far as software is concerned, even with such
considerable amounts of data being processed, the tests failed
to identify any issues related to data processing, meaning that
the software relied upon is good enough to process the data
arriving from test points and from devices located throughout
the manufacturing premises.

Finally, high variability of the environmental conditions
could require an adjustable sampling rate of probes during
the on-line calibration stage.

Hardware limitations affecting the minimum distance
between test points and the frequency of on-line calibration
probing will be described below.

5) Defining the Distance Between Test Points: Precision
of the off-line calibration map depends on the transceivers’
ability to distinguish two test devices which are located close

�
CoV

−→xp
�

=
1

M − 1
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M�
m=1

(RSS
−→xq

m,1 − MA
−→xp [1])2

M�
m=1

(RSS
−→xq

m,1 − MA
−→xp [1])×

×(RSS
−→xq

m,2 − MA
−→xp [2])

· · ·
M�

m=1

(RSS
−→xq

m,1 − MA
−→xp [1])×

×(RSS
−→xq

m,N − MA
−→xp [N ])

M�
m=1

(RSS
−→xq

m,2 − MA
−→xp [2])×

×(RSS
−→xq

m,1 − MA
−→xp [1])

M�
m=1

(RSS
−→xq

m,2 − MA
−→xp [2])2 · · ·

M�
m=1

(RSS
−→xq

m,2 − MA
−→xp [2])×

×(RSS
−→xq

m,N − MA
−→xp [N ])

...
...

...
...

M�
m=1

(RSS
−→xq

m,N − MA
−→xp [N ])×

×(RSS
−→xq

m,1 − MA
−→xp [1])

M�
m=1

(RSS
−→xq

m,N − MA
−→xp [N ])×

×(RSS
−→xq

m,2 − MA
−→xp [2])

· · ·
M�

m=1

(RSS
−→xq

m,N − MA
−→xp [N ])2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)
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to other. The range of the transceivers is limited by the physical
layout of the space under analysis, by hardware limitations,
power-consumption limitations (power of the signal) and by
other factors. In general, there is a trade-off between accuracy
and cost levels, as better accuracy may be achieved only by
increasing costs (better hardware, more powerful signal, longer
calibration process due to a higher number of test points,
etc.). The other precision-affecting restriction has the form of
the requirements that the industrial application relying on the
location-based service has to satisfy. In a specific application,
a lower positioning accuracy than the one offered by the
system may be needed, for instance. In this case, it makes
no sense to invest in a very precise calibration map.

Where accuracy is limited by the system’s capabilities,
a minimum distance between test points needs to be estab-
lished (accuracy of the calibration map) that can be properly
measured by the transceivers. Therefore, we analyze RSS
(measured at the transceivers) of the signals originating from
two neighboring test devices, and check whether they are
statistically different. In this context, the first step of the
off-line calibration process is to measure RSS of the signal
arriving from test devices situated at two (physically) close
points −→xp and −→xq . The test is repeated several times (say M)

for each of the points. Let RSS
−→xp
m,n and RSS

−→xq
m,n, m = 1..M,

n = 1..N, be the RSS measurements from test points −→xp and−→xq , respectively.
We consider that −→xp and −→xq are statistically distinguishable

if any averages or the variance between RSS
−→xp
m,n and RSS

−→xq
m,n

are different. This is because while performing the device
positioning process, the system will use Mahalanobis distance,
considering both average and variance (note that the Maha-
lanobis distance between the measurements of the device and
the two calibration points, dMpd and dMqd will be different if
average or variance are different). Thus, it is possible that the
device is properly localized even if the averages of RSS

−→xp
m,n

and RSS
−→xq
m,n are equal, with variances being the only different

factors. Fig. 4 shows an example of a scenario in which the
blue and red points are the averages of RSS

−→xp
m,n and RSS

−→xq
m,n,

respectively, whereas the ellipses represent the increasing
Mahalanobis distance from the averages. If a device is located
at a given point (whose RSS measurement is represented by
the black point), then the device should be clearly localized at−→xq despite its RSS being closer to the average of test point −→xp.

In order to calculate whether −→xp and −→xq are statistically
different, the first step is to compare variances of (−→xp and −→xq)
test measurements. Variances are compared separately for each
one of the N (assumed normal) measurement sets, meaning
that two test points will be considered being statistically dif-
ferent if the RSS samples measured at any transceiver coming
from −→xp and −→xq are not equal for a given significance level
(90%). We use the Cochran test and compare the results with
applicable tables to determine whether the 90%-significance
level has been achieved.

