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Abstract. This paper proposes a novel approach that adds the 

interpretability to Neural Knowledge DNA (NK-DNA) via generating a 

decision tree. The NK-DNA is a promising knowledge representation 

approach for acquiring, storing, sharing, and reusing knowledge among 

machines and computing systems. We introduce the decision tree-based 

generative method for knowledge extraction and representation to make 

the NK-DNA more explainable. We examine our approach through an 

initial case study. The experiment results show that the proposed method 

can transform the implicit knowledge stored in the NK-DNA into 

explicitly represented decision trees bringing fair interpretability to neural 

network-based intelligent systems.   
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INTRODUCTION 

The Neural knowledge DNA (NK-DNA) is a promising knowledge 

representation method for AI systems. Together with deep neural networks (DNNs) 

and reinforcement learning, NK-DNA is able to catch knowledge. It acquires 

knowledge in optimizing an agent's policy for better future rewards by tuning 

parameters of multi-layered neural networks. However, the DNNs work as a black 

box leading to the inability to interpret, which hugely discourages applying the 

NK-DNA to many important domains such as healthcare, aircraft, and finance, where 

the decision procedures are vital. Thus, any decisions made must be reasonable and 

interpretable. 

To address this issue of the NK-DNA, in this paper, we propose a decision 

tree-based method collaborating with the NK-DNA to distil the knowledge learned by 

NK-DNA and transform it into a tree-like structure, allowing people to infer and 

understand the decision procedure and criteria of any decision made by the AI system. 

The rest of the paper is organized as follows: Section 2 (Interpretable AI) 

explains the importance of interpretability in AI. In section 3 (Related Work), deep 

reinforcement learning & the NK-DNA are introduced. The method, experiments, and 

results are illustrated in Section 4 (Interpretable Module for NK-DNA). Finally, 

Section 5 (Conclusion) concludes the paper. 

INTERPRETABLE AI 

Artificial intelligence (AI) has made remarkable achievements in research and 

industrial areas, especially since the success of deep learning (DL). DL is a 
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methodology mainly based on multi-layer artificial neural networks (NNs) to simulate 

the behaviour of the human brain and learn from large amounts of data. Although 

ANNs and related technologies have recently shown outstanding performance in 

many tasks, they are lack of interpretability which can lead to frailty (C. J. Kelly and 

A. Karthikesalingam et al. 2019). In some domains, there is no tolerance for any 

failure. For instance, early detection of the disease is usually critical to curing patients 

or stopping the disease from progressing to a more severe stage.  

Consequently, the interpretability of the AI algorithm has become an urgent 

problem (Erico Tjoa and Cuntai Guan. 2020): who is responsible if there is something 

wrong? Can we explain why things go wrong? If everything goes well, do we know 

why and how to leverage them further? Many papers have suggested different 

methods and frameworks for achieving interpretability, and explainable artificial 

intelligence (XAI) is now a hot topic in AI research. Moreover, the introduction of 

interpretability evaluation criteria (such as causality, availability, and reliability) 

enables the AI researchers and engineers to track the logic and decision-making 

procedures of the algorithms and provide guidance for further improvement and 

development of AI systems (S. Tonekaboni and S. Joshi et al. 2019).  

DEEP REINFORCEMENT LEARNING 

Reinforcement learning (RL) is a branch of machine learning, which focuses on 

using the experience gained through interaction with the environment and assessing 

feedback to improve the system's decision-making ability (T.P. Lillicrap. 2015). RL 

algorithm is mainly inspired by the perception of the human decision-making process 

(R.S. Sutton and A.G. Barto. 1998). In human decision-making, humans learn how to 

respond to observed action outcomes by using reward signals in the brain. To mimic 

the human decision-making behaviour, the RL learns to perform well by feedbacks 

from the environment. Additionally, due to the continuous increase of rich data, 

exciting progress has been made in the theory and practice of reinforcement learning 
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in recent years, including the development of primary technology fields, such as 

empirical methods, exploration, planning and generalization, which hugely improve 

the applicability to practical problems (M.L. Littman. 2015). 

