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Algoritmically improved microwave 
radar monitors breathing more 
acurrate than sensorized belt
Andrzej Czyżewski1, Bozena Kostek2*, Adam Kurowski1,2, Krzysztof Narkiewicz3, 
Beata Graff3, Piotr Odya1, Tomasz Śmiałkowski4 & Andrzej Sroczyński4

This paper describes a novel way to measure, process, analyze, and compare respiratory signals acquired by 
two types of devices: a wearable sensorized belt and a microwave radar-based sensor. Both devices provide 
breathing rate readouts. First, the background research is presented. Then, the underlying principles and 
working parameters of the microwave radar-based sensor, a contactless device for monitoring breathing, 
are described. The breathing rate measurement protocol is then presented, and the proposed algorithm for 
octave error elimination is introduced. Details are provided about the data processing phase; specifically, 
the management of signals acquired from two devices with different working principles and how they are 
resampled with a common processing sample rate. This is followed by an analysis of respiratory signals 
experimentally acquired by the belt and microwave radar-based sensors. The analysis outcomes were 
checked using Levene’s test, the Kruskal–Wallis test, and Dunn’s post hoc test. The findings show that the 
proposed assessment method is statistically stable. The source of variability lies in the person-triggered 
breathing patterns rather than the working principles of the devices used. Finally, conclusions are derived, 
and future work is outlined.

In-hospital and out-of-hospital diagnostic and therapeutic processes could be improved by utilizing existing innovative 
microelectronic and information technology (IT)-based systems to record and analyze vital signs. Currently, a range 
of commercially available devices and applications are widely used on a daily basis to monitor the respiratory rate, 
and they are often used during sporting activities and to monitor patients and elderly people at  home1. Unfortunately, 
not all such devices and applications provide a reliable assessment of the breathing rate. However, there has been 
significant progress made by the medical and scientific communities in the development of methods and techniques 
for respiratory  monitoring1–3. Two recent papers have comprehensively reviewed several such devices based on their 
working  principles2,3, which include acoustic (respiratory sounds), resistive (respiratory activity causing changes in 
air humidity), optic (fiber-optic-based air flowmeters), inductive and pressure (chest wall movements), humidity/
temperature, acceleration (flow measurement and chest wall movements), electromyography (biopotentials), impedance 
(chest wall strains), infrared (gaseous absorption), and  microwave4–8. Most of the technologies are non-intrusive, contact-
based solutions. However, since the emergence of the coronavirus disease (COVID-19) pandemic, it has become 
essential to develop contactless devices. The use of devices that do not contact the patient’s body reduces the need for 
disinfection procedures and is safer for both patients and medical staff.

The aim of this study was to compare the respiratory activity measurement acquired by a standard wearable 
device (a belt) and a contactless device developed by the authors. We aimed to develop a low-cost radar-based 
solution that can be used in both clinical settings and patients’ homes to diagnose and monitor patients with 
respiratory problems, most notably patients with contagious diseases such as COVID-19. Hence, parameters 
critical for non-invasive, contactless, automatic respiratory monitoring were assessed in this study. The proposed 
solution is the result of close collaboration between the Department of Multimedia Systems of the Faculty of 
Electronics, Telecommunications and Informatics, Gdańsk University of Technology, and the Department of 
Hypertension and Diabetology of the Medical University of Gdańsk in Poland.

First, a brief review of available sensor technology and corresponding signal processing suitable for monitoring 
respiration is presented. Then, our novel approach to monitoring breathing rate using a contactless microwave 
radar-based sensor is presented, which employs an algorithm for octave error elimination. The experimental 
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protocol is followed by a description of the method used by the radar-based sensor to acquire respiratory signals 
and how they are compared with the signals obtained from the standard wearable belt. Finally, the results are 
discussed and conclusions drawn, and potential applications of the engineered solution are outlined.

Respiratory rate measurement devices
State-of-the-art. In the literature, several devices are described as the gold standard in terms of 
respiratory rate measurement and airflow  limitation9. These devices are used for spirometry (the accurate 
and repeatable measurement of lung function) and capnography (which enables evaluation of a patient’s 
metabolism, ventilation, and perfusion). However, a plethora of breathing rate measurement methods, devices, 
and technologies  exist1–3,10,11, most of which are contact-based. They include the following: infrared cameras 
and infrared  thermography12–15; video cameras, especially with motion magnification  algorithms16–18; fiber-
optic sensors19; light intensity  sensors20; thermal  imaging21;  thermistors22; inductive  sensors23; impedance 
(transthoracic)  sensors24; ultrasonic transmitters and  receivers25; movement sensors (accelerometers, gyroscopes, 
magnetometer)26–28; and microwave based on the Doppler effect (a comprehensive review is given  in29).