If all variances are equal, then we compare the averages
by using the MANOVA test. The MANOVA tests uses any
of the statistics existing for comparing the means; in our
case we will use the Hotelling T-squared statistic and will

Fig. 4. Example of Mahalanobis distance for two neighboring points.

compare with F-distribution values, which allows us to reject
(or not) the null hypothesis that the averages are equal (at
a required significance level). We selected the Hotelling T 2

statistic, because it describes the behavior of the Mahalanobis
distance between the averages of two groups (−→xp and −→xq) and
compares this distance with the tabulated values. It was already
mentioned previously why Mahalanobis distance is better at
describing the incidence of transceivers into the measurements.

Let us remark that the statistical tools used here require
significant amounts of data in order to compare variances
and averages – a requirement that may be satisfied only
by conducting a long testing process. Here, proper balance
between the necessary positioning accuracy and testing process
costs should be ensured. In our tests, the results showed that in
an area of 100 m2 scanned by six transceivers, the minimum
distance of 40 cm may be achieved.

6) On-Line Calibration Sampling Rate: Whereas off-line
calibration measures the effect of stable conditions (furniture,
transceivers, etc.) on the calibration map, on-line calibration
estimates the effect of changing conditions. The latter are
more difficult to estimate and an adequate measurement fre-
quency relied upon during on-line calibration is crucial in
order to properly calculate the calibration map: measurements
that are too sporadic could lead to a conclusion that older
measurements provide false information about the condition
of the space under analysis (e.g. old measurements provide
information about the impact exerted by other machines that
are no longer present at the same location in the room),
and could result in a false calibration map being drawn up.
On the other hand, too frequent measurements could make
the measurements excessively uniform, which would eliminate
important information concerning reliability of transceivers
(determining the degree of precision of each transceiver).

Therefore, we introduce a mechanism for adjusting the
sampling rate of the on-line calibration measurements to
ensure that probing is not too frequent or too sporadic. Let
us consider M last on-line calibration measurements forming
a time series. The objective is that the time series is not a
purely stationary process (caused by the same environmen-
tal conditions prevailing throughout the entire measurement
period, meaning that the measurements are too frequent and
all of them render the same results), and, at the same time,
it contains a non-jerky deterministic component (a jerky series
is caused by suddenly changing conditions, indicating that
old measurements are not depicting the current state of the
environment anymore). Therefore, a non-stationary series with
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a non-jerky deterministic component ensures that the time
series picks up the changes in the environment, simultaneously
avoiding the registration of sudden changes.

We split the time series into K periods (K groups of
samples), so that each period contains M/K measurement
samples. The value of K should be as high as possible,
simultaneously ensuring that M/K is high enough to obtain the
expected values (mean and variance) with sufficient statistical
significance. First, we check that the series is not stationary-
like and, afterwards, that it is not jerky:

We consider that the time series is stationary if each one of
the K groups has the same average. For this purpose, we apply
the ANOVA method which uses the variance of the groups
in order to understand whether the differences between the
averages are caused by variations inside the group, or by differ-
ences between groups. where the averages differ significantly
(significance level of 90%, i.e. the value in the F-distribution
is F0.9,K−1,M−K), then the probing frequency is maintained.
Otherwise, the probing frequency is reduced in steps of 10%
of its current value.

The series is jerky when there are appreciable differences
between consecutive groups of samples. Therefore, in order to
investigate the jerky character of the time series, mean values
of each group of samples (RSS

−→xp

k,n) are calculated:

RSS
−→xp

k,n =
K

M
×

(k+1)×M
K�

i=k×M
K +1

RSS
−→xp

i,n, k = 1..K − 1, n = 1..N

(7)

Afterwards, we calculate the difference:����RSS
−→xp

k+1,n − RSS
−→xp

k,n

����, where k = 1..K − 1, n = 1..N

(8)

and compare each value with the average

�M
i=2

���RSS
−→xp
i,n−RSS

−→xp
i−1,n

���
M−1 , n = 1..N . Notice that we

compare the jumps between the groups with the mean jump
value between consecutive samples in the entire series. This is
because we are searching for jerky behavior between groups
and not between single samples, but the differences between
samples offer information about the “acceptable” values of the

jumps. Where any value RSS
−→xp

k,n , k = 1..K − 1, n = 1..N
fulfills formula (9) for any of N transceivers, the sampling
rate is increased by 10%. Otherwise, it is maintained without
any modifications.