RL can be expressed as the interaction between learners (i.e. decision-makers) 

and the environment that provides evaluation results to the learners. The environment 

is usually understood as a Markov decision process (M. Puterman. 1994). The 

Markov decision process consists of a set of actions A (decisions that decision-makers 

can choose) and states S (situations where decisions can be made). The number of 

these actions and states may be limited, but in some reinforcement learning 

applications, such as performing physical tasks, space with continuous actions and 

states is usually more valuable. The function p (s' | s, a) defines the probability of 

transforming the state from s to s' by taking action a (M.L. Littman. 2015). 

Reward function R (s, a) and discount variable γ∈[0,1] are used to express the 

performance of the decision-making agent: in each step, the agent selects an action, 

the environment feedbacks a reward and converts it into the next state. The goal of the 

agent is to maximize the sum discount expected reward from the environment. In 

other words, the agent is finding a policy π*(at | st; θ) mapping the states to the action 

of generating the reward sequence r0, r1, r2, r3, ...rt such that Er0, r1, ... [r0+ γ＊r1+ γ2＊

r2+ γ3＊r3 +...+ γt＊rt] as large as possible. The Bellman equation (R. Bellman. 1957) of 

the optimal state action-value function Q* captures the relationship between the 

cumulative discount expected reward and environmental interactions (state, action, 

reward, state, action, reward, etc.). The solution of the Bellman equation enables the 

agent to optimize its behaviour by calculating π*(s) = argmax Q*(s, a). The expected 

cumulative discounted reward for the policy that takes action a from state s and then 

behaving optimally thenceforth is the immediate the reward received, and the 

expected discounted value of the cumulative discounted expected reward from the 

resulting state s' given that the best action is chosen (M. Puterman. 1994). 

Deep Reinforcement Learning (DRL) is a method that combines DNNs with RL 

to resolve the learning environment and obtain the best control strategy. DNNs may 

be used to derive a straight approximation of the control strategy: a = π(s), from 
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examples of data points (si, ai) resulting in other control processes. In the Neural 

Knowledge DNA, the DRL is used to capture implicit knowledge for the agent.  

NEURAL KNOWLEDGE DNA 

The Neural Knowledge DNA (NK-DNA) was proposed by Zhang et al. (2017) to 

support acquiring, storing, and sharing knowledge in different artificial intelligence 

systems that use neural networks as the main power of its intelligence. They modify 

the ideas underlying the success of deep learning (LeCun et al. 2015) to the extent of 

knowledge representation.  

The NK-DNA is organized in a similar form to the DNA (Sinden 1994): 

consisting of four critical sections. Our NK-DNA borrows the idea of DNA to store 

knowledge. As the DNA produces phenotypes, the NK-DNA carries knowledge and 

information through its four essential elements: States, Actions, Experiences, and 

Networks (see Figure 1). 

 

Fig. 1. The structure of the NK-DNA. 

The NK-DNA's combination of four essential elements is conceived to carry 
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detailed information about the decisions: States are conditions in which a decision or 

an action can be made or done. Actions that are used to express the decisions or 

motions of the domain can choose. Experience is the historical operation data of the 

system, with feedback from the results. The Networks store the details of the artificial 

neural networks for training and utilizing that knowledge, such as the structure of 

networks, weights, bias and the in-depth learning framework used. 

Generally speaking, after training in a deep learning system, knowledge is 

obtained as a model. The model stores information as the weights and biases of 

connections among neurons of neural networks, as well as a neural network hierarchy 

in detail. Once the neural network is trained, it will directly give results by calculating 

through its network layers after input. 

 

Fig. 2. The NK-DNA-carried knowledge. 

In NK-DNA, the Networks are used to carry the relationship between actions and 

states: as shown in Figure 2, each state (expressed as s1, s2... sn) can be linked with a 

set of actions (defined as a1, a2... an). If an action is associated with a state, the related 
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action is available in that state; In other words, if it is in this state, the agent can select 

the action to perform. The trained neural network provides knowledge about which 

action is the best choice for a particular state. The state here is the input, which can be 

the original sensory data or the data representing the agent's current state. 

Another essential feature of this method is that NK-DNA uses past 

decision-making experiences to gather and expand the intelligence to support future 

decision-making. Generally, agents transform from one state to another during their 

operation, make decisions (select actions) in each state, and receive feedback from 

their operations. These states, actions, feedbacks and transitions compose the 

so-called "experience" (Sanin& Szczerbicki. 2006). 

INTERPRETABLE MODULE FOR NK-DNA 

A. OVERVIEW 

Although the NK-DNA can allow the intelligent system to acquire, store, share, 

and reuse the knowledge through the daily operation of the domain, the NK-DNA's 

multi-layer neural networks, which is used as a function approximator to catch and 

store knowledge, works as a black box and is uninterpretable. Therefore, we add a 

highly interpretable decision tree-based module to extract and represent the 

knowledge from the neural network of the NK-DNA (see Figure 3) to improve the 

interpretability of NK-DNA. 

 
 

 

   

The NK-DNA 

The NK-DNA’s Experience 

The Interpretable Module 

The Differentiable Decision Tree 
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Fig. 3. NK-DNA with the added Interpretable Module. 

B. THE MODULE DETAILS 

The decision tree (DT) is an efficient and reliable decision-making technology, 

which uses a tree-like structure to store a simple representation of gathered knowledge 

(i.e. patterns within data) and control decision-making (Shah and Gopal, 2010). And 

DTs are regarded as the practicable technology for interpretable and transparent ML 

(Andrew Silva and Taylor Killian et al. 2020).  

However, the standard decision trees are barely used in online training tasks of 

RL. The non-differentiable feature of the decision tree causes it cannot be updated via 

gradient descent. Suárez and Lutsko (1999) provide the first differentiable decision 

tree (DDT) models. They change the edge of the standard decision tree by using the 

sigmoid activation function (Eq. 1)  

𝜇(𝑥) =  1

1+𝑒−(𝛼 𝜂(𝛽 𝜂𝑇 𝑥−∅ 𝜂))
                          (1) 

to give a smooth transition between 0 and 1, making the edge variable differentiable: 

it uses a linear features x weighted by 𝛽𝜂 compared to a bias 𝜙𝜂, and augmented by 

a steepness parameter 𝛼𝜂 (Suárez and Lutsko, 1999). The tree is trained via gradient 

descent for tuning parameters 𝛽𝜂, 𝜙𝜂, and 𝛼𝜂 across nodes η.  

Although their method has been applied to off-line and supervised learning, it 

still has not been applied to online RL. The reason behind this is that there are two 

key drawbacks in the method: First, the original operation 𝛽𝜂𝑇𝑥 considers a linear 

combination of the features at each node to compare with 𝜙𝜂, rather than a single 

feature comparison. Second, using the sigmoid activation function means a smooth 

transition between True and False evaluation of nodes, rather than discrete decisions. 

Andrew Silva and Taylor Killian et al. (2020) address these two issues by employing 
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an arg𝑚𝑚𝑥𝑗 �𝛽𝜂
𝑗� to convert the differentiable tree into a truly discrete tree and 

obtain the index of the feature normalizing the node will use. They also divide 𝜙𝜂 by 

the node's weight 𝛽𝜂
𝑗, normalizing the value for comparison against the raw input 

feature 𝑥𝑗. Each node then compares a single raw input feature to a single 𝜙𝜂. 

Furthermore, they also use the arg𝑚𝑚𝑥𝑗 �𝛽𝜂
𝑗� for each leaf as well as decision node 

to obtain a final interpretable decision tree with discrete nodes. 

Our method applies the optimized DDT to extract the knowledge carried inside 

the NK-DNA's Experience. During the training process, the proposed interpretable 

module transforms the implicit knowledge stored in the NK-DNA into explicitly 

represented decision trees via stochastic gradient descent, resulting in a transparent 

and explainable decision tree for knowledge sharing and reuse.  

INITIAL EXPERIMENTS 

A. Experiment Overview 

We use the same maze problem used in the NK-DNA study (Zhang et al. 2017) 

to examine our proposed method. As shown in Figure 4, there are eight blocks in this 

maze. In the beginning, the agent knows nothing about the maze. It explores and 

learns the maze through four possible actions: Up, Down, Left, and Right. In each 

block, the agent can perform one of four possible operations. Finally, the agent should 

know the shortest way to Block 8 in the maze.  
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Fig. 4. The maze's environment 

In our initial experiment, agents were asked to use the DRL algorithm to train the 

NK-DNA and the interpretable module to learn, store and reuse maze knowledge to 

find the shortest way.  

B. Exploration 

In this experiment, we set the agent always at Block 1. It randomly takes one 

available action from the four actions introduced above. Every step, the agent takes an 

action and gets feedback from the maze environment. Feedback consists of Reward, 

Terminal, and Next State: Reward is the value given by the maze after each action. If 

the agent reaches Block 8, the value will be 100 and otherwise is -1. The Terminal is a 

boolean value, if the agent goes Block 8, the value will be True, and the game is over. 

Otherwise, it is False, and the game continues. The Next State represents the block 

where the agent is after taking action. 

The agent randomly repeats its possible operations until it reaches Block 8. At 

the same time, the agent stores every action with maze feedback as an experience of 

exploring the maze. The experience is stored in the form of (st, at, rt, st+1): st 

represents the block where the agent is in at time step t; at is the action taken at that 

time step; rt is the reward for taking that action, and st+1 is the next state of the agent 

after performing the action at. 

C. Training 

In the exploration stage, the agent stores every action with feedback as an 

experience. While at the training stage, the agent uses the experience data to optimize 
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the agent's policy for taking action (Equation 3) and use the gradient update algorithm 

to update the parameters of the DDTs for optimizing the policy (Equation 4). 

𝑓𝑇(𝑠, 𝑚) = 𝜇(𝑠)𝑦𝑎𝑇𝑇𝑇𝑒 + (1 − 𝜇(𝑠)𝑦𝑎𝐹𝑎𝐹𝐹𝑒)              (3) 

𝑓𝑇(𝐹,𝑎) → 𝜋(𝑠,𝑚) = 𝜇(𝑠)𝜋𝑎𝑇𝑇𝑇𝑒 + (1 − 𝜇(𝑠))𝜋𝑎𝐹𝑎𝐹𝐹𝑒       (4) 

Then, the agent uses the optimal policy to generate a new experience from its 

interaction with the maze environment. Repeat that process until the policy guide the 

agent to find the best way from Block 1 to Block 8, and we store the parameters of 

DDT and its detail of structure in a model. The training results are shown in Figure 5. 

 
Fig. 5. The reward plots during training. 

D. Tree-structure Knowledge Extraction  

After training, we can choose the best model to generate a discrete decision tree 

to make the knowledge stored in the model easy to understand. Due to the property of 

the sigmoid function, it is not enough to ensure discrete decisions on each node. 

Therefore, in order to obtain a discrete tree, it is necessary to convert the 

differentiable tree to a discrete tree using the argmax function. We set the βη to a 

one-hot vector for each non-leaf node, and divide φ to calculate and choose the max 

βη for a specific non-leaf node. The φ is a bias value for comparison against the raw 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


input feature xi. Repeat the process for each node, and it finally creates a decision tree 

that compares a single feature per node and makes a single decision per leaf (see 

Figure 6).  

 

Fig. 6. The figure describes the generated decision tree. The tree goes to the left 

branch when the condition is True at the non-leaf node. At leaf nodes, 

there are actions: U means up, D means down, L means left, R means 

right. The x in the decision node is the agent’s current state (position of 

the agent). 

CONCLUSIONS AND FUTURE WORK 

In this paper, we add an interpretable module to the NK-DNA to enhance its 

applicability and robustness. The proposed approach uses the modified decision tree 

and gradient descent to update the tree online with deep reinforcement learning. The 

experiment results show that the proposed method can transform the implicit 

knowledge stored in the NK-DNA into explicitly represented decision trees bringing 

fair interpretability to neural network-based intelligent systems. 

For further work, we will refine this approach and apply it to complex tasks. 
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