These devices have been applied in several clinical settings. For example, sleep apnea can be diagnosed using 
respiratory effort-based signals, and a comparative study in this domain is reported  in30,31. A non-invasive Wi-Fi-
based breathing estimator was proposed by Abdelnasser et al.32. A similar method, employing Wi-Fi frame capture, was 
developed by Kanda et al.33, and Ghafar-Zadeh et al. described a new approach that may be applied to free-breathing 
spirometry based on microsensors that can be integrated into mobile phones for lung care  purposes34. However, their 
work concentrated on assembling the device rather than on clinical trials. It should also be noted that a thorough and 
reliable respiratory and lung function assessment is essential before withdrawing mechanical  ventilation35.

Therefore, it may be concluded that there is a clear need in many medical in-hospital and out-of-hospital 
situations for reliable contactless patient evaluation. Here, we propose and describe an algorithmic-based 
approach to respiratory pattern assessment based on a contactless microwave radar-based sensor.

The Respiration and Circulation Monitor
Our Respiration and Circulation Monitor is a stand-alone radar-based sensor device employing a Raspberry 
PI-4 microcomputer card with sensors (i.e., radar, camera, and microphone) and a 7″ touch screen connected 
to the card. In addition, the device is equipped with a standard Ethernet interface, a Wi-Fi module to connect 
to the cloud application, and two USB 3.0 ports to couple the external systems. Figure 1. is a block diagram that 
shows the device’s components. The engineered device and its dimensions are shown in Fig. 2.

The millimeter-wave radar is a particular type of device that emits short-wavelength electromagnetic waves and then 
records the waves reflected by the object under study. This solution has been successfully employed in the automotive 
industry to detect free space in the cabin and obstacles near the doors and trunk, as an intelligent automatic parking 
system or intruder alarm, to warn against leaving a child in a parked car, and for other uses. Given that this state-of-
the-art technology is highly accurate in detecting movements of fractions of a millimeter, we used this technology to 
construct a device to detect chest movements in a contactless manner. Also, heart rhythm can be acquired by this device. 
It should be noted that it is necessary to obtain a declaration from the sensor’s manufacturer to ensure compliance of 
the device’s components with the safety standards of the European  Union36.

The radar module was realized using a single-chip IWR6843AOP sensor from Texas Instruments, operating at 
60–64 GHz. The module contains built-in Antennas-On-Package (AOP) transmitting and receiving antennae. 
Additionally, the radar is equipped with a Digital Signal Processing (DSP) subsystem based on a TI C674x chip, which 
is used in algorithms that process data from the  radar36,37. The firmware for the Respiration and Circulation Monitor 
is based on the VitalSigns project and provided by the manufacturer in the Industrial Toolbox package included in 
Software development kit (SDK) for the IWR6843AOPEVM  chip36. The software in the radar firmware pre-processes 
the antenna data in the frequency domain using Fourier transform enabled by an integrated digital signal processing 
subsystem with a radar hardware  accelerator38. However, other approaches to managing antenna data, such as ellipse 
reconstruction, have been reported in the  literature39–41. The project was modified regarding session repetition while 
maintaining the radio chip settings. Also, an algorithm developed at the Gdańsk University of Technology has been 
implemented in the signal processor code to remove octave errors appearing in the device output signal. The octave 
errors here represent readings that indicate precisely twice the actual respiratory rate, hence the need to eliminate them.

The Coral PoseNet  project42,43 is used to detect the correct body layout for the measurement. This application is 
based on the MobileNet V1  model44. A convolutional neural network processes the camera stream. The Google Coral 
USB Accelerator—Edge TPU ML—ARM Cortex M0 is employed as the machine learning accelerator. In particular, the 
TensorFlow Lite platform dedicated to embedded devices supports deep learning inference mechanisms. The application 
for the operation of the Respiration and Circulation Monitor was created in Python version 3.7.3. The application is used 
to operate the device, that is, to read the data from the radar, convert it into numerical form, save it into a measurement 
file, and display the respiratory waveform (and pulse) on the device screen.

Finally, an essential feature of the device should be the automated assessment of the breathing pattern. There 
are a few examples where machine learning-based analysis has been used to detect breathing abnormalities or 
 cessation45–48. It is appropriate to recall Szczuko et al.’s work here, as it is considered a cognitive approach to 
respiratory data curation and  analysis48. Automatic classification of the breathing pattern is a very promising 
achievement that should be pursued in future work.

Experimental protocol
Materials. The study group consisted of 31 healthy volunteers (11 men) with no signs of dyspnea. Their 
mean age was 42 years (range: 20–66 years), and their mean weight was 81 kg (range: 55–115 kg). The study 
was conducted at the Medical University of Gdańsk. The study complied with the Declaration of Helsinki, and 
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the protocol was approved by the Ethics Committee of the Medical University of Gdańsk (NKEBN/422/2011). 
All participants were informed about all the details of the trial and the study’s merits. They also signed written 
consent forms. While the group consisted of healthy volunteers, it was highly diverse, as the trial aimed to 
determine whether any anomalies in the measurement results might occur. All data gathered were anonymized.