����RSS
−→xp

k+1,n−RSS
−→xp

k,n

����>U×
M�
i=2

���RSS
−→xp

i,n − RSS
−→xp

i−1,n

���
M − 1

(9)

Let us remark that U is a set-up parameter that depends on the
space under analysis. In order to calculate a proper U value,
an experiment should be conducted at the beginning of the
system’s lifecycle: a test device situated at −→xp sends signals
under stable (stationary) and changing conditions. The value of
U should be such that it allows to understand whether the value

����RSS
−→xp

k+1,n−RSS
−→xp

k,n

���� is caused by the stationary or changing

nature of the conditions prevailing in the test environment.
The mechanism for checking and adjusting the sampling

rate is applied when M new probes are measured at the
transceivers. In this way the operations described previously
are always based on different RSS

−→xp
m,n values. Sampling

rate adjustment does not have to be a real-time process,
so adjustments performed in M × τ time intervals seem to
be quite appropriate. Adjustment of the sampling rate requires
a communication framework between the system and the test
devices in order to inform the period length. However, this
capability has not been developed yet in our system (future
work). Sampling rate adjustment offers energy savings, as the
test devices situated at −→xp, p = 1..P may go to sleep during,
and may only operate when necessary. This functionality has
not been developed in our current implementation as well.

IV. TESTBED EXPERIMENTS

We adopted the following test parameters: (1) only one
device is tracked, its position is well-known, so that the
difference between the actual and estimated position (provided
by the system) may be calculated. In the test, the device has the
form of a chipset sending beacons. However, in real industrial
applications, the devices that need to be localized are industrial
machines or sensors attached to mobile machines, or mobile
phones owned by maintenance workers or any other mobile
hardware with a radio communications interface. The process
of locating a single device is performed for the purpose of
the test only, although the system is capable of localizing
numerous devices (machines or workers’ mobile phone) simul-
taneously. However, it would be very difficult to prove the
efficiency of the system by conducting tests measuring the
signal of the devices (without any knowledge about the precise
condition of those devices); (2) even though the modules used
are of the multi-technology variety, for the purpose of these
tests, the device to be localized communicates uniquely via
Bluetooth. We selected the Bluetooth technology because it
has been demonstrated that, in regards to indoor positioning,
Bluetooth is less efficient than WiFi [56]–[58]. As a con-
clusion, if the test results show that our system, relying on
Bluetooth, is more precise than current solutions, then we can
conclude that our system operating based on WiFi will achieve
even better results, or at least ones that are not worse. Some
tests are performed during normal operation of the factory,
with numerous IIoT generating interference, signal shadows
and serving as obstacles.

The system has been implemented and tested in and indoor
scenario (a room with the area of 100 square meters and
volume of 400 cubic meters). The tests included functional
and performance trials: in the functional tests we analyze the
parameters of the model (calibration phases) and, specifically,
the minimum distance between test points, off-line accuracy
in a multi-antenna environment, on-line calibration setup para-
meters and the impact of the moving average on the results
obtained with the use of the algorithm. In the performance
tests, we compare the functioning of our system with the same
system that does not include the on-line calibration phase.
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This test allows us to compare the system with other solutions
that have been proposed so far.

A. Off-Line Calibration - Minimum Distance Between Test
Devices

This test aims to determine the minimum distance between
test devices, such that the system may distinguish the signals
arriving from neighboring test points. The minimum distance
is indicated by points on the calibration map. This distance
does not necessarily define the degree of precision of the
system, but it is precision-related. In other words, even if
the calibration map has specific points which are separated
by the minimum distance, other factors, such as obstacles,
interference, etc. may render that location of devices at their
accurate positions on the map not achievable. Let us remark
that this minimum distance is related to the value obtained in
the tests described in [47], meaning that this distance may be
used for comparison (taking into account the differences in
the scenario) with the solution proposed there.

The test scenario is as follows: the surface contains 6 trans-
ceivers located within the perimeter. The device to be localized
is located in the center of the room and RSS is measured
100 times at the transceivers (RSS

−→xp
m,n, m = 1..100, n =

1..6). Then, the device is located on the horizontal axis
(spanning the room west-east), at distances equal to 0.2, 0.4,
0.6, 0.8 and 1.0 m of −→xp and RSS is measured 100 times at
all transceivers, i.e.:

RSS
−→xq
m,n, −→xq = −→xq + x, x = [0.2, 0.4, 0.6, 0.8, 1.0],

m = 1..100, n = 1..6 (10)

RSS
−→xq
m,n values are compared with RSS

−→xp
m,n through Cochran

and MANOVA tests. The Cochran test (Cochran’s C test)
showed that the measurement variances at all transceivers were
similar, since the C values obtained from the measurements
were much higher than the critical value of 0.23 obtained
from the tables (6 variables and 100 samples), meaning that
homoscedasticity is confirmed. Therefore, we used MANOVA
for comparing the mean of the RSS

−→xp
m,n values with each

one of the means of RSS
−→xq
m,n values. The Hotelling T 2 value

of the test was compared with the F-distribution table (F =
2.72 for 6-numerator and 193-denominator freedom degrees
and 0.9-significance level) for each one of the test points −→xq .
The results are presented in Fig. 5.

As we can see, for a significance interval equal to 0.9,
the minimum distance between test points is 0.4 m. For the
distance of 0.2 m, RSS measured from devices located at −→xp

and −→xq is not distinguishable, so the system is not capable of
localizing a device at one of these two points.

There are some considerations concerning these results.
As mentioned above, the figure of 0.4 m does not determine
the degree of precision of the system, as there are other factors
which may affect precision in an adverse manner. One sample
from our test, which measured the device located at −→xp +0.4 m
in our test, is a good example here. RSS values measured
(at all transceivers) were very similar to the mean RSS

−→xp

value, which indicates that in regards to that measurement,
the positioning of the device would be erroneous. For all other

Fig. 5. MANOVA results for increasing distance between −→xp and −→xq .

measurements, the positioning would be correct. However, this
case shows that other factors exist limiting the efficiency of
the system.

Once the minimum distance was defined as equaling 0.4 m,
we performed similar tests by locating the test device at
locations along a 0.4-squared grid and generated an off-line
calibration map. This map was then used in further tests.

B. Off-Line Positioning Efficiency

The following test aims to show the impact of the number of
transceivers on the system’s positioning accuracy. Specifically,
we situated the test device at many (500) known locations
within the room and took measurements of the signal at N (N
= 3, 4, 5 and 6 transceivers). Based on these measurements,
the system made a localization decision by comparing the
measurements with the appropriate off-line calibration map
(4 calibration maps were built based on off-line measurements
taken by 3, 4, 5 and 6 transceivers).

The difference between the actual and estimated posi-
tion (absolute value of 500 measurements), obtained with
a different numbers of transceivers, is presented in Fig. 6.
The figure shows that the mean positioning accuracy of the
measurements is on the 0.95-percentile (the upper bound of
the positioning error of the 95% most precise measurements).
The 0.95-percentile provides some information for estimating
whether the variations observed in the mean values are sta-
tistically significant. Clearly, the (statistical) significance of
the variations of the averages cannot be demonstrated with
so few measurements, but the 0.95-percentile offers a better
understanding of the significance.

The system localizes the device at one of the points of
the 0.4-square grid calibration map, so the decision should
be considered correct if the selected point on the map is
the closest to the actual location of the device. Therefore,
differences of less than 0.2 m indicate a correct decision, with
differences higher than 0.2

√
2 being always incorrect. Between

0.2 and 0.2
√

2, the correctness of the decision depends on the
position of the device (i.e. whether the localized position is
the same as the closest map point).

In the case of 4 transceivers measuring the signals, the mean
value of the differences between estimated and actual device
location is lower than 0.2. Nevertheless, there are many
incorrect decisions, as evidenced by the 0.95-percentile value
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TABLE I

VALUES FOR ON-LINE CALIBRATION SAMPLING RATE TESTING

Fig. 6. Positioning accuracy vs. number of transceivers.

equal to 0.32 > 0.2
√

2. Only with five and six transceivers
measuring RSS, the results show 100% correct positioning
decisions. The achievement of this perfect localization is
explained by the fact that there is only one device in the
room, so no interferences are present and, in addition to this,
the factory furniture has not been moved and remained at the
same position as during off-line calibration, meaning that the
map is perfect match for the actual test scenario.

The conclusion from these tests is that a high number of
transceivers in a small room is needed to implement a high
efficiency positioning system. This is possible only if inex-
pensive transceivers are used. The desired setup is achievable
with the hardware developed for the purpose of our system.

C. On-Line Frequency Analysis

In this test, the on-line sampling rate is analyzed during
normal operation of the system, i.e. when several devices
are changing their locations within the investigated area. The
(electromagnetic) devices create interferences, echoes and sig-
nal shadows that introduce variability into the measurements.

In this scenario, the transceivers receive many signals but,
after analyzing them, only the test device’s signal is processed
forward by the system. The emission period of the test device
is manually changed in each experiment. The number of
signal samples (emitted by the test device) measured by six
transceivers equaled 200 (M = 200).

Analysis of the on-line sampling rate consists in dividing
the 200 samples into 4 groups (K = 4) and comparing the

groups in order to understand whether the samples display
stationary or jerky behavior. For this purpose, we calculate
Fexp as the relation of the variance between groups and
the mean variance inside the group. This value is compared
with the F-distribution for K-1 (3 in our case) and M-K
(196 in our case) degrees of freedom and 0.9-significance
level. If Fexp < F0.9,3,196, then we may conclude that the
series has a stationary behavior and the system should reduce
the on-line calibration sampling rate.

The tests have been repeated 9 times in order to obtain the
confidence intervals of Fexp. Changes affecting individual tests
depend on the variability of the environment. Nevertheless,
taking into account that all tests (for each rate tested) were
performed in short time intervals, we may assume similar
environment conditions, so the results tend to be Gaussian.

The results and the decision of the algorithm regarding
different sampling rates are shown in the first four columns
of Table I. The remaining columns of the table show an
analysis performed in order to check whether the system
should increase the sampling rate. To this end, we compare the
jumps between consecutive groups with the mean difference
between consecutive single samples, see formula (7). From
this comparison, the system concludes whether to increase the
sampling rate. By changing the value U, we may tune the
minimum value of the sampling rate.

As may be observed from Table I, for the current environ-
mental conditions, the on-line calibration sampling rate adjust-
ment algorithm will maintain a rate of 80 to 160 samples/min.

The table shows that, for some tests, the variance is clearly
higher than for others. It is difficult to understand this effect,
especially if we take into account that this effect reoccurred
in several tests. The unique supposition is that the variability
of the environment has a high impact on RSS measurements.

D. Analysis of the Moving Average

Selection of one of the two moving averages: Weighted
Moving Average (WMA) or Exponential Moving Average
(EMA) has repercussions for the accuracy of positioning.
EMA, in particular, attached higher weights to the last cal-
ibration measures than WMA. The choice between EMA and
WMA depends on the variability of environment conditions,
in the same way as does the on-line calibration probing fre-
quency: EMA avoids oscillations under variable environment
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Fig. 7. Positioning accuracy vs. on-line calibration sampling rate (EMA-
based and WMA-based algorithms).

conditions, but it fails in providing information about the
reliability of transceivers.

This analysis compares the accuracy of both types of
moving averages in previously defined sampling rate intervals.
The calibration map does not change during these tests, so it
is calculated off-line, shortly before the test is run.

The next figure shows the accuracy of the positioning
algorithm for both moving averages and for an increasing
measurement sampling rate. Accuracy is calculated as the
difference between location and positioning (average and 0.95-
percentile). The system works under normal conditions (i.e.
with variations in the environment) and the algorithm localizes
the test device at least 100 times during each experiment
(different positions), using six transceivers.

The effects that moving average has on the accuracy of
the positioning system are not substantial, as shown also
in Fig. 7, where the differences in accuracy equal 0.05 m, and
the difference between 0.05- 0.95-percentiles is only around
0.1 m. However, the results also show that accuracy depends,
only slightly, on the sampling rate of on-line calibration
measurements.

E. Performance Evaluation and Testing

The last experiments evaluate the system working in its fully
operational mode, i.e. a full fingerprints map is being updated
in parallel to positioning operations. For on-line calibration
measurements, 8 testing devices are situated in the room,
send test signals each every 0.5 s (120 samples/min.). Their
positions are well known, so the on-line calibration map is
updated as explained in the previous section, i.e. based on RSS
measurements of the 8 test devices and taking into account the
off-line map, the system re-calculates the fingerprints map for
all points on the map.

Under these conditions, the accuracy of the system is
calculated as follows: a moving test device with a well-
known position emits signals which are received and measured
by 6 transceivers, so the test device may be localized. The
device is tracked in two ways: by using the fingerprints map
(which takes into account off-line and on-line calibrations),
and by using the off-line calibration map only, so that we
may compare the results and understand the effect of on-
line calibration. Where the difference between the actual and

Fig. 8. Positioning accuracy for an increasing number of interfering devices
positioned in the test area (full fingerprints map and off-line only calibration
map).

estimated positions is lower than 0.2
√

2 (the fingerprints map
is a 0.4m-grid map), then the test result is deemed positive.
The accuracy is the relationship between positive results and
all test results.

Moreover, other devices (between 1 and 8) were placed in
the space under analysis, generating interference and creating
radio coverage shadows or echoes. These devices are con-
nected to the Internet (different Internet applications) through
a Bluetooth interface. The number of interfering devices is
increased from one test to another. It is assumed that the
system adapts to the changes in the environment caused by
the activity of interfering devices. Such an adaptation is learnt
by the calibration process and affects the on-line calibration
map. Fig. 8 shows the localization accuracy ratio (see previous
paragraph) of a moving test device for an increasing number
of interfering devices.

The results show supremacy of the full fingerprints map
(which takes into account environmental changes as well)
over the off-line calibration map. In some tests, the accuracy
increases up to 51%. The accuracy of the system using the full
fingerprints map is very high (over 80% in all tests). The accu-
racy level decreases with the increasing number of interfering
devices. However, with calibration being based uniquely on
off-line measurements, accuracy deteriorates quickly, whereas
on-line calibration achieves significantly higher accuracy val-
ues. The bigger the number of interfering devices present in
the room, the higher the difference in accuracy between on-line
and off-line calibrations.

V. CONCLUSION AND FUTURE WORK

This paper shows the deployment of a localization-based
system for industrial applications that includes a multi-
technology multi-antenna infrastructure and considers feed-
back between calibration and positioning processes running in
parallel. The system fills the gap between static and dynamic
solutions thanks to on-line calibration - a techniques that
allows to adapt the calibration map to harsh and changing
environment conditions by introducing a feedback mechanism
and an estimation algorithm based on the machine learning
approach. Although the fingerprint solutions proposed until
now show good results in stationary conditions, they fail when
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uncertainties arise. Our system has been deployed and tested
in close-to-real conditions, where a number of other devices
create interferences, shadows and obstacles affecting normal
communication. The results show outstanding accuracy levels
(in comparison with other existing approaches) and the ability
to adapt to ongoing changes in the environment. A distinctive
feature of the proposed solution is the use of single transceiver
modules (multi-antenna system) for several technologies. This
is possible thanks to the fact that the technologies relied upon
operate in the same frequency band. In addition, the proposed
scheme will only be used in Industrial Internet of Things
solutions (no other data requiring high bandwidth will be
sent). Another innovative feature is the separation between
the functions responsible for radio channel broadcasts and
for controlling the transmission. Furthermore, the solution is
based on virtualization and introduces modularity - both these
features ensure flexibility for future deployments. The result
is a system where the area in question is monitored by many
transceiver modules, meaning that the costs of the system is
reduced.

Based on the implementation of our system, we conducted
extensive testbed experiments aiming to analyze the effects of
off-line and on-line calibration, and to prove the accuracy of
the system.

All experiments aimed to demonstrate the validity of the
solution and to compare it with other feasible solutions (e.g.
the ones referred to in [47]), which required the best envi-
ronment conditions (i.e. one testing device). Our future work
will be focused on understanding the system’s accuracy limits
when multiple devices based on different technologies are
considered. Therefore, we will provide different fingerprint
maps for different technologies, such that the system checks
the technology of the device and tries to position it within
the fingerprints map specific to that technology. Moreover,
our future work aim to develop a communication framework
between the positioning system and the on-line testing devices,
in order to ensure that the system is capable of automatically
adjusting the on-line calibration frequency.

In the near future, we aim to develop our system for
large area applications and will try to define the number of
on-line devices that have to be deployed for achieving the
accuracy level that is required of the system. This will define
the final cost of the solution. Moreover, we aim to develop
new algorithms for the adaptive positioning system taking
advantage of both off- and on-line measurements.
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