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ABSTRACT 

Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body 
effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular 
simulation. However, several factors relating to their software implementation have precluded their 
widespread use in condensed-phase simulations: the computational cost of the theoretical models, a 
paucity of approximate models and algorithmic improvements that can ameliorate their cost, under-
developed interfaces and limited dissemination in computational code bases that are widely used in the 
computational chemistry community, and software implementations that have not kept pace with modern 
high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics 
processing units (GPUs). In this Feature article we review recent progress made in these areas, including 
well-defined polarization approximations and new multipole electrostatic formulations, novel methods for 
solving the mutual polarization equations and increasing the MD time step, combining linear scaling 
electronic structure methods with new QM/MM methods that account for mutual polarization between the 
two regions, and the greatly improved software deployment of these models and methods onto GPU and 
CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields 
can be routinely used to obtain computational results comparable to state-of-the-art density functional 
theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler 
fixed partial charge force fields. 
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1. INTRODUCTION 

Over the last 50 years computational chemistry has advanced to be an equal partner with experiment in 

research areas ranging from lead optimization in drug discovery through to mechanistic insight into 

catalysts such as zeolites and enzymes. Historically, these successes have relied on the most tractable 

classical models for condensed phase simulation: the assumption of a pairwise additive fixed charge force 

field, whose functional form is nearly identical to that laid out by Lifson and Warshel in the late 1960’s1.  
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Pairwise additive molecular models are widely available in a range of community codes such as Amber2, 

Charmm3, NAMD4, and OpenMM5, and their success is due to the continued improvements in 

optimization of their parameters through a pragmatic approach of comparison to quantum chemical 

calculations and empirical fitting to condensed phase properties. Although pairwise additive models may 

be an inadequate representation of the true many-body physics of the quantum mechanical energy surface, 

their popularity also stems from the fact that they better permit the high dimensional spatial or temporal 

averaging that is dictated by the laws of statistical mechanics, especially since the software that 

implements them is also well-optimized on modern day computer architectures. 

Before addressing the inadequacy of pairwise additivity, the molecular simulation field required a 

refractory period to sort out other important aspects of the molecular simulation protocol to generate 

meaningful results and analysis. This included overcoming finite size system effects, the use of Ewald 

summation for long-ranged electrostatics6-7, integrators for the equations of motion that are symplectic8, 

and extended system methods that formally reach the correct limiting thermodynamic ensemble9-10. With 

the advent of greater computing power combined with these improved simulation protocols, it then 

became possible to diagnose when the pairwise additive potential energy and forces were breaking down. 

The failures of pairwise additivity are unambiguous when one considers the “asymmetric environment”11 

such as the heterogeneity at interfaces12-13, calculation of electric fields in complex protein 

environments14-15, hydration free energies of a large range of small molecules16-17, or aggregation 

propensities of hydrophobic peptides18-20. From this accumulating experience it is becoming apparent that 

we are reaching a generational transition in how to model the underlying potential energy surface. Almost 
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all of the leading force field development teams are devising transferable many-body force fields20-50, and 

advances are being made to include more intricate molecular interactions that account for charge 

penetration38, 51-53 and charge transfer54-59. In order to gain the full advantage of these advanced classical 

potential energy surfaces, they should also be properly combined with explicit quantum mechanical 

treatments, to yield better predictions when bond making and bond breaking are important in the 

condensed phase.  

However, the extension to better physics comes at a cost. First, advanced potential energy surfaces 

carry a larger computational overhead such that it becomes more difficult to realize statistical 

convergence of condensed-phase properties. Second, the more complicated functional forms are harder to 

parameterize and hence are more brittle in their application, and new advances are needed to overcome 

the current limitations of hand-tuning parameters. Third, advanced treatments of electron-electron 

interactions using QM/MM methods further increase computational expense and thus limit necessary 

sampling. Finally, the software implementation of advanced potential energy surfaces on current or 

emergent hardware platforms has posed several challenges that preclude their widespread adoption in the 

computational chemistry community. 

These concurrent issues can be illustrated using the status of the classical polarization force field 

AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications)27, 60-61 and its 

implementation in the TINKER package that we reviewed previously in 201062. AMOEBA has the 

following functional form for the interactions among atoms  

𝑈 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑏𝜃 +  𝑈𝑜𝑜𝑝 +  𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +  𝑈𝑉𝐷𝑊 +  𝑈𝑒𝑙𝑒𝑐
𝑝𝑒𝑟𝑚 + 𝑈𝑒𝑙𝑒𝑐

𝑖𝑛𝑑                    (2) 

where the first six terms describe the short-range valence interactions such as bond and angle 

deformations, bond-angle cross terms, a formal Wilson-Decius-Cross decomposition of angle bending 

into in-plane and out-of-plane components, and a “softer” buffered 14-7 van der Waals form. In order to 

provide a better description of short-ranged anisotropic interactions, atomic multipoles and polarizable 

dipoles replace the standard fixed partial charges in the last two terms in Eq. (2). The essence of the 

AMOEBA model can be effectively captured in the polarization equation for the induced dipole vector on 

polarizable site i  

𝜇𝑖,𝛾
𝑑 = 𝛼𝑖 𝑇𝑖𝑗,𝛾𝑀𝑗

𝑑 + 𝑇𝑖𝑘,𝛾𝛿
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!"𝑁

𝑗

          𝛾, 𝛿 = 𝑥, 𝑦, 𝑧                                   (3) 

where 𝜇𝑖 is the inducible dipole at atom site i, αi is the isotropic polarizability of atom i, Tij is the rank-

two interaction tensor between atoms i and j containing derivatives of 1/rij prescribed by the permanent 
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multipole expansion, Tik′ is the corresponding interaction tensor just for inducible dipole-dipole 

interactions, and Mj
(d) are the permanent multipole moments. The rank-two tensor T prescribes the 

interaction among the permanent multipole sites through quadrupole given in the rank-one tensor M (q, 

µx, µy, µz, Qxx, Qxy, Qxz, Qyx, Qyy, Qyz, Qzx, Qzy, Qzz); the d superscript refers to scaling factors in the 

AMOEBA potential that prescribe which permanent multipole sites may give rise to polarization in 

another site. The fixed multipoles introduce significant computational overhead with respect to standard 

fixed charge models, and historically the additional cost of solving the linear set of polarization equations 

using a self-consistent field approach based on the conservative successive overrelaxation method63 have 

contributed to slow adoption of AMOEBA by the molecular simulation community.  

The TINKER codes from the Ponder group64, the pmemd.amoeba code in Amber (primarily 

written by Bob Duke)2, and ffx65, have been the main community codes supporting the AMOEBA force 

field for the last two decades. On a single thread, such codes yield roughly 0.04 ns/day for the 161 amino 

acid cyclophilin A protein embedded in 6149 water molecules (this particular timing is for 

pmemd.amoeba on an Intel Xeon E5-2650 at 2.3 GHz, using a 1 fs time step). The OpenMM 

implementation of AMOEBA provides significant speed improvements, running this example at 1.7 

ns/day on an NVIDIA GTX980 GPU (using mixed precision and again assuming a 1 fs time step). 

Leveraging a standard RESPA66 multiple time step method can increase the time step to 2 fs and 

parallelization strategies via OpenMP or MPI calls speeds up this calculation by at most a factor of ~10, 

so that tens to hundreds of nanosecond simulations would require months of time even on high-end 

compute clusters. Still, relatively few studies using AMOEBA have been carried out on simulation time 

scales that are now considered routine for simpler, fixed-charge force fields. As an example of relative 

speed performance, the fixed charge Amber MD simulations for cyclophilin A runs at 486 ns/day on an 

NVIDIA GTX980 GPU, using hydrogen mass repartitioning67, and SHAKE and SETTLE for 

constraining bonds to hydrogens, thereby permitting a 4 fs time step. Although this comparison combines 

differences in computational complexity with differences in hardware capability, it represents in a general 

way the practical speed tradeoffs facing users of these codes in early 2016.  

It also illustrates an important, and hopefully as we show here, a transient observation: although 

the performance penalty for going from a simple fixed-charge force field to a more complex, polarizable 

potential like AMOEBA should in theory be one order of magnitude or less, these implementations yield 

performance ratios closer to ~140 (486/3.4) on GPUs and up to ~600 (486/0.8) on CPUs with MPI, and 

assuming a 2 fs time step as illustrated here for the cyclophilin A protein. The effective ratio between 

AMOEBA and a fixed charge force field can be even larger if one takes into account that the use of rigid 
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water models, which is very common with simpler force fields, and which permits even longer time steps. 

However, fixed geometry models are not philosophically in line with advanced force fields such as 

AMOEBA. Therefore, it is clear that further model innovation, new method development, and greatly 

improved software implementations are needed if more routine adoption of multipole-based polarizable 

force fields is to become a reality.  

This Feature article presents a summary of recent results by a large consortium of researchers, 

which indicate that the state-of-the-art is changing rapidly, thus lowering the barrier to the more standard 

use of advanced force fields for large systems on long timescales. In Section 2 we introduce the range of 

new models and model physics centered around the AMOEBA force field. In section 2.1 we lay out a 

many-body expansion (MBE) formalism that provides well-defined approximations to complete mutual 

polarization, including the direct polarization model iAMOEBA68 and the approximate mutual 

polarization model 3-AMOEBA69, both of which yield acceptable accuracy and significant computational 

speed-ups over the parent AMOEBA potential. In sections 2.2 and 2.3 we describe two new 

QM/AMOEBA models that account for true mutual polarization across the QM/MM boundary as 

implemented in ONETEP70 and Q-Chem71. In Section 3 we summarize new methodological advances that 

tackle important algorithmic bottlenecks for simulating advanced potential energy surfaces. In sections 

3.1 we first consider the problem of more efficient sampling of AMOEBA through the formulation of a 

combined extended Lagrangian and self-consistent field solver for mutual polarization72 and in Section 

3.2 we describe a multiple time-step (MTS) integration algorithm that allows time steps of ~100 fs to be 

employed in molecular dynamics simulations of AMOEBA73. In Section 3.3 we describe improvements in 

Particle Mesh Ewald (PME) multipole electrostatics as implemented in DL_POLY74 and in Section 3.4 

we describe the progress made in more tractable linear scaling of density functional theory75 that can be 

usefully combined with the QM/AMOEBA model described in sections 2.2 and 2.3. In Section 4 we 

describe multiple new GPU and CPU implementations of AMOEBA and other approximate AMOEBA 

models and demonstrate their use in a range of application areas. Section 4.1 presents modest 

improvements in the OpenMP version of AMOEBA in TINKER, and Section 4.2 describes a hybrid 

OpenMP/MPI implementation of the iAMOEBA, 3-AMOEBA, and AMOEBA models implemented in 

TINKER7 and TINKER-HP. In Section 4.3 we highlight the recent advances of fast GPU formulations of 

AMOEBA in OpenMM5. In the final Section 5 we present validation and some large molecular 

simulation results using AMOEBA and the improved code bases. Section 5.1 presents important 

validation studies of the AMOEBA potential including energy decomposition analysis of simple ion-

water interactions compared against high quality density functional theory76, and showing that simulated 
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proteins using the AMOEBA force field are structurally stable on long timescales of 100-500 ns. Given 

these validations, Section 5.2 describes the recent success of AMOEBA in SAMPL competitions for host-

guest ligand predictions, and the ability to reproduce active site electrostatics previously quantified by 

much more expensive ab initio calculations on structures extracted from molecular dynamics simulations. 

We close in Section 6 with a final summary and conclusions. 

 

SECTION 2. NEW MODELS OF ADVANCED POTENTIAL ENERGY SURFACES 

2.1 A Hierarchy of Models based on the AMOEBA Force Field  

The many-body expansion (MBE) to the total potential energy of an N-body potential77-82 

      𝑈 = 𝑈! + 𝑈! + 𝑈! +⋯                                                                     (4a) 

where 

𝑈! = 𝑈 𝑖
𝑁

𝑖!!

,    𝑈! = 𝑈 𝑖, 𝑗
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𝑖!!

 

provides a useful organizing principle for AMOEBA-based models and algorithms that alter the tradeoff 

between accuracy and computational speed, thereby allowing users to define a “sweet spot” for a given 

scientific application. The N-body AMOEBA polarizable force field can be evaluated as the set of atomic 

or molecular interactions in increasingly larger clusters starting from monomers, progressing to dimers, 

trimers, etc. When Eq. (4) is truncated at the level of trimers it defines direct polarization exactly 

(iAMOEBA) and mutual polarization approximately (3-AMOEBA), and in the limit of large N reduces to 

the complete AMOEBA polarization model. For the sake of clarification, a monomer may represent a 

small molecule such as an ion, a large water cluster, or a multi-atom fragment within a larger covalently 

bound structure like a biopolymer. 

One of our primary goals in the development of iAMOEBA is to retain as much of the excellent 

AMOEBA model performance as possible, while reducing its computational cost for conditions where the 

number of degrees of freedom is large and when extensive statistical sampling is necessary. The 

iAMOEBA model is defined by a simple one step polarization scheme where the inducible dipoles 

respond only to the local field due to permanent atomic multipoles, i.e. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

7 

𝜇𝑖,𝛾
𝑑 = 𝛼𝑖 𝑇𝑖𝑗,𝛾𝑀𝑗

𝑑
!"𝑁

𝑗

         𝛾, 𝛿 = 𝑥, 𝑦, 𝑧                                                       (5) 

The question we addressed in previous work is whether the more limited direct polarization functional 

form in Eq. (5) can be reparameterized to recapture the missing mutual polarization. Using the automated 

parameterization tool ForceBalance 45, 83-84, we optimized the parameters of the iAMOEBA water model 

to recover the temperature dependence of the density and heat of vaporization, vibrational frequencies and 

other properties of gas phase water clusters68. Encouragingly, in studies of properties for which it was not 

explicitly parameterized such as the temperature dependence of the dielectric constant and the ordering of 

the ice phases85, the iAMOEBA model proved to be a high quality water model, although it will require 

the wholesale reparameterization of other systems, including proteins, ions, and nucleic acids in order to 

broaden its applicability.  

Nonetheless, there are good reasons to undertake the extensive parameterization work needed to 

extend iAMOEBA because the direct polarization form offers some significant advantages over full 

mutual polarization: (1) the iAMOEBA polarizable model is still responsive to the molecular environment 

at the direct polarization level, (2) iAMOEBA eliminates the expense of a tight SCF convergence for the 

induced dipoles or the poor accuracy associated with loose convergence of the dipoles (~10–2 D as was a 

typical convergence criterion in early simulations with the AMOEBA model), (3) iAMOEBA eliminates 

polarization catastrophes, for which full mutual polarization schemes require a damping function, and (4) 

there are no stability or accuracy issues in solving mutual polarization through an extended Langrangian 

formulation as used with many point dipole or Drude polarization models.  

At the same time there is evidence that there are limitations to what can be captured by the direct 

polarization response. In particular, iAMOEBA energies and forces for gas phase water cluster are not as 

accurate compared to the full AMOEBA03 water model, the ratio of the dielectric constant of the liquid 

compared to that of ice is smaller than seen experimentally, and the second virial coefficients are too 

negative. What this suggests is that objective parameterization schemes like ForceBalance83-84 have 

exhausted what is possible under the limited directed polarization functional form, and that mutual 

polarization is required to describe the wide-range of electric fields that differ substantially in the gas, 

liquid, and solid phases, and presumably are harbingers of problems at molecular interfaces between 

protein and water or at asymmetric environments such as the air-liquid surface. To that end, we have 

extended the ForceBalance approach to full mutual polarization, yielding the AMOEBA14 water model86. 

Overall, properties either remained as accurate as iAMOEBA, or they were significantly better. Examples 

of the latter are the interaction energy of gas-phase clusters ranging from dimers to 20-mers, the size-
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corrected diffusion constant, and the second virial coefficients, all of which are in better agreement with 

experiment86.  

Although the demonstrably improved physics of a polarizable force field such as AMOEBA is a 

necessary pre-requisite for moving beyond the pairwise additive approximation, it is not sufficient if the 

computational expense of an energy and force calculation remains a huge bottleneck for AMOEBA. 

Therefore, it is prudent to approximate mutual polarization by means of a truncation of Eq. (4) at the level 

of the 3-body term; this defines the 3-AMOEBA model. The 3-AMOEBA approximation rests on the 

reduced computational cost of polarization for the individual fragments, as well as the fact that these 

individual subsystems may be calculated independently, allowing for trivial parallelization with little 

communication overhead.  The fact that 2- and 3-body polarization energies decay rapidly with distance 

permits the use of inter-fragment distance cutoffs, reducing a potentially O(N3) computation to one that 

scales tractably as O(N).  

The implementation of 3-AMOEBA was tested for its ability to reproduce accurate condensed-

phase energies as well as structural properties of water in the NVT and NPT ensembles, in which a single 

water molecule defines a body. We found that 3-AMOEBA yielded small errors of 0.5-2.0% in regards 

the total polarization energy, ostensibly indicating acceptable convergence of the MBE. However, 

convergence of the MBE w.r.t. energies does not correspond to convergence with respect to forces nor the 

internal virial.69 Further investigation revealed that the accuracy of forces and virial contributions 

dramatically improved when the induced dipoles are “embedded” such that the induced dipole sites of the 

subsystem respond within a much larger permanent electrostatic environment.69 The electrostatic 

embedding framework inspired a tractable method of ameliorating the slow convergence of the force due 

to polarization under the MBE, namely, by defining the “body” in the MBE as a cluster of water 

molecules rather than a single water molecule and, in turn, greatly reducing the error in the forces when 

truncating the MBE at the 3-body level.69 Given the promise of the iAMOEBA and 3-AMOEBA models, 

in Section 4.2 we show that an order of magnitude improvement in computational speed over the current 

OpenMP implementation in TINKER can be gained by going to a hybrid OpenMP/MPI parallel strategy. 

 

Section 2.2 QM/MM with Polarizable MM using ONETEP and TINKER 

Polarizable force fields such as AMOEBA are expected to improve the description of chemically diverse 

environments compared to traditional fixed point-charge models. Nevertheless, studies on the use of 

AMOEBA as the embedding for QM fragments in QM/MM calculations are still very limited due to the 

complexity of handling the mutual polarization between the two regions. We set out to develop a 
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consistent model for the coupling of DFT and the AMOEBA polarizable force field using the ONETEP 

linear-scaling DFT formulation70 and the TINKER implementation64 of AMOEBA. Electronic degrees of 

freedom in ONETEP are described using strictly localized, non-orthogonal generalized Wannier 

functions, expanded in an underlying p-sinc basis87. The MM subsystem employs unmodified AMOEBA 

electrostatics, i.e. atom-centered, permanent, point multipoles up to quadrupoles and atom-centered, 

induced point dipoles, with suitably damped and scaled Coulombic interactions60, 88. Here, damping refers 

to a distance-based smoothing of interaction potentials involving induced dipoles, while scaling serves to 

eliminate or attenuate electrostatic interactions between sites interacting through bonded (valence) terms. 

The usual mutual polarization scheme is used, with induced dipoles determined self-consistently through 

an iterative procedure. 

In the proposed QM/MM model the polarization between the QM and MM subsystems is fully 

mutual89. This is accomplished by allowing the electrostatic potential of the MM environment (permanent 

multipoles and induced dipoles) to polarize the electronic charge density through its inclusion in the QM 

Hamiltonian and in gradients of the total energy with respect to the density matrix. The MM subsystem is 

in turn polarized in response to an auxiliary representation of the QM charge density (electronic and ionic) 

in terms of atom-centered, point multipoles up to a quadrupole. This auxiliary representation, hereafter 

termed QM*, is obtained via an extension to the Gaussian Distributed Multipole Analysis (GDMA)90 

approach to non-orthogonal localized orbitals. The extension that we have developed is a density-fitting 

scheme91 that uses truncated spherical waves as an auxiliary basis. 

Polarization of the MM subsystem is assumed to occur instantaneously in response to the 

permanent multipoles that comprise QM*. That is, at every iteration of the total energy minimization, the 

induced dipoles in the MM subsystem are determined self-consistently by minimizing a separate classical 

Hamiltonian wherein the QM* multipoles are clamped. The induced MM dipoles are obtained within 

TINKER, with the QM* multipoles serving as an inactive embedding region. The converged MM induced 

dipoles, along with permanent MM multipoles, are then included in the QM Hamiltonian in order to 

recover the polarization response of the QM subsystem, which takes place within ONETEP. The 

fulfillment of the SCF condition for the induced MM dipoles removes the need for dipole response terms 

in the derivatives of the QM/MM polarization energy with respect to the density matrix. 

In point-dipole polarizability models, a suitable damping of interactions involving induced dipoles 

is crucial for avoiding the so-called polarization catastrophe. A successful QM/polarizable-MM scheme 

must also carefully address damping to avoid similar artifacts, e.g. the ill-conditioned interaction of an 

MM point multipole with a surrounding QM charge density represented on a Cartesian grid with 
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necessarily finite resolution. In our model the interaction between QM and induced MM dipoles leverages 

the QM* representation, i.e. it is described as a Thole-like damped interaction of point multipoles, which 

is fully consistent with the AMOEBA model. The QM* contributions obtained from DMA are atom-

partitioned, allowing the use of classical polarizabilities for the QM subsystem in the Thole damping 

expressions. Gradients of this interaction energy with respect to the density matrix elements have been 

derived and implemented. Although the QM* representation is found to be an excellent approximation of 

the original QM charge density, its accuracy is nevertheless finite, requiring that the presence of the 

intermediate step QM→QM* needs to be accounted for in all gradient expressions. 

The interaction between QM and permanent MM multipoles is not damped, analogous to the 

AMOEBA model, which does not damp permanent electrostatics. In the absence of damping it is 

advantageous to forgo the QM* representation, instead obtaining the corresponding energy by integrating 

the potential of MM multipoles with the full QM density, and thus avoiding charge penetration errors that 

afflict the point multipole model. Singularities are eliminated by using extremely short-range Thole-like 

smearing of the multipole potential for grid points in the immediate vicinity (~1a0) of point multipoles. 

Validation tests have been undertaken to ensure that the resultant energies are practically insensitive to the 

details of this smearing.  

All strictly-MM energy terms are calculated within TINKER (bonded interactions, MM/MM van 

der Waals interactions, MM/MM permanent and induced electrostatics), and all strictly-QM energy terms 

are calculated within ONETEP (DFT energy, empirical dispersion correction)89. We find the inclusion of 

cross-system (QM/MM) van der Waals terms is necessary to obtain a physically sound description of 

QM/MM interactions, with the repulsive term that implicitly accounts for exchange repulsion serving a 

crucial function of balancing strong electrostatic attraction between molecules close to the QM/MM 

boundary. In the current model QM/MM van der Waals interactions are modeled in TINKER, in the same 

manner as their MM counterparts – except for a suitable adjustment of the slope of the repulsive wall, but 

with no change to the position of the minimum or its depth. 

Our findings indicate that the proposed approach is able to model accurately the embedding of a 

DFT subsystem within a classical, polarizable environment89. This is of practical significance, because it 

allows chemical accuracy to be obtained with QM regions smaller than those used in fixed point-charge 

electrostatic embedding schemes, and is vastly superior to neglecting embedding entirely (i.e. performing 

DFT on a truncated system), with the latter suffering from additional issues beyond its high computational 

cost92. To illustrate this point, Figure 1 presents a test case of a single diphenylhydramine solute in 330 

water molecules for which we calculate a reference DFT benchmark of the interaction energy between the 
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solute and all 330 solvent molecules. We then test whether the benchmark interaction energy can be 

reproduced with a smaller QM region under the following embedding schemes: all QM with no 

embedding (truncation), QM with fixed partial-charge electrostatic embedding, QM with GAFF 

embedding (TIP3P fixed partial charges and Lennard-Jones QM/MM interactions), and QM with 

mutually polarizable AMOEBA embedding; in all three embedding schemes we keep the total number of 

water molecules constant at 330. Additionally, we show fully classical results obtained with GAFF and 

AMOEBA, where we progressively add water molecules around the solute. 

With no embedding as many as 310 QM waters around the solute are needed to converge the 

energy to within 1 kcal/mol of the benchmark. Using non-polarizable embedding the accuracy is achieved 

by retaining 140 water molecules described at the DFT level, improving to 35 once GAFF QM/MM van 

der Waals interactions are included; whereas with mutual polarization embedding, the number of DFT 

water molecules is further reduced to 25 DFT water molecules. The fully classical AMOEBA description 

(green circles) is able to reproduce the interaction energy accurately and tracks the DFT result closely, 

while the GAFF description suffers from short- and long-range error in excess of 10 kcal/mol. Further 

validation will be performed to assess the predictive power of this model for calculating reaction energies 

in solvent. Future theoretical work will focus on three main areas: 1) derivation of polarization energy 

gradients for the more general case of in situ optimized local orbitals, 2) improving the description of van 

der Waals interactions and implementing bonded terms between the QM and MM subsystems, and 3) 

investigating more refined models for QM/MM electrostatic interactions. 

 

Section 2.3 QM/MM with Polarizable MM using LibEFP and Q-Chem 

LibEFP is an open source library that implements the Effective Fragment Potential (EFP) method, a first-

principles-based force-field93. While LibEFP was originally designed for EFP calculations22, 94-95, it can 

be naturally extended to support the AMOEBA force field in the Q-Chem program71 for QM/MM 

calculations. Again, we are interested in a mutual polarization model wherein the contribution of 

AMOEBA’s permanent multipoles and induced dipoles are included in the QM Hamiltonian, while the 

electric field of the QM back-polarizes the AMOEBA region. The implementation of the AMOEBA force 

field in LibEFP involved (a) preparing and parsing fragment potential data files (“efp” files) using 

AMOEBA force field parameters such as permanent multipole moments, atomic polarizabilities, 

polarization damping factors, vdW parameters and parameters for bonded interactions; (b) using the local 

frame to obtain the AMOEBA permanent multipole moments from values for the reference frame; (c) 

adding the van der Waals 7-14 potential used in the AMOEBA force field; (d) including the contributions 
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from the bonded terms, which are not included in EFP calculations, where each fragment has a frozen 

geometry; and (e) evaluating the permanent and induced electrostatics of AMOEBA. 

The AMOEBA permanent and induced electrostatics can be handled within LibEFP for both non-

periodic and periodic systems. For non-periodic systems, the LibEFP code was extended to accommodate 

the damping scheme and scalar atomic polarizabilities within the AMOEBA force field. For periodic 

systems, the particle mesh Ewald (PME) method6, 96, which partitions the computation between the direct 

space (for short-range components) and the reciprocal space (for long-range components), was added to 

the LibEFP library.  In the direct-space, efficient evaluation of the electrostatic interactions between 

permanent multipole moments was achieved via a formulation in terms of spherical harmonics97.  

With this implementation in place, the AMOEBA force field in its original formulation can be 

readily used in QM/MM calculations together with density functional theory (DFT), perturbation theory, 

and other wavefunction-based theories within the Q-Chem software package. Our current implementation 

of DFT/AMOEBA calculations is based on a “double” self-consistent field optimization scheme, i.e. the 

total energy of the QM/MM system is minimized with respect to both electron density from QM atoms 

(outer loop) and induced dipoles on MM atoms (inner loop), which is different from the gradient-based 

approach adopted by the ONETEP/TINKER implementation introduced above. This new capability will 

enable us to predict QM/AMOEBA-corrected hydration free energies, solvatochromism, and many other 

physical properties. While the AMOEBA force field as implemented within LibEFP has so far been tested 

only in conjunction with the Q-Chem software package, little effort will be required to get it working with 

Psi498, NWCHEM99 and other ab initio electron structure packages.  

Our preliminary results using a single AMOEBA water as an MM fragment (considering 

permanent and induced electrostatics only, i.e. Coulomb electrostatic embedding) indicate the necessity of 

smearing the monopoles that correspond to the valence electrons on MM atoms to describe the effect of 

forward (MM polarizes QM) polarization correctly. One illustrative example is given by Figure 2, where 

the response of the electron density on the QM water (proton donor in the water dimer) under the 

polarizing of the AMOEBA water (proton acceptor) is largely improved when the point monopoles that 

represent valence electrons on the latter are replaced by spherical Gaussian functions100 with widths that 

are fine-tuned to reproduce the polarization effect owing to the true QM charge distribution (converged 

electron density with nuclear charges) of the “environment” water molecule. It should be noted that the 

smearing of monopoles is only applied when evaluating the contribution of AMOEBA fragments to the 

QM Hamiltonian, i.e., it does not affect the interactions between MM molecules. Future work may 

involve developing the parameters or even improving the model for vdW interactions between QM and 
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MM regions, especially for the repulsive part of the potential (corresponding to Pauli repulsion between 

the interacting fragments), since it is likely to modulate the QM electron density significantly.  

 

SECTION 3. NEW METHODS FOR ADVANCED POTENTIAL ENERGY SURFACES 

3.1. New Approaches to Solving Mutual Polarization 

The mutual polarization in Eq. (1) is usually solved for iteratively at each time step in a simulation using 

methods such as successive over-relaxation (SOR)63, preconditioned conjugate gradient (PCG)101, or 

direct inversion in the iterative subspace (DIIS)102 methods. The typical trade off among these methods is 

that they are either expensive (such as SOR) or they speed up convergence through retention of a history 

of converged mutual dipoles. In molecular dynamics calculations, this history retention leads to poor 

energy conservation through a systematic energy drift.  An alternative approach is to dynamically evolve 

the polarization degrees of freedom alongside the ‘real’ atomic system in the form of an extended 

Lagrangian (EL).103-105 However, EL formulations typically suffer from numerical stability issues that can 

only be addressed by decreasing the size of the time step, which, for obvious reasons, is undesirable.. In 

all cases it should be emphasized that solutions to the mutual polarization are approximate and will lead to 

numerical accuracy problems that must be controlled. 

A number of new approaches were introduced in 2015 that offer a better balance between 

accuracy, speed, and energy conservation, which we can by classified as new approximate models vs. new 

methods to solve for the mutual polarization response. In the former category the iAMOEBA model 

solves the direct polarization exactly68, while the 3-AMOEBA model using single water molecule bodies 

approximates the N-body mutual polarization by summing over small dimer or trimer fragments whose 

polarization can be solved analytically through matrix inversion20. Another example is the Extrapolated 

Perturbation Theory Optimization (ExPT-Opt3)106, which is also formulated as an analytical but 

approximate model to AMOEBA’s mutual polarization. ExPT begins with the direct polarization model 

and then sets up a perturbation theory approach to obtain a mutual polarization energy functional that 

approximates the full induced dipole variational coupling. In practice the perturbation theory is replaced 

with an extrapolation scheme that attempts to fit the infinite series solution, , and the quality of said fit 

depends on the system being studied. Because these are approximate models that discard part of the full 

AMOEBA mutual polarization solution, all three approaches require some reparameterization of the 

AMOEBA polarization parameters to recapture any missing mutual polarization or to address the system-

dependence of the model. 
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By contrast, there are now significantly better methods for solving mutual polarization of the 

standard AMOEBA model directly, beyond the conservative SOR procedure that was the default solver in 

the TINKER software platform for two decades. This changed in 2013 when the SOR was replaced by the 

more efficient SCF iterative methods like preconditioned conjugate gradient (PCG) in TINKER64 and 

direct inversion in the iterative subspace (DIIS) for classical polarization calculations in TINKER-HP107-

108. These offer significant computational speed-ups by greatly reducing the number of SCF cycles, and 

can be further supplemented by a predictor that extrapolates an initial guess for the SCF solver from 

previous SCF solutions at previous time steps. However while a predictor may seem like a 

straightforward method to reduce SCF cycles, it destroys the underlying time reversibility thereby 

affecting both energy conservation and convergence. In general a non-predictor method will be able to 

maintain energy conservation at a lower convergence threshold than a predictor method due to its time-

reversibility. For example, AMOEBA water in the NVE ensemble with a PCG solver requires 

approximate convergence thresholds of 10-6 RMS D with a predictor and 10-3 RMS D without one.   

This tradeoff between energy conservation, time-reversibility, and convergence threshold can 

undermine some of the usefulness of a traditional predictor. Here we highlight the inertia-restrained 

extended Lagrangian/self-consistent field (iEL/SCF) method that overcomes these problems72. The 

iEL/SCF method eliminates the predictor used in PCG and DIIS and allows for the use of a much relaxed 

convergence criteria for SCF iteration. In general iEL/SCF employs time-reversible propagation in 

extended Lagrangian methods in conjunction with numerically stable SCF iteration. In the spirit of 

Niklasson et al. who originally developed the approach for iteratively finding the ground state density in 

ab initio molecular dynamics simulations 109-113, we define an extended Lagrangian given by Eq. (1) for 

the induced dipoles used to describe classical polarization: 

ℒℎ𝑦𝑏𝑟𝑖𝑑
𝑑𝑖𝑝𝑜𝑙𝑒 =  

1
2 𝑚𝑖𝑟𝑖

!
𝑁

𝑖!!

+  
1
2 𝑚𝜇,𝑖

𝑁

𝑖!!

𝜇𝑖
!
− 𝑈 𝑟𝑵,𝜇𝑆𝐶𝐹

𝑵 −  
1
2𝜔! 𝑚𝜇,𝑖

𝑁

𝑖!!

𝜇𝑆𝐶𝐹,𝑖 − 𝜇𝑖
!                    (6) 

where 𝜇𝑆𝐶𝐹
𝑵  represents the set of all converged physical induced dipoles. In Eq. (6) we have also 

introduced another set of induced dipoles, 𝜇𝑵, which are the initial guesses to the iterative solution of 

𝜇𝑆𝐶𝐹
𝑵 . This auxiliary set of induced dipoles is restrained to stay near the true self-consistent values via the 

final term in Eq. (6) which is a harmonic function characterized by a fictitious mass, 𝑚𝜇,𝑖, and a 

frequency,𝜔; the latter is a universal parameter that determines the curvature of the harmonic well. 

Applying the Euler-Lagrange equation of motion to Eq. (6) in the limit that 𝑚𝜇,𝑖 ⟶ 0 yields the equations 

of motion for atomic centers and induced dipoles,  
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𝑚𝑖𝑟𝑖 =  −
𝜕𝑈 𝑟𝑵,𝜇𝑆𝐶𝐹

𝑵

𝜕𝑟𝑖
𝜇𝑁

                                                                  (7a) 

𝜇𝑖 =  𝜔! 𝜇𝑆𝐶𝐹,𝑖 − 𝜇𝑖                                                                          (7b) 

Eq. (7a) shows that equations of motion for the atomic centers are propagated in the usual way, except 

that the PCG iterative solution to determine 𝜇𝑆𝐶𝐹
𝑁  now uses an initial guess that is propagated by the 

auxiliary electronic degrees of freedom in Eq. (7b). We integrate both equations of motion using time-

reversible velocity Verlet integration 114, and we chose 𝜔 to be 2 ∆𝑡, where ∆𝑡 is the time step, which 

we set to 1 fs.  

We have previously shown 72 that this straight adaptation of Niklasson’s method is insufficient for 

both for decreasing computational expense and maintaining numerical stability due to problems that arise 

from resonances that make the auxiliary dipoles increasingly poor initial guesses for the SCF solutions of 

the physical induced dipoles. More specifically, we showed that the auxiliary dipoles evolve on a much 

faster timescale than their physical counterparts owing to the optimal choice of their characteristic 

frequency, √2⁄∆t, and their direct coupling in the auxiliary potential (Eq. (7b)) leads to corruption of their 

dynamics. To address this problem, we introduced “temperature” control on the auxiliary set of dipoles, 

using both Berendsen115 rescaling and time-reversible Nosé-Hoover chains9-10 as thermostating methods, 

much as is done in Car-Parrinello ab initio MD calculations116-117. The set point pseudo-temperature of 

the auxiliary system can be determined with an equipartition argument applied to the harmonic restraining 

forces experienced by the auxiliary dipoles72.   

The iEL/SCF method shows much better energy conservation over a wide range of convergence 

levels for SCF iteration, especially compared to typical SCF methods that use a predictor as the CG-SCF 

method implemented in TINKER. Furthermore, since iEL/SCF can employ a looser SCF convergence 

criterion, fewer SCF iterations are required, typically half as many. Moreover, all physical properties 

predicted using standard SCF with a tight convergence criterion are well reproduced by iEL/SCF with a 

loose convergence criterion. These include both equilibrium thermodynamic quantities, such as the 

average molecular dipole moment and average potential energy, as well as dynamical properties such as 

the diffusion constant (Table 1). 

 

Section 3.2 Increasing the Molecular Simulation Timestep for AMOEBA  

Most properties of interest in a condensed-phase system are connected to low-frequency, long time-scale 

phenomena.  However, converging such properties generally requires many small time steps the size of 
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which is dictated by the simultaneous presence of the highest frequency motions in the system. The 

fundamental problem posed by the need for a small time step corresponding to the fastest evolving 

degrees of freedom can be addressed via multiple-time step algorithms such as r-RESPA66. This approach 

is based on the recognition that forces evolving on different time scales may be evaluated at different time 

intervals.  More specifically, the forces due to the faster covalent terms are evaluated more frequently and 

the more slowly evolving forces due to non-covalent interactions evaluated less frequently, all within a 

symplectic framework.  The computational savings garnered derives from the fact that the cost of the 

force calculation in classical MD is dominated by the nonbonded contributions, a cost that is substantially 

lowered when the number of such force evaluations is thus reduced. 

Standard multiple time-step (MTS) approaches are limited, however, by resonance phenomena, 

wherein motion on the fastest time scales poses a typical limit on the size of the time step that may be 

used for the calculation of the slowly evolving non-covalent forces. In atomistic models of biomolecular 

systems, for example, the largest time step is around 3-5 fs. Previously, Tuckerman and co-workers 

introduced an isokinetic extended phase-space algorithm118 and its stochastic analog119 that eliminate 

resonance phenomena through a set of kinetic energy constraints. Using such constraints, a time step of 

nearly 100 fs could be employed for the slowly evolving forces in a simulation of liquid water using a 

fixed-charge flexible model.   

Tuckerman and coworkers have been able to extend the stochastic resonance-free approach, 

termed stochastic isokinetic Nosé-Hoover (RESPA) or SIN(R), of Leimkuhler et al 119 to polarizable 

models formulated in terms of fluctuating induced dipole moments73. Note that SIN can be used as a 

canonical sampling method with or without a RESPA66 MTS decomposition. Typical MTS algorithms for 

fixed-charge force fields involve decomposing the forces into bonded forces, short-range non-bonded 

forces, and long-range non-bonded forces. Although the forces in polarizable models cannot be explicitly 

decomposed in this fashion, the concept can, nevertheless, be adapted to the polarizable case by 

introducing a short-ranged induced dipole moment calculation based on a spherical cutoff, rcut, which is 

then used to construct induced dipole forces in the short-range steps. These short-range dipoles are given 

by the equation 

𝜇𝑖,𝛾
𝑑,𝑆 = 𝛼𝑖 𝑇𝑖𝑗,𝛾𝑀𝑗

𝑆,𝑑 + 𝑇𝑖𝑘,𝛾𝛿
! 𝜇𝑘,𝛿

𝑆
!𝑁

𝑘,𝑟𝑖𝑘!𝑟𝑐𝑢𝑡

!"𝑁

𝑗

          𝛾, 𝛿 = 𝑥, 𝑦, 𝑧                              (8) 

This is then corrected in long-range force steps by performing a full calculation of the induced dipole 

moments and subtracting the short-range contribution, where the full dipole calculation follows the usual 

prescription of Eq. (3). All pairwise forces are decomposed into short- and long-range contributions in the 
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standard fashion using a spherical cutoff, and reciprocal-space forces coming from Ewald summation are 

evaluated with the long-range forces, forming a scheme we call RESPA1-pol. This approach has been 

implemented in the TINKER7 software package, and in MD simulations of 512 AMOEBA water 

molecules in a periodic cubic box of length 24.85 Å, it is found that the time step for the expensive long-

range calculations can be increased to 120 fs with no degradation in the equilibrium properties. This is 

illustrated for the oxygen-oxygen and oxygen-hydrogen RDFs in Figures 3a and 3b. Importantly, we 

obtain computational speedup factors ranging between 10 and 25, depending on the choice of simulation 

parameters (see Figure 3c).  Moreover, although not entirely expected, the SIN(R) algorithm accurately 

reproduces diffusion constants, as shown in Table 2. 

 

Section 3.3 New Formulations of Electrostatic Multipolar Interactions  

Developing software that implements multipolar electrostatics interactions for molecular dynamics 

engines in a parallel, efficient and sustainable manner presents many challenges. Despite the wealth of 

theoretical and methodological work only a few software projects have dealt with these challenges 

including DL_MULTI120, TINKER64, Amber2, and CHARMM3.  It is worth noting that DL_MULTI 

implements the multipolar expansion up to hexadecapole moments using a formulation in terms of 

spherical harmonics whereas TINKER limits the expansion to quadrupole moments on point centered 

multipoles (within flexible molecules, i.e. no rigidification restrictions) using a Cartesian formulation. 

Both software packages rely on replicated data parallelization, which is not memory distributed and is 

known to suffer from memory overheads with large model system sizes and prohibitive communication 

overheads on anything beyond moderate processor counts (~100). 

The GDMA program90 used to define multipole electrostatics allows for generation of multipoles 

up to tenth order if it is desired to include multipoles beyond quadrupoles as is currently the practice for 

AMOEBA development. One of the main new contributions to the DL_POLY121 and CHARMM software 

packages is the generalization of multipolar particle mesh Ewald (PME) to arbitrary order that builds on 

previous work on fixed charges, dipoles, quadrupoles, and hexadecapoles. It is hoped that these new 

methods will lower the barrier for using higher order multipoles in future developments of other advanced 

potential energy models and their software implementations.  

The key idea of PME is to approximate the structure factor on a uniform grid in 3 dimensions that 

fills the simulation cell. We have derived a closed form formula for arbitrary order multidimensional 

derivatives of the product of three B-splines which is required for the extension of the reciprocal space 

PME to arbitrary order, as well as for the stress tensor needed for constant pressure simulations, and 
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provided a simple procedure for the B-spline computation using particle mesh Ewald74. That study also 

provided recurrence relations for the Coulomb sum, force-shifted Coulomb, Coulomb sum with distance 

dependent dielectric, and reaction field, which allows for a simple implementation of permanent 

multipoles up to arbitrary order with potentials other than the Ewald sum. While there has already been 

work in this direction by Nymand and Linse122 and Brommer et al.123, Boateng and Todorov provided an 

alternative recurrence relation for the real space kernel of the Ewald sum74. Furthermore, it was shown in 

their work that there is a Cartesian recurrence relation that has cubic scaling in the order of multipole 

used, which is equivalent to the scaling of a recently developed spherical harmonic version of the real 

space that also achieves cubic scaling by Simmonett et. al. and implemented in CHARMM97; both 

improve on the original scaling of the Boys recurrence in the original PME formulation7 which is quartic 

in the multipole order. The development of the new Cartesian multipolar approach has now been 

integrated efficiently within DL_POLY_4’s domain decomposition framework to utilize the performance 

advantages of SPME96, 124,125 for the Ewald case.  

 

Section 3.4 Approaching the basis set limit for DFT calculations with advanced functionals 

The performance of QM/MM methods is limited not just by errors in treating the QM/MM boundary or 

limitations of the force field, but also by the inexactness of the QM model itself. Fortunately, the 

statistical errors of standard density functionals like PBE-D3126-127 can be reduced by roughly a factor of 

two for thermochemistry (TC) and non-covalent (NC) interactions by recently developed density 

functionals, such as ωB97X-V128 and B97M-V129. The latter has the computational advantage of not 

requiring exact exchange (which necessarily leads to larger errors for self-interaction sensitive problems). 

It is important to emphasize that such impressive improvements in accuracy are only achieved 

when very large atomic orbital basis sets are used (ideally beyond triple zeta, for instance the quadruple 

zeta def2-QZVPPD basis)130. However, in conventional quantum chemistry, the cost of approaching the 

one-particle basis set limit is very high, scaling at least as O(n3) with the number of functions per atom, 

due to Fock matrix element evaluation and diagonalization costs. Therefore practical DFT calculations are 

typically performed with smaller basis sets, and it is an important challenge in quantum chemistry to 

reduce the cost of large basis calculations. Indeed, DFT based ab initio molecular dynamics calculations 

of pure water and aqueous solutions using fully converged discrete variable representation basis sets show 

that both structural and dynamical properties are sensitive to the size of the basis set131-137. Examples of 

existing approaches that help defray the computational cost are the use of resolution of the identity (RI) 
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approximations for the Coulomb and exchange interactions138-141, which are nowadays standard, as well 

as the dual-basis SCF methods.142-143 

In order to approach the basis set limit with potentially lower computational effort, we have been 

working on a new SCF scheme using a minimal adaptive basis (MAB) consisting of functions that are 

variationally optimized on each atomic site.75 We shall review this approach briefly, which aims to 

reproduce the accuracy of large-basis SCF calculations.  It involves a sequence of four steps to produce 

the final energy. 

The first step is to project the small 6-31+G(d) basis into the large target basis, and performing an 

SCF calculation in this projected basis (of the small basis dimension) in order to obtain a reference one-

particle density matrix, Pref.  Relative to full SCF, this offers a cost reduction of (N/P)3 where N is the 

target basis rank and P is the rank of the 6-31+G(d) basis.  The second step is then to find the MAB by 

minimizing a judiciously chosen energy-like function: 

    (9) 

This function depends only on the converged Fock matrix, F, corresponding to Pref, so iterative 

minimization involves only linear algebraic operations.  Eq. (9) is minimized with respect to the elements 

of an atom-blocked transformation, B, from the large target basis to the MAB representation, and this 

atom-blocking reduces the scaling of many linear algebra steps from cubic to quadratic.  B determines the 

span of the minimum basis, R, through  , where  and S is the atomic orbital 

overlap matrix.  

The third step involves performing an SCF calculation in the MAB, which yields a cost reduction 

of (N/M)3 relative to the target basis SCF, where M is the rank of a minimal basis.  Finally, in the fourth 

step, the desired accuracy is obtained by applying a perturbative correction (PC) to the SCF/MAB 

solution. For a pure functional like B97M-V, the PC simply uses the converged MAB Fock matrix, 

similar to dual-basis SCF methods142-143: 

 
  

(10) 

The sum runs over occupied orbitals, i, and virtual orbitals, a, and ε are semi-canonicalized Kohn-Sham 

eigenvalues. This expression requires solution of a single large system of linear equations, giving a speed-

up relative to conventional SCF that is greater than the typical iteration count (between 10 and 20). 

Compared to exact SCF results using the modern B97M-V density functional, using this MAB-

SCF (PC) approach with the same target basis set produces < 0.1 kcal/mol RMS errors for tested TC data, 

and less than 0.05 kcal/mol for the NC data. Hence the performance of modern density functionals near 

L = Tr RSPrefSRF⎡⎣ ⎤⎦

R = Bσ −1BT σ = BTSB

Etot = EMAB − Fai
2 εa − ε i( )

ia
∑
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the basis set limit can be quite faithfully reproduced. As an illustration of the resulting basis set 

convergence, Figure 4 shows the results of accuracy tests on 5 NC datasets using B97M-V, using the 

MAB approach and conventional SCF in the def2-QZVPPD basis; the results are also compared to the 

best available reference data.   

Two points emerge clearly from these tests.  First, the B97M-V density functional yields quite 

small RMS deviations against the reference data. To see how small, consider that the data points in 

H2OBind8, for instance, represent the binding energies of water hexamers that are each 40-50 kcal/mol in 

magnitude. In terms of accuracy, these results are close to the best that is currently possible with DFT. 

Second, the difference between the conventional large-basis calculations and the MAB-based calculations 

is a factor of roughly 10 times smaller than the intrinsic error associated with the B97M-V density 

functional. Thus the MAB-based model, indeed, successfully approaches the basis set limit, as was our 

goal. 

Finally, we should note a few caveats and limitations.  First, molecules that contain hypervalent 

atoms require extra MAB functions beyond a standard minimum basis dimension.  This is accommodated 

by a threshold-driven adaptive scheme.  Second, the excellent accuracy shown for pure functionals can 

only be matched for hybrid functionals if a more sophisticated (and computationally twice as costly) PC is 

used at twice the computational cost. Third, and most important, our present implementation in Q-Chem71 

is a pilot implementation which does not yet optimize the savings that are possible for matrix element 

evaluation, although it is nearly optimal with regard to the linear algebra effort. In conclusion, with 

further improvements in its implementation, MAB-SCF (PC) could be a promising low-cost substitute for 

its conventional counterpart to viably approach the basis set limit of modern density functionals. 

 

SECTION 4. SOFTWARE IMPROVEMENTS  

4.1 OpenMP Performance Optimization for AMOEBA in TINKER 

A primary objective of the consortium work has been to improve performance on CPUs with regard to the 

canonical implementation code, TINKER, starting with improvements to the existing OpenMP framework 

which is most suitable for running on in-house commodity clusters. In this case, original versions of the 

reference implementation of AMOEBA in the TINKER software were based on explicit Cartesian 

multipole formula for the energy and gradient charge-charge multipole interactions up to quadrupole-

quadrupole multipole interactions. Thole damping of induced dipole interactions was handled as a special 

case, and computed in-line as part of the energy and gradient (force) calculations. In an attempt to 

streamline the TINKER code and make it easier to add modifications such as explicit charge penetration 
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effects52-53, the latest version of TINKER computes and stores the electrostatic potential, electric field, 

electric field gradient and electric field Hessian due to permanent multipole moments, and corresponding 

quantities for the induced dipoles, during the initial solution of the polarization equations, Eq. (3). This 

greatly simplifies the subsequent calculation of the energy and gradient. For example, the polarization 

energy is then just the dot product of the induced dipoles with the electric field. In addition this 

refactoring allows easy testing of alternative short-range damping functions since changes are only 

needed in the field and its gradients, without any alteration of the energy and gradient code. 

 

4.2 OpenMP/MPI Performance Optimization in TINKER and TINKER-HP 

Recently we have implemented a parallel hybrid MPI/OpenMP replicated data (atom-decomposition) 

scheme that is most suitable for running iAMOEBA in TINKER on HPC platforms having a fast node 

interconnect. In this case we sought to reduce the computational expense by pre-calculating and saving 

the tensor elements corresponding to the permanent field and field gradient. For instance, for a multipole 

site i interacting with an induced dipole site j, we would have the following derivative terms of the 

permanent field that would need to be saved: 

  
 

 

       

          (11) 

all of which would need to be saved. The direct contribution to the polarization energy is calculated 

simply as the dot product of induced dipole and the saved permanent field. The direct polarization 

contributions to the gradient and internal virial are then calculated by iterating over the saved tensor 

elements. The resulting tensor method, on its own, was found to be a computationally advantageous 

method for the direct polarization calculation using the iAMOEBA model, in particular, which is finding 

increased popularity within the water community.  

Hybrid MPI/OpenMP parallel timings in nanoseconds per day were extrapolated from short 

molecular dynamics simulations of 100-2000 time steps using the velocity Verlet integrator, a 1 fs time 

step, a 9.0 Å vdW cutoff, and a 7.0 Å real space cutoff for particle-mesh Ewald (PME) electrostatics, and 

using both small numbers (384 or 768) up to large numbers (3072 to 6144) of cores on system sizes 

ranging from 1600 to 288,000 water molecules. The reference TINKER7 code is parallelized in the 
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shared-memory regime with OpenMP, so all timing comparisons with the reference TINKER7 were 

obtained using 12 OpenMP threads that gave the best speedup. Table 3 presents the timings and speedups 

for the hybrid MPI/OpenMP implementation, with the tensor method achieving a factor of ~4.5 for low 

numbers of cores and up to a factor of ~7.9 with larger numbers of cores.  

The very nature of the MBE approximation admits a trivial parallel implementation for the 

approximate mutual polarization model 3-AMOEBA, as the polarization energy, gradient, and virial of 

the subsystems are independent of one another. Again, we use a hybrid MPI/OpenMP approach and a 

load-balancing scheme is implemented that ensures that the work of calculating the polarization energy, 

gradient, and virial is distributed as evenly as possible among the MPI tasks. Table 4 shows that the 

approximate 3-AMOEBA model is faster by factors of 2 to 11 compared to the parent AMOEBA 

potential, depending on the fragment size that defines a body n, and the total system size N.  The 3-body 

approximation by its very nature imposes more work but trivial parallelization compared to the 

AMOEBA model.  In the process of improving the accuracy of polarization gradients under the 3-body 

approximation, we have fortuitously ameliorated this problem by concomitantly increasing the size of the 

fragment, thereby reducing the number of fragments. Nonetheless, the computational speedup of our 

method relies on the simultaneous calculation of 1-, 2-, and 3-body contributions to the energy, gradient, 

and virial, with each MPI task dedicated to a single subsystem calculation, thereby necessitating up to 

3600 cores.  In an era of exascale computing, the 3-AMOEBA would be highly suitable as a refactored 

form of the AMOEBA potential. In contrast to 3-AMOEBA, the direct polarization model of iAMOEBA 

does not suffer from a curse of numbers of independent calculations and computational speedups over the 

reference TINKER7 implementation may be realized with a few hundred cores.   

The recently developed TINKER-HP software provides a new implementation of AMOEBA for 

high-throughput production calculations on CPUs. TINKER-HP is a distributed memory version of the 

core AMOEBA energy and force functions using MPI parallelization. Previous results have shown good 

scaling on the polarizable multipole PME electrostatics calculations that are a major computational 

bottleneck in AMOEBA simulations.52 The TINKER-HP code has now been extended to perform full 

AMOEBA molecular dynamics and minimization calculations. Excellent scaling performance is observed 

for AMOEBA MD simulation across thousands of cores for large systems such as the 3.5 million atom 

solvated ribosome complex. Once testing is complete, the code for TINKER-HP will be released to a 

public GitHub site, and we anticipate it may become the implementation of choice for AMOEBA 

calculations on large-scale, high-performance distributed computer systems.  
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4.3 OpenMM for GPU-Based Calculations with AMOEBA 

The OpenMM software5 (http://openmm.org) developed by the Simbios Center at Stanford University is 

highly optimized to perform MD simulations on graphical processing units (GPUs). It is part of the 

Omnia software suite (http://omnia.md), a collection of interoperating tools for biomolecular simulation. 

It can be used either as a standalone simulation package, or as a library to perform calculations within 

other applications. It has supported the AMOEBA force field since version 3.0, released in 2011. 

 AMOEBA simulations can be run with OpenMM in several different ways. One option is to use it 

as a standalone package, writing a Python control script to direct the details of the simulation. 

Alternatively, a set of scripts is available to automate the preparation and running of simulations 

(https://github.com/apes-soft/OMM_Amoeba_Scripts). Finally, there is a GitHub repository containing 

the TINKER interface to OpenMM (with modifications to base OpenMM specific to AMOEBA 

calculations) at (https://github.com/pren/TINKER-openmm). This allows users to run simulations with 

TINKER while having the calculations be done by OpenMM on a GPU. 

The advantage of running the simulation directly in Python (rather than through TINKER) is that 

this provides access to a wider range of popular output file formats such as DCD or NetCDF binary 

trajectory files, as well as established reversible reference system propagator algorithm (RESPA) multi-

time stepping integrators66, 118 that are currently available only through the OpenMM Python interface. 

Furthermore, it eliminates the requirement that TINKER be installed on the machine used to run the 

simulation (although at the expense of requiring Python to be available). 

The first approach requires using the OpenMM modeling toolkit to parameterize a structure 

defined in a PDB or PDBx/mmCIF file containing standard biomolecular residues, water, and basic ions. 

This process is automated through one of the scripts in the aforementioned GitHub repository. This 

approach is the simplest to execute, as it requires only installing OpenMM (which is done using the conda 

package manager in a simple manner) and executing a preparatory script on a lightly-curated PDB file. It 

is limited, however, in that it works only for standard amino and nucleic acid residues as well as water 

and a small number of common monatomic ions.  

Applying the AMOEBA force field to systems containing nonstandard residues or nonstandard 

post-translational modifications requires TINKER to generate a serialized representation that can later be 

used to run a simulation using an OpenMM-powered Python script. This approach is the most flexible, 

since it utilizes the de facto reference implementation of AMOEBA to reliably parameterize the target 

system. However, it also requires users to install not only OpenMM, but also TINKER and the TINKER-
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OpenMM interface. Since there are no precompiled binaries for this package and development on this 

functionality is occurring rapidly, it can be difficult to even install the prerequisite software to execute this 

workflow. Furthermore, OpenMM seems to be more tolerant of variations in PDB files, meaning that this 

second approach involving TINKER also requires curating the PDB files much more carefully. We have 

generally found that for systems that are capable of being parameterized entirely using OpenMM, setting 

up an AMOEBA simulation using the first approach is substantially more efficient. 

Table 5 shows the total throughput of AMOEBA MD simulations on a single commodity NVIDIA 

GTX 980 GPU card via the TINKER-OpenMM interface running in “mixed” precision. Mixed precision 

means that the calculated forces, the bottleneck in all MD calculation, are evaluated in single precision to 

provide the maximum speedups, whereas the accumulation of these interactions as well as the actual 

integration step (update of positions, velocities and accelerations) are taken in either double or fixed 

precision to improve the accuracy. Table 5 also reports double precision timings in OpenMM generated 

on the Tesla K80 GPUs. We note the speedup on GPUs running double precision is ~5 times faster, 

whereas using mixed precision is roughly 10-20 times faster, than that available with double precision 

versions of TINKER running OpenMP parallelization on traditional multi-core CPU compute nodes. In 

addition, speed up doubles when using the iELSCF72 method or ExPT/Opt3106 model for solving for 

mutual polarization, and effective timescales could be much longer if the new MTS scheme73 of Sec. 3.2 

was used for this test. The ability to run 100ns simulations in a reasonable time on small to medium-sized 

proteins opens up the possibility of using AMOEBA to perform a wide range of ligand and drug-binding 

free energy calculations or long biomolecular simulations in which sampling is important, for example for 

intrinsically disordered proteins.  

 

SECTION 5. VALIDATION AND APPLICATIONS  

Section 5.1. Validation Studies of the AMOEBA Potential  

A major objective of the AMOEBA force field since its inception has been to produce a tractable model 

for rapidly computing physics-based binding energetics in host-guest and protein-ligand systems. Figure 5 

shows results from application of the AMOEBA model to the host-guest binding challenge from the 

SAMPL4 exercise.144 All of the ligands are organic ammonium cations and they are bound to 

cucurbit[7]uril (CB7), which is well-known to interact with cations via its rings of carbonyl oxygen 

atoms. The interior of the CB7 barrel is much less polar than its carbonyl-based portals, and is able to 

bind hydrophobic alkyl and aryl moieties. The predicted free energies in Figure 5 represent absolute 
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binding energies computed from molecular dynamics (MD) sampling via a standard double-decoupling 

method145 and the Bennett acceptance ratio (BAR) protocol.146 

 Of the roughly 20 prediction sets submitted for the SAMPL4 CB7 host-guest series, the 

AMOEBA results were at or near the best reported. The AMOEBA results exhibit over binding for 

multiply-charged guests, i.e., guests 1, 4 and 9 are all dications, while the other guest are all singly-

charged. The largest individual error is for guest 5, which is by far the smallest of the 14 and is under 

bound compared to experiment. Short 1 ns MD windows were used in the BAR free energy calculations, 

and work to determine the effect of the method and extent of sampling is in progress.147 AMOEBA has 

recently been applied to the corresponding host-guest systems from the SAMPL5 exercise, and those 

results will be made available in due course. 

Of course the blind prediction outcomes using AMOEBA in this and other SAMPL exercises148 

provide impetus for improving the AMOEBA force field. Electronic structure calculations have been 

routinely used to provide training data for the parameterization of molecular mechanics force fields, and 

can provide useful benchmarks for properties such as interaction energies on molecular systems outside 

the original training set. Although the overall QM interaction energy is often used to validate a classical 

force field, the advent of energy decomposition analysis (EDA) affords a new way to independently 

quantify the individual contributions of several physically meaningful terms out of the QM interaction 

energy, e.g. permanent electrostatics, polarization, dispersion, and charge transfer149-151. Therefore, by 

comparing the corresponding terms between an EDA scheme and a molecular mechanics potential, one 

can obtain insight into the strengths and weaknesses of the force field of interest. 

Several popular categories of EDA methods include symmetry-adapted perturbation theory 

(SAPT)152-154, and variational methods that originate from the Kituara-Morokuma EDA formalism149, 155-

156,157-160, including the absolutely localized molecular orbital (ALMO)-EDA developed by Head-Gordon 

and co-workers.161-163 In recently submitted work, we have used the second generation of (ALMO)-

EDA164-166, combined with the high quality  ωB97X-V density functional128, to compare against the 

energy decomposition of terms in the AMOEBA potential for the water dimer and various simple ion-

water dimers76, an example of which is shown in Figure 6. For those interactions, we showed that the 

 ωB97X-V/def2-QZVPPD level of theory is virtually equivalent to reference CCSD(T) calculations at the 

complete basis set limit, at a fraction of the computational cost, as CCSD(T) scales as O(N7). 

Furthermore, the recent development of the fragment electric field response function model has enabled a 

meaningful complete basis set limit to be reached for polarization and charge transfer in the second 

generation ALMO-EDA approach.164  
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Figure 6a shows the total interaction energy for the potassium-water dimer as a function of the K+-

Ow distance, in which it is notable that AMOEBA gives quite good agreement for the equilibrium distance 

and binding energy when compared to the  ωB97X-V benchmark using a def2-QZVPPD basis set.130 

However the breakdown into energy components in Figure 6b shows that while AMOEBA’s polarization 

potential is almost perfect near and beyond the equilibrium position, the primary total electrostatic error 

resides in the permanent multipole contribution, which is far too unfavorable. This discrepancy in 

permanent electrostatics could largely be ameliorated through introduction of the charge penetration effect 

into the AMOEBA model. Nonetheless, Figure 6c emphasizes several aspects of the cancellation of errors 

at play that can explain the overall excellent result in Figure 6a. First is that while the inclusion of charge 

transfer does improve the agreement between AMOEBA and EDA's repulsive part of the vdW potential, 

there is still a remarkable difference in that the wall is still too soft while the dispersion is too favorable 

compared to ALMO-EDA, which seems to be able to compensate almost perfectly for AMOEBA's less 

favorable total electrostatics.  

We anticipate that high quality EDA approaches may be a particularly fruitful scheme for 

advanced molecular mechanics potential that, when combined with automated force field 

parameterization45, 83-84, may yield next generation force fields with greatly improved accuracy by more 

correctly accounting for the individual energy components of the total QM interaction. Alternatively EDA 

results can guide the intelligent inclusion of some effects (e.g. CP), while others are neglected implicitly 

(e.g. CT) and lumped into a less-softened repulsive wall of the van der Waals potential. 

 

Section 5.2. Large-Scale Applications of the AMOEBA Potential  

Similar to the ion-water interaction potentials, force fields for macromolecules are universally constructed 

from fragments (such as amino acids) whose parameters come from studies of even smaller molecules. In 

general, one has to check that the “emergent” properties of macromolecules are faithfully represented 

when the fragments are combined; this may be of special concern for polarizable potentials, where mutual 

polarization is a non-additive property. Based on advances in previous sections, we have carried out some 

of the first very long MD simulations using the AMOEBA potential on three small, globular proteins: 

fragment B3 of protein G (“GB3”, 61 residues), hen lysozyme (129 residues) and cyclophilin A (161 

residues). Figure 7 shows the time dependence of the root-mean-square (rms) deviation of the backbone 

atoms from the crystal conformation for the three proteins, comparing AMOEBA with two recent fixed-

charge force fields. The primary conclusion is that the folded state of proteins using the AMOEBA 
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potential is within error bounds of that obtained using current fixed charge force fields, the latter of which 

have had decades of training and tuning to obtain specific desired results.  

 We have also applied AMOEBA to the calculation of the electric fields of Cyclophilin A. 

Cyclophilin A is one of a family of peptidylprolyl isomerases catalysing the interconversion between cis 

and trans proline in peptide substrates. Recently, a novel ‘electrostatic handle’ catalytic mechanism was 

proposed using molecular dynamics from which snapshots were evaluated with quantum mechanical 

calculations, whereby the surrounding protein exerts a directionally oriented environmental field on the 

substrate peptide bond, stabilizing the transition state of the cis/trans interconversion (Figure 8).167,175 

Since the AMOEBA force field has previously been shown to accurately recreate the environmental field 

strengths exerted on an acetophenone probe by a variety of solvents, and has been used to calibrate 

experimental frequency shifts observed in vibrational Stark effect spectroscopy14, we investigated the 

ability of AMOEBA to recreate proposed environmental field strengths in the enzyme cyclophilin A. 

Field strengths observed during AMOEBA MD simulations (Table 6) reproduced the trends in 

field strengths suggested by Camilloni et al. from QM calculations extremely well, across both cis and 

trans substrate endpoints (Table 6, column 3), across different substrate sequences (Table 6, rows 1-4) 

and for Cyclophilin B, a different member of the cyclophilin family (Table 6, row 5). In addition, a large 

field drop was observed in simulations of the R55A mutation in cyclophilin A. This arginine residue, 

which is highly conserved across members of the cyclophilin family168, was proposed to be the source of 

the majority of the environmental field strength (and hence catalytic activity) in the protein. This is 

consistent with the trends observed in our simulations, and suggests that the complex electrostatic 

environment of an enzyme active site, and changes therein, can be recreated well by AMOEBA. We 

continue with further work to validate these observations across multiple enzymes with vastly differing 

environmental field strengths and catalytic mechanisms. 

 

SECTION 6. CONCLUSIONS 

Classical force fields are systematically progressing beyond the well-established but fundamentally 

limited fixed, atom-centered monopole models. In particular they are starting to adopt more sophisticated 

descriptions of permanent electrostatics and many-body effects that can allow for a more accurate 

reproduction of a much broader range of reference data and to make better predictions. However, the 

greater accuracy introduced by improvements in short range forces that now include fixed multipoles and 

polarizability, and that are evolving to include charge transfer and charge penetration or explicit quantum 

mechanical treatments, are revealing challenges in their software implementation on modern hardware 
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platforms that preclude their widespread adoption by the computational chemistry community. We 

believe that the results we have summarized on models, algorithms and application studies centered on 

multipole-based polarizable potentials such as AMOEBA, have reached a landmark on usefulness to the 

broader computational chemistry community. Now application scientists have an expanded set of 

capabilities in regards advanced potential energy surfaces in a range of community codes including 

Amber, Charmm, DL_POLY4, LibEFP, ONETEP, OpenMM, Q-Chem, TINKER, and TINKER-HP. 

While multipole-based polarizable force fields will never be as fast as the simpler fixed partial charge 

biomolecular force fields, we are now approaching an era in which AMOEBA and similar models can be 

routinely used for applications that hitherto had been intractable. 
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TABLES 
 
Table 1. AMOEBA properties as a function of mutual induction convergence for a standard PCG with 
predictor and the iEL/SCF method using a Nosé-Hoover chain for auxiliary pseudo temperature 
control.72 Average potential energy and molecular dipole were calculated from NVT simulations at 298.0 
K. Diffusion coefficients were averaged over multiple NVE simulation using independent snapshots from 
298.0 K NVT simulations as the initial condition. The simulation protocol consisted of a Velocity Verlet 
integrator with a time step of 1.0 fs, a 9.0 Å vdW cutoff with smoothing, and a 7.0 Å real space cutoff for 
particle-mesh Ewald (PME) electrostatics. 

Standard SCF 
Convergence  

(RMS Change Debye) 
Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient  
(10-5 cm2/s) 

10-6 -8.84±0.09 2.742±0.014 2.22±0.29 
10-5 -8.83±0.08 2.742±0.012 2.26±0.14 
10-4 -8.84±0.08 2.744±0.013 3.45±0.28 
10-3 -8.83±0.09 2.743±0.013 2.71±0.22 
10-2 -8.84±0.09 2.743±0.013 0.0019±0.00021 
10-1 -8.67±0.09 2.703±0.013 0.0020±0.00025 

iEL/SCF 
Convergence  

(RMS Change Debye) 
Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient 
 (10-5 cm2/s) 

10-6 -8.83±0.09 2.742±0.013 2.36±0.14 
10-5 -8.83±0.09 2.743±0.013 2.30±0.14 
10-4 -8.84±0.08 2.743±0.013 2.27±0.15 
10-3 -8.84±0.09 2.743±0.013 2.43±0.18 
10-2 -8.83±0.08 2.742±0.013 2.37±0.20 
10-1 -8.84±0.08 2.744±0.013 2.17±0.11 

 
 
Table 2:  Diffusion constants for each of the stochastic isokinetic schemes described in Figure 2.  Time 
steps and other simulation details are given in the caption to Figure 3. For iEL/SCF the simulation 
protocol consisted of a Velocity Verlet integrator with a time step of 1.0 fs. All 6 reported simulations 
comprised a 10.4 Å vdW cutoff with smoothing, and a 10.4 Å real space cutoff for particle-mesh Ewald 
(PME) electrostatics (which is different than what is reported in Table 1). 

Method Diffusion Coefficient [10-5 cm2/s] 

NVE  1.9  

iEL/SCF (10-1 D) ; NVE 2.0  

NVT 2.0 

XO-SIN(R) 1.8 

XM-SIN(R) 1.7 

XI-SIN(R) 1.8 
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Table 3.  CPU Performance of TINKER7 MD Simulations for iAMOEBA. CPU timings are given for 
water boxes ranging from 4,800-864,000 atoms for the direct polarization model iAMOEBA. The 
simulations used a velocity Verlet integrator 114 with a 1.0 fs time step, a 9.0 Å vdW cutoff, and a 7.0 Å 
real space cutoff for particle-mesh Ewald (PME) electrostatics. Timings are reported in nanoseconds/day 
and speedups (in parentheses) are calculated with respect to timings corresponding to the best iAMOEBA 
OpenMP implementation in TINKER7. We compare the hybrid MPI/OpenMP implementation in 
TINKER7 using small and large numbers of cores. All timing results were obtained on a Cray XC30 
using 12-core Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node.  

 Timings in ns/day for iAMOEBA 

Water System 
# atoms  

Standard 
TINKER  
(OpenMP only) 

Tensor iAMOEBA 
(OpenMP/MPI using  
384-768 cores) 

Tensor iAMOEBA 
(OpenMP/MPI using 
3072 cores) 

4800 2.116  8.388 (4.0)  
21000 0.524 2.44 (4.7) 3.180 (6.1)  
96000 0.106 0.45 (4.3) 0.760 (7.2)  

288000 0.030 0.13 (4.5) 0.236 (7.9)  
864000 0.008  0.062 (7.8)  

 

Table 4.  CPU Performance of TINKER7 MD Simulations for AMOEBA and 3-AMOEBA Models. CPU 
timings are given for water boxes ranging from 4,800-864,000 atoms for the mutual polarization model 
AMOEBA and fragments of different sized k-means clusters under the many-body approximations for 3-
AMOEBA. The simulations used a velocity Verlet integrator114 with a 1.0 fs time step, a 9.0 Å vdW 
cutoff, and a 7.0 Å real space cutoff for particle-mesh Ewald (PME) electrostatics. Timings are reported 
in nanoseconds/day and speedups (in parentheses) are calculated with respect to timings corresponding to 
the best AMOEBA OpenMP implementation in TINKER7. Timing results were obtained on a Cray XC30 
using 12-core Intel "Ivy Bridge" processor at 2.4 GHz, 24 cores per node. All 3-AMOEBA results were 
fixed at 3600 cores. Adapted with permission from [69]; copyright 2016 American Chemical Society. 

 Timings in ns/day for AMOEBA 

N=Number 
of water 
molecules  

Standard 
AMOEBA 
in 
TINKER  

3-AMOEBA  
(Body=N/10 
molecules)  

3-AMOEBA  
(Body=N/20 
molecules) 

3-AMOEBA  
(Body=N/30 
molecules) 

1600 1.63 5.54 (3.4) 8.04 (4.9) 6.28 (3.9) 
7000 0.36 1.04 (2.9) 1.41 (3.9) 2.56 (7.1) 

32000 0.07 0.23 (3.2) 0.44 (6.1) 0.54 (7.5) 
96000 0.02 0.05 (2.5) 0.12 (5.9) 0.18 (9.2) 

288000 0.005  0.01 (1.8) 0.04 (7.7) 0.06 (10.8) 
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Table 5:  GPU Performance of TINKER-OpenMM MD Simulations. GPU timings are reported on various 
small to large water boxes ranging from 4,800-864,000 atoms and 3 different protein systems for the 
mutual polarization model AMOEBA. The simulation protocol consisted of a standard RESPA66 
integrator based on the separation of intra- and intermolecular forces with respective time steps of 1.0 fs 
and 2.0 fs, a 9.0 Å vdW cutoff, and a 7.0 Å real space cutoff for particle-mesh Ewald (PME) 
electrostatics. The single precision simulations used the TINKER-OpenMM interface on an NVIDIA 
GTX 980 GPU hosted on a MacPro 1.1 desktop machine. The software environment consisted of Mac 
OSX 10.11.4 and CUDA 7.5 and the Intel C++ and Fortran V15.0 compilers. The double precision 
simulations were run directly with OpenMM on an NVIDIA K80 GPU. The environment consisted of 
Red Hat Enterprise Linux 6.7, CUDA 7.5, and GCC 4.4.7. 

  Timings in ns/day for AMOEBA 

Systema # Atoms 

OpenMM 
(double precision) 

using standard SCF 
solver 

OpenMM  
(single precision) 

using standard SCF 
solver 

OpenMM  
(single precision) 
using new SCF 

solvers 
Water (Small) 648  32.47 65.64 

Crambin Crystal 1920  24.02 49.65 
CBClip Complex 6432  12.45 23.22 

DHFR (JAC) 23558  5.49 9.97 
Water (Medium) 96000 0.201 1.458 2.29 

Water (Large) 288000 0.065 0.393 0.640 
Water (X-Large) 864000 0.021 0.126 0.183 

a Details of systems: Water (Drop):  216 AMOEBA water molecules in a 18.643 Å cubic periodic box; 
Crambin Crystal:  Two crambin chains, EtOH and water in monoclinic unit cell (PDB:3NIR); CBClip-
Guest 2:  Cucurbituril-based Host plus Guest 2 from SAMPL5 in 40.0 Å cubic box; DHFR (JAC):  Joint 
Amber-CHARMM benchmark, DHFR and water in 62.23 Å cubic box; Water (Puddle): 32000 
AMOEBA water molecules in a 98.65 Å cubic periodic box; Water (Lake):  96000 AMOEBA water 
molecules in a 142.27 Å cubic periodic box; Water (Ocean):  288000 AMOEBA water molecules in a 
205.19 Å cubic periodic box. 
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Table 6. Mean environmental field strengths felt by the C & N atoms of the Gly-Pro peptide bond 
preceding the proline residue, projected along the vector perpendicular to the plane of the proline ring. 
AMOEBA field strengths calculated as per the protocol of Fried and coworkers.13 The ‘environment field’ 
was taken as the difference between the fields exerted in the complex and in the substrate in the gas phase. 
DFT/B3LYP mean field strengths taken from Camilloni et al.14 

Enzyme Substrate Orientation Field strength /MV cm-1 

AMOEBA DFT 

CypA 1 Trans -21.7 ± 0.2 ~ -45 

CypA 1 Cis -16.8 ± 0.2 ~ -40 

CypA 2 Trans -24.8 ± 0.3 ~ -45 

CypA 2 Cis -15.8 ± 0.2 ~ -40 

CypB 3 Trans -7.1 ± 0.2 ~ -19 

CypA R55A 1 Trans -4.3 ± 0.2 ~ -15 

CypA R55A 1 Cis -8.0 ± 0.2 ~ -20 

Peptide substrate sequences and references: 1 = HAGPIA motif from PDB entry 1M9C, 2 = 
GSFGPDLRAGD from reference 14, 3 = Ace-APA-Nme motiif from PDB entry 1VAI 
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FIGURE CAPTIONS 

Figure 1: Convergence of solute-solvent interaction energy for a single diphenylhydramine solute with 

330 surrounding water molecules with reference to a DFT calculation. The arrows indicate the number of 

DFT water molecules sufficient to obtain the interaction energy to within 1 kcal/mol under different 

embedding schemes. 

Figure 2: Electron density analysis of QM/MM using LibEFP implementation of AMOEBA. Contour plots 

for the difference between the electron density of the QM water (the proton donor under the equilibrium 

water dimer configuration, indicated by the top figure) under the polarizing effect of the AMOEBA water, 

and that polarized by the Coulomb potential generated from the converged electron density (and nuclear 

charges) of the environement water (“Coulomb embedding”). Left: using unmodified AMOEBA water; 

right: using Gaussian-blurred AMOEBA water (with Gaussian exponents of O: 0.66 a0
-2, H: 0.95 a0

-2). 

The blurring is only applied to the permanent monopoles that correspond to valence electrons. Both the 

electron density of the QM region and the Coulomb potential of the environment water molecule are 

computed at the B3LYP/6-311++G(2df, 2pd) level of theory, and mutual polarization is incorporated in 

both QM/AMOEBA and QM/“Comloub embedding” calculations. The contours are evenly spaced at 0.1 

e-/Å3, with positive contours/regions indicated by solid lines/warm colors, and negative contours/regions 

by dashed lines/cold colors. The black dots indicate the positions of nuclei in the QM region. 

Figure 3:  Three resonance-free stochastic isokinetic Nose-Hoover (RESPA) or SIN(R) calculations are 

compared to an NVT benchmark using Nose'-Hoover chains for a cubic, periodic box of length 24.85 

angstroms containing 512 water molecules. Each SIN(R) calculation decomposes the forces into bonded, 

short-range nonbonded (including short-range induced dipoles), and long-range nonbonded terms. In the 

XO-SIN(R) calculation, the Nose'-Hoover coupling is applied on the long-range time scale, in the XM-

SIN(R) calculation, it is applied on the short-range time scale, and in the XI-SIN(R) calculation, it is 

applied on the bonded time scale.  In all calculations, the bonded time step is 0.5 fs, and the short-range 

time step is 3.0 fs. The long-range time step is 75 fs in XO-SIN(R), and it is 120 fs in the XM-SIN(R) and 

XI-SIN(R) calculations. In all SIN(R) calculations, the short-range electrostatic real-space cutoff is 5.0 

angstroms, and the short-range van der Waals cutoff is 7.0 Å. All production runs are 150 ps long. (a) The 

oxygen-oxygen and (b) oxygen hydrogen radial distribution functions for all simulations using a 10.4 Å 

real-space cutoff. (c) the speedup obtained in each SIN(R) simulation compared to the NVT benchmark 

for different values of the long-range real-space cutoff. Adapted with permission from [73]; copyright 

2016 American Chemical Society. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

43 

Figure 4: RMS errors obtained from conventional SCF calculations and the MAB approach using the 

B97M-V density functional in a large def-QZVPPD basis, for five non-covalent datasets. The A24 data set 

contains 24 small molecule intermolecular interactions energies169, S22 contains 22 diverse intermolecular 

interactions170-171, HB15 contains binding energies of hydrogen-bonded dimers featuring ionic groups 

common in biomolecules172, H2O6Bind8 contains binding energies of 8 isomers of the water hexamer173-

174, and FmH2O10 contains binding energies of 10 configurations of F-(H2O)10
173-174. Adapted with 

permission from [75]; copyright 2016 American Institute of Physics. 

Figure 5. Calculated vs. experimental binding free energies for 14 organic ammonium guest species 

complexed with cucurbit[7]uril as the host. The overall system and the numbering of the guests is the 

same is used for the SAMPL4 exercise.144 The shaded region includes data points within 1.5 kcal/mol of 

the experimental free energy value. 

Figure 6. Distance dependence of the total interaction energy and its breakdowns (in kJ/mol) for the 

potassium ion-water dimer. (a) total interaction energy; (b) permanent and induced electrostatics; (c) vdW 

interaction. In (a) the inset plot shows the zoomed-in near-equilibrium region in the units of kT, and the 

arrows indicate the location of energy minima for QM and AMOEBA interactions. For (b) and (c) the 

dash-dotted lines indicate the position of QM minimum.  

Figure 7: Root-mean-square deviations from the room-temperature crystal structure for 3 proteins 

simulated in explicit water. (a) GB3 (2IGD), (b) hen lysozyme (4LZT), and (c) cyclophilin A (4YUL).  

Figure 8. Peptide substrate of cyclophilin A (cyan) in its protein environment (gray). The environmental 

field, suggested to be largely due to the presence of the arginine 55 residue oriented vertically above the 

substrate, is perpendicular to the plane of the substrate Gly-Pro peptide bond. 
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Figure 1. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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Figure 2. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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Figure 3. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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Figure 4. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 

 
Figure 5. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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Figure 6. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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(a)      (b) 
 

 
 

(c) 

 
Figure 7. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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Figure 8. Albaugh, Bradshaw, Demerdash, Dziedzic, Mao, Margul and co-workers 
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