Trial methodology and protocol. Each individual’s respiratory pattern was recorded using the respiratory 
belt (TN1132/ST), which was connected to the PowerLab system with the proprietary Lab Chart 8 software 
(ADInstruments, Australia)49,50. The respiratory belt transducer is designed to measure chest (or abdomen) 
circumference changes resulting from breathing. The sampling rate was 1,000 Hz. The respiratory sensorized 
belt produced a linear voltage within the range of 0 to 100 mV proportional to changes in length. As a result, 
it was possible to derive the respiratory pattern. At the same time, an electrocardiogram was recorded and a 
blood oxygen saturation  (SpO2) measurement was performed. The abovementioned hardware and software are 
standard equipment in research laboratories designed for studying cardiovascular and respiratory regulation.

For the experimental part of the study, each participant wore a respiratory belt, and the radar sensor was placed 
approximately 1 m in front of them at chest height. Controlled regular breathing was achieved with the help of custom-
made software that produces different sounds for inspiration and expiration at the intended frequency. Figure 3 shows 
the experimental set-up. A clinician was always present during the measurement to ensure that the trial participant was 
correctly positioned relative to the radar sensor. Hence, any problems associated with the movement of the participants 
may not have been captured for later consideration. Furthermore, the software that processes the raw radar data is 
engineered to reject the type of data segments that large-amplitude movements might produce.

Figure 1.  Block diagram of the components of the Respiration and Circulation Monitor.

Figure 2.  External appearance and dimensions of the Respiration and Circulation Monitor.
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The study protocol consisted of the following three parts: 10 min of recording during spontaneous breathing, 5 min 
of recording during controlled respiration at a frequency of 12 breaths/min, and 5 min of recording during controlled 
respiration at a frequency of 15 breaths/min.

Method
Data processing and analysis. The input data for the algorithm was provided in two formats: the .csv 
format for data obtained using the microwave-based radar sensor and the .adicht format for data obtained using 
the mechanical belt sensor. Data were processed using scripts written in the Python programming language. 
For the reading and interpretation of the .adicht files, the adi package available on GitHub was  used51. The 
original sampling rate of the belt-associated signal was 1000 Sa/s, and the sampling rate of the microwave radar-
associated signals was 30 Sa/s. The signals were resampled using the common sample rate of 100 Sa/s. In the 
case of downsampling, the antialiasing low-pass filter based on the third-order Butterworth filter was applied. 
Filtering was performed using the filtfilt function provided in the SciPy library (version 1.5.4), which performs 
the filtering twice. The first pass is traditionally applied to the signal; then, the signal is reversed, and filtering is 
performed again. This mitigates any frequency-dependent time delays of signals to which the filtration process is 
applied. An example of the respiratory signal gathered by the belt device from Participant 21 is shown in Fig. 4.

Next, the data were split into frames of 4,096 samples, which corresponded to 40.96 s of data acquisition. 
Hence, if a subject performs large movements in the first 40 s of recording, there is a risk that the algorithm 
will make an error. However, this is a relatively long time, and the positions recorded by the radar are averaged 
during the calculation. In consequence, the selection of an incorrect trajectory is unlikely if the measurement is 
performed by a trained person who is aware of the fact that the subject should try to remain in relative stillness. 
Frame overlapping was applied to increase the time resolution of the analysis. An overlap coefficient of 0.85 was 
used, giving an effective temporal resolution of the analysis of 6.144 s. The resultant signal sample frames were 
used as the input for the algorithm used for respiratory rate estimation.

Further on, for statistical data analyses, procedures from SciPy (version 1.5.4) and statsmodels (version 0.12.2) 
Python libraries were employed.

Breathing rate estimation algorithm. To estimate the respiratory rate from the signals obtained from the belt 
and the microwave radar-based sensors, detection of the signal’s fundamental frequency was necessary. To achieve 
this goal, the frames of the raw input signals were used to calculate their autocorrelation function. Next, for each 
autocorrelation function, all the maxima were localized by calculating the derivative of the autocorrelation function, 
and the indices were stored for further processing. In the simplest scenario, it would be sufficient to find the second-
highest maximum of the autocorrelation and calculate the fundamental component period and thus the resulting 
fundamental frequency. However, for the signals obtained from the belt sensor and especially from the microwave 
radar sensor, it was found that the required fundamental frequency information was generally not available in the 
second-highest maximum of each frame. Hence, there were many spurious detections, which resulted in octave errors 
made by the naïve algorithm. An example of the type of autocorrelation function that confused the algorithm based on 
the simplistic principle of obtaining the fundamental frequency estimate is shown in Fig. 5.

Hence, the algorithm used to calculate the breathing rate needed to consider that, in some cases, the fundamental 
frequency information obtained from the second maximum of the autocorrelation function may have been invalid.

Even though such a situation was rare, the frequency was found to be high enough to create considerable 
octave errors if not addressed. Therefore, it was determined that the second-largest maximum index across the 
whole temporal trajectory must be estimated. This process also needed to include the operations of finding 
unlikely fundamental frequency estimates and attempting to correct them to more probable values. Examples 
of such trajectories are shown in Figs. 6 and 7. As shown in Figs. 6 and 7, each vertical row of image pixels 
corresponds to one autocorrelation function (extracted from a single signal frame). Hence, the line near sample 
#4000 represents the central maxima of the listed autocorrelation functions. Since the frames were all the same 
length, the maxima are arranged in a straight line, and this is also the symmetry line of the image (the top half 
mirrors the bottom half). Highlighted in yellow is the trajectory determined by the second autocorrelation 
maximum, which contains useful information about the fundamental (breathing) frequency.

The general structure of the respiratory rate estimation algorithm is based on Eq. 1 and is shown in Pseudocode 1. 
The pseudocode syntax is based on Python language syntax. The algorithm’s pre-processing step consists of splitting the 
input signal into frames of a given length (specified by the frame_length variable). For each frame, an autocorrelation 
function is calculated. This autocorrelation function is used to calculate indices of autocorrelation function maxima. A 
set of such maxima vectors is called a maxima lattice (in Pseudocode 1, it is associated with a maxima_lattice variable). 
This maxima_lattice variable is the input for all latter procedures used to estimate the fundamental period for each frame.

The samples of the analyzed signal frame, denoted by the frame length N and the number of frames L, are 
as follows:

where the index l = 1..L . The autocorrelation of the frame l  is calculated using the following formula:

where τ is the lag number.

(1)xl = [xl(1), xl(2), .., xl(N)],

(2)φ(τ) =
1

N

N−1
∑

n=0

x(k)x(n+ τ),



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14412  | https://doi.org/10.1038/s41598-022-18808-2

www.nature.com/scientificreports/

Figure 3.  The experimental set-up.

Figure 4.  Example of the respiratory signal obtained from Participant 21 using the belt device.

Figure 5.  Example of the autocorrelation function for which the maximum related to the fundamental signal 
frequency had to be obtained by tracking a consecutive series of data frames. If there was no temporal context, 
then a neighboring peak to the left of the central peak would have been chosen as the second-largest maximum 
in the depicted autocorrelation function.
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Pseudocode 1. The general structure of the breathing rate es�ma�on algorithm 

input:  respiratory_signal, sampling_freq, frame_length 
output: respiratory_rate_value 

# Pre-processing: 
autocorr_functions = [] 
maxima_lattice     = [] 

# Calculation of a number of frames 
num_frames = floor(len(respiratory_signal)/frame_length) 

# Calculation of autocorrelation functions of each frame 
# and maxima lattice. 
for i in range(0, num_frames): 
    frame_samples = respiratory_signal[i*frame_length:(i+1)* frame_length] 
    frame_autocorr  = calc_autocorrelation(frame_samples) 
    autocorr_maxima = calc_maxima(frame_autocorr) 

    autocorr_functions.append(frame_autocorr) 
    maxima_lattice.append(autocorr_maxima) 

# First step of the processing – naïve detection and initial correction 
# of second autocorrelation function maxima indices. 
naïvely_selected_maxima    = naïve_maxima_selection(maxima_lattice) 
initially_corrected_maxima = voting_classifier_correction( 
                                        naïvely_selected_maxima, 
                                        maxima_lattice) 

# Second step – k-means based maxima indices correction. 
kmeans_corrected_maxima    = kmeans_clustering_correction( 
                                        initially_corrected_maxima 
                                        maxima_lattice, 
                                        sampling_freq) 

# Third step – elimination of unlikely sub-paths from trajectories  
# obtained from the previous step. 
final_maxima_values        = subpath_elimination( 
                                        kmeans_corrected_maxima 
                                        maxima_lattice) 

# Post-processing – conversion from the fundamental period domain  
# (associated with autocorrelation function indices)  
# to fundamental frequency. 
respiratory_rate_estimate = 1/(final_maxima_values*sampling_freq)

Figure 6.  Example of the autocorrelation second-largest maximum trajectory computed by the proposed 
algorithm. The peaks derived from the belt-based device are better separated; however, there are some frames in 
which an octave error could occur if the analysis does not include the whole trajectory of the second maximum.
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As can be seen in Pseudocode 1, the main activity of the algorithm is comprised of the following three steps:

1. Naïve estimation of the fundamental period of the respiratory signal employing the naïve_maxima_selec-
tion function, which calculates the Euclidean distance between the central and all remaining maxima of the 
autocorrelation function. Next, an initial correction of the respiratory rate estimate is performed using the 
voting_classifier_correction function, which performs heuristic detection of octave errors using a simple 
voting classifier.

2. Outlier elimination using kmeans_classifier_correction, which employs the k-means clustering algorithm. 
This leads to the elimination of octave errors that are not detected by the voting classifier used in the previous 
step. This process is described in more detail later in this section.

3. Elimination of unlikely sub-paths consisting of consecutive autocorrelation function maxima present in 
the sequence returned by the kmeans_classifier_correction. This is performed by the subpath_elimination 
function. More details about this process are provided later in this section.

Hence, our algorithm first detects the second-largest maximum in each frame based on the Euclidean dis-
tance between the largest maximum (the central one) and every other maximum located in the autocorrela-
tion function. The positions of all the maxima are obtained by analyzing the first and second derivatives of the 
autocorrelation function. The maximum that is closest to the central one in terms of Euclidean distance (i.e., 
taking into account the distance on both the x-axis and y-axis) is assumed to be the second-largest maximum 
associated with the fundamental frequency of the signal. Using the Euclidean distance is beneficial because it 
allows the algorithm to ignore any small maxima positioned between the central peak and second-largest peak, 
which could be mistakenly marked as the second-largest maximum if only the distance on the x-axis is taken 
into account. Such a situation is shown in Fig. 5.

Additionally, a heuristic voting algorithm has been included to prevent octave errors that, unfortunately, 
can still occur even when the Euclidean distance-based method is used to detect the second-largest peak. For 
example, if the Euclidean distance-based method finds that the maximum associated with the fundamental fre-
quency is 1.8-fold larger in 3 or more of the 5 previous detections, it is assumed that the algorithm has made an 
octave error. In this case, the maximum closest to one in a prior frame will be returned instead of that detected 
by the algorithm.

The second processing step involves eliminating outliers not detected by the heuristic voting-based algorithm 
in the previous step. It is based on the k-means clustering algorithm, and its structure is defined by Eq. 3. Pseu-
docode 2 shows its structure and the process.

Let v = [v1, v2, . . . , vM ] be a set of data in k-means_corrected_maxima in RN (i.e., each data in a set have N 
features). Then, the k-means clustering analysis is performed. The k-means clustering problem is to find cluster 
centers C1 and C2 in RN such that:

Figure 7.  Example of the autocorrelation second-largest maximum trajectory obtained for the signal from the 
microwave-based radar sensor. Several problematic frames contain only a weak maximum related to the signal 
fundamental frequency. Moreover, many closely positioned maxima are observed, which makes tracking the 
fundamental frequency more challenging than in the case of the signal derived from the belt-based device.
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The problem is solved equivalently. Given the cluster centers C1,t and C2,t at iteration t, C1,t+1 and C2,t+1 at 
iteration t + 1 are computed in the following two steps 52:

1. Cluster assignment. For each data vi , assign vi to cluster k(i) such that center Ck(i),t is nearest to vi in the 
2-norm.

2. Cluster update. Compute Ck(i),t+1 as the mean of all points assigned to cluster k.

Stop when Ck,t+1=Ck,t , k = 1, 2 , else increment t  by 1 and go to step 1.

(3)min
C1,C2

M
∑

i=1

min
k=1,2

(

1

2
�vi − C

k�
2

2

)

Pseudocode 2. A correc�on procedure based on the k-nearest neighbors clustering algorithm. 

input:  initially_corrected_maxima, maxima_lattice, sampling_freq 
output: kmeans_corrected_maxima 

# A starting point to calculations of a corrected maxima sequence is a  
# copy of values stored in the initially_corrected_maxima variable. 
kmeans_corrected_maxima = copy(initially_corrected_maxima) 

# A boolean variable used as a stop condition 
changes_were_made = True 

# Iterate until no changes are introduced to the copy of  
# initially_corrected_maxima variable. 
while changes_were_made: 

    # First, it is necessary to calculate parameters used by a k-means  
    # clustering to split the data in kmeans_corrected_maxima into two 
    # subclusters. 
    input_clustering_parameters = [] 
    for i range(0,len(kmeans_corrected_maxima)): 
        if i==0: 
            left_point_max = kmeans_corrected_maxima[i+1] 
        else: 
            left_point_max = kmeans_corrected_maxima[i-1] 

        if i==(len(kmeans_corrected_maxima)-1): 
            right_point_max = kmeans_corrected_maxima[ 
                                    len(kmeans_corrected_maxima)-2] 
        else: 
            right_point_max = kmeans_corrected_maxima[i+1] 

        current_point_max    = kmeans_corrected_maxima[i] 
        left_neighbour_dist  = abs(current_point_max-left_point_max) 
        right_neighbour_dist = abs(current_point_max-right_point_max) 
        current_f0           = 1/(current_point_max*sampling_freq) 
        input_clustering_parameters.append([current_point_max, 
                                            left_neighbour_dist, 
                                            right_neighbour_dist, 
                                            current_f0]) 

    # A procedure using k-means clustering to split the  
    # sequence from kmeans_corrected_maxima into two subclusters, 
    # a smaller (shorter) one, and a larger (longer) one. 
    smaller_cluster_indices, larger_cluster_indices = k_means_clustering( 
                                        input_clustering_parameters, k=2) 

    # A correction applied to points from the indices assigned to a smaller  
    # cluster (applied in a left-to-right manner). 
    for current_index in smaller_cluster_indices: 
        left_neighbour_index    = current_index-1 
        value_before_correction = kmeans_corrected_maxima[current_index] 
        value_after_correction  = get_closest_to_left_nonoutlier( 
                                        larger_cluster_indices, 
                                        current_index, 
                                        maxima_lattice) 
        kmeans_corrected_maxima[current_index] = value_after_correction 
        if value_before_correction == value_after_correction: 
            changes_were_made = False 
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The k-means algorithm divides the points on the trajectory into two clusters ( k = 2 ). The following param-
eters are employed for clustering:

• current_point_max: The index of maximum on the current trajectory of the autocorrelation function maxima.
• left_neighbour_dist: The distance from the current point on the path to the left neighbor (for the first point 

on the path, it is assumed to be equal to the distance to the right neighbor).
• right_neighbour_dist: The distance from the current point on the path to the right neighbor (for the last 

point on the path, it is assumed to be equal to the distance to the left neighbor).
• current_f∅ : The fundamental frequency value associated with the current index of maximum on the tracked 

autocorrelation maxima path.

From the two clusters returned by the k-means clustering, the smaller cluster is assumed to be the cluster 
of outliers. Next, each outlier point on the trajectory is changed in the left-to-right direction (on the x-axis) to 
move to the maximum closest (on a lattice of maxima such as in Figs. 6 and 7) to the non-outlier maximum 
from the preceding non-outlier frame. A get_closest_to_left_nonoutlier procedure is used for this operation 
(see Pseudocode 2). Its principle of operation is shown in more detail in Fig. 8a, where the red arrows show the 
movements of the outlier points based on the changes made by the k-means algorithm. The k-means algorithm 
from the Scikit-learn (version 0.24.1) Python library is used. This process is repeated until all points classified 
in the “outliers” cluster are closest neighbors to the maxima found in the preceding frames. The second stage 
of the heuristic respiratory rate estimation algorithm is then complete, and there are no further changes to the 
positions of the points on the tracked paths.

The third and final processing step involves dividing the tracked path of the autocorrelation function maxima 
into subsegments. The original path is split into points where the transition is made, but not between the two 
closest maxima of the two neighboring frames, as such a situation may still occur even after the previous step. An 
example of such a case is shown in Fig. 8b,c shows the final result of the proposed heuristic f0 tracking algorithm.

After the path is split into subsegments, they are merged in a left-to-right order. This process involves 
analyzing pairs of original subsegments and possible alternatives to one of the segments present in each pair. 
A detailed description of the path merging process is presented next, based on the example shown in Fig. 9.

In Fig. 9, the original path segments are denoted as PO1 , PO2 , and PO3 . An alternative to path PO2 is PA . LO1 , 
LO2 , LO3 , and LA denote the lengths of the paths. The merging process is performed in an iterative manner starting 
from the leftmost pair of path sub-fragments. The two sub-paths considered in each iteration are denoted as Pn 
and Pn+1 with lengths Ln and Ln+1 , respectively. A single merger iteration is calculated according to the algorithm 
depicted in Fig. 10.

For the example shown in Fig. 9, first, the pair of PO1 and PO2 is considered, and the result is a merged path 
denoted as PM1 . Next, the pair of PM1 and PO3 is considered, and the result of this second iteration is the final 
result of the path sub-fragments merging algorithm.

An example of this process is depicted in Fig. 11, which shows a sample trajectory split into three fragments. 
The first merger is performed between the AB fragment (the larger one) and the BC fragment (the shorter one, 
marked with a white dashed line). The alternative path is obtained by hopping between the closest points on 
a maxima lattice starting from point B, which is a common point for the AB and BC paths. In this case, the 
trajectory calculated in 5 hops between closest neighbors turns out to be shorter than the original trajectory; 
therefore, the algorithm will choose this alternative path instead of the original one for a merger. The next 
merger will be performed between the newly calculated AC fragment and the CD fragment. In this case, the 
CD trajectory is the shortest one to reach point D; therefore, no changes are needed. This process repeats until 
there are no more sub-paths to merge. The final result of the third stage of processing is also the final result of 
the whole heuristic algorithm for estimating the respiratory rate.

At this point, the only post-processing operation to be performed is the calculation of the fundamental 
period and consequently the calculation of the fundamental frequency from the consecutive indices of the 
autocorrelation function maxima. Examples of respiratory rate estimations obtained with the algorithm from 
the experimental data are shown in Fig. 12.

Ethical approval. All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
Declaration and its later amendments or comparable ethical standards.

Informed consent. Informed consent was obtained from all individual participants included in the study.

Results and discussion
Each participant’s breathing rate was estimated for each of the experimental scenarios outlined in the protocol. 
Figure 13 shows the estimated respiratory rates obtained with the belt and radar-based sensors when the 
participants were asked to maintain a constant respiratory rate of either 12 or 15 breaths/min.

These data were subjected to statistical analysis. The commonly used value of 0.05 was used as the significance 
level α . Levene’s test was performed to determine whether the variances among the groups shown in Fig. 13 are 
equal, and the resultant test statistic was 3.60, corresponding to a p-value of 0.02. Hence, it was concluded that 
the variances among the groups shown in Fig. 13 are unequal. Therefore, the Kruskal–Wallis test was used to test 
the equality of medians between pairs of groups shown in Fig. 13. The Kruskal–Wallis test statistic was found to 
be 103.32, with a p-value less than .001, leading to the conclusion that at least one pair of groups has a statistically 
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significant difference between their medians. Finally, Dunn’s post hoc test was conducted to determine which 
groups were different, and the results are shown in Table 1.

The median breathing rates determined under each condition were as follows: 11.79 breaths/min (radar, 12 
breaths/min), 11.92 breaths/min (belt, 12 breaths/min), 14.71 breaths/min (radar, 15 breaths/min), and 14.85 
breaths/min (belt, 15 breaths/min). The difference between the radar- and belt-derived estimates at 12 breaths/
min was found to be statistically insignificant. There was also a statistically significant difference between the 
estimates at 15 breaths/min; however, the difference was only 0.14 breaths/min. In terms of practical implemen-
tation, such a difference may be negligible.

Additionally, we performed statistical analysis on the output of the first step of the proposed algorithm—the 
fundamental frequency estimation generated using the Euclidean distance method and the algorithm from a 
NeuroToolkit2 Python  library53,54. In the case of the Euclidean distance-based algorithm, no heuristics were used 
(including the voting classifier). The NeuroToolkit2 library algorithm employs simple peak detection performed 

Figure 8.  Graphical illustration of two refinement operations applied to a second autocorrelation function 
trajectory obtained in a naïve manner with the Euclidean-based approach. (a) Outlier elimination performed 
with the k-means algorithm. (b) Processing based on detecting transitions between points on a lattice that 
are not the nearest neighbors of each other. (c) The final result obtained with the proposed heuristic f0 
(fundamental frequency) tracking algorithm.
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in the time domain, and rsp_clean and rsp_peaks functions are used for calculation. Detailed descriptions of 
the time-domain peak detection algorithm can be found  in53,54. The median respiratory rate, interquartile range 
(IQR), and standard deviation (SD) are shown in Table 2, along with the corresponding statistical measures 
resulting from the use of the naïve and time-domain peak-finding algorithms only.

The proposed algorithm and its simplified version achieved identical performance in terms of median respira-
tory rate. However, the additional processing performed by the more complex proposed algorithm resulted in 
a reduction in the IQR and standard deviation (in most cases). Therefore, one can conclude that both versions 
of the algorithm can be used in practice. The more complex proposed version could be used in situations where 
reduced variance in estimate values is needed. The simple time-domain algorithm was found to be notably less 
precise than the algorithms employing the autocorrelation function.

Figure 9.  Graphical illustration of the path depicted in Fig. 8 after it has been split into sub-paths ( PO1 , PO2 , 
and PO3 ). Also, a possible alternative path for PO2 is shown (depicted as PA).

Figure 10.  The decision diagram for a single iteration in the path merging process. Pn and Pn+1 denote two 
currently considered sub-paths (e.g., PO1 and PO2 in the first iteration of the case shown in Fig. 9).
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Figure 11.  Example of the operations performed during the third stage of the respiratory rate estimation.

Figure 12.  Examples of breathing rate estimations obtained for Participant 21.

Figure 13.  Estimated respiratory rates of participants who were asked to maintain a constant breathing rate. 
For each group, n = 31, as each participant contributed once to each group depicted in the figure.
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Participants were also monitored when they were breathing freely, that is, without maintaining a particular 
respiratory rate. While analysis of such data is possible, it is more complex than analyzing data obtained in a 
constant respiratory rate scenario. In this case, a similarity measure between respiratory rate estimates that is 
a function of the acquisition time is required, and this must be calculated before results can be compared (see 
Fig. 12). An example of such a measure is distance, which is calculated using a dynamic time warping (DTW) 
algorithm and is often used as a similarity measure for time  series55.

For this purpose, we implemented an algorithm provided in the FastDTW Python library (version 0.3.4). 
Distances were calculated for three cases. In the first case, data from one person were analyzed, and 31 
comparisons were made between measurements obtained from the belt and from the microwave-based radar 
sensor. In the second case, 930 comparisons were made between measurements obtained from pairs of different 
people using the belt. In the third case, 930 comparisons were made between measurements obtained from pairs 
of different people using the microwave-based radar sensor. The results are depicted in the form of a boxplot 
in Fig. 14.

In Fig. 14, it can be clearly seen that the variation in the measurements is less when different devices are used 
for one participant than when the same device is used for different participants. Statistical analysis was conducted 
to further investigate the observed differences. The Python libraries used in the analysis of the constant breath-
ing rate data were also used here. The significance level was assumed to be 0.05. Levene’s test returned a result of 
13.43, which resulted in a p-value smaller than 0.001. Therefore, the variances among the groups shown in Fig. 14 
were found to be not equal, and the Kruskal–Wallis test was performed to compare the medians of the groups in 
Fig. 14. The Kruskal–Wallis test returned a result of 74.21; thus, the p-value of this test was also less than 0.001. 
Therefore, it was concluded that there are significant differences between the medians of the groups depicted in 
Fig. 14. Finally, Dunn’s post hoc test was performed, and the resulting matrix of p-values is shown in Table 3.

The observed median distance for the belt-to-radar comparison was found to be 43.99, the lowest of the 
observed values. The median distance for the belt-to-belt comparison was found to be 320.14, and the median 
distance for the radar-to-radar comparison was found to be 260.94.

Conclusions
We have developed, tested, and described an improved method for measuring the respiratory rate using a micro-
wave radar-based sensor device. Importantly, this device offers a contactless way to estimate the breathing rate, 
which is vital when managing patients with highly contagious, infectious diseases. It is also crucial to accurately 
assess the respiratory rate. Hence, we have developed a heuristic algorithm that provides a precise estimate even 
when misleading autocorrelation function maxima are present, which can potentially cause erroneous detections 
if a simpler algorithm is used.

Table 1.  Dunn’s post hoc test results for the scenarios in which participants were asked to maintain a constant 
breathing rate. Statistically insignificant values are marked with a gray background.

Type of sensor  
and breathing rate 

Radar 
12 breaths/min 

Belt  
12 breaths/min 

Radar  
15 breaths/min 

Belt 
15 breaths/min 

Radar 
12 breaths/min .067 

Belt 
12 breaths/min .067 

Radar 
15 breaths/min .007 

Belt 
15 breaths/min .007 

Table 2.  Respiratory rate estimates calculated using the proposed algorithm, the naïve version of the proposed 
algorithm (using the Euclidean distance to find the second peak of the autocorrelation function), and a time-
domain peak-finding algorithm from the NeuroKit2 Python  library54. The measure of central tendency is the 
median value, and the variance measures are the interquartile range (IQR) and standard deviation (SD).

Proposed algorithm Naïve (Euclidean) algorithm
Time-domain peak-finding 
algorithm

Median IQR SD Median IQR SD Median IQR SD

Radar
12 breaths/min 11.79 0.14 0.63 11.79 0.25 0.6 17.58 5.86 3.44

Belt
12 breaths/min 11.92 0.02 0.48 11.92 0.02 0.48 8.79 0.37 0.76

Radar
15 breaths/min 14.71 0.09 0.14 14.71 0.14 0.37 14.65 7.32 3.77

Belt
15 breaths/min 14.85 0.04 0.04 14.85 0.06 0.04 11.72 0 0.43
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The findings show that the proposed algorithm and microwave radar-based sensor performed at a similar 
level to a standard wearable belt in terms of respiratory rate monitoring. It was also observed that our contactless 
radar-based device is a viable alternative to the belt-based device for analyzing both breathing at a constant rate 
and free breathing. The breathing rate estimates obtained using data from the two different types of sensors were 
found to be similar in a statistical sense, as shown by the findings of the constantly controlled breathing rate 
scenario. The main source of variability in the measurement outcomes was found to be the person-to-person 
differences in breathing. Switching from radar- to belt-based measurement and vice versa resulted in significantly 
less difference in the measured respiratory rate estimate, as shown in the analyses of the signals captured when 
participants were instructed to breathe freely.

Through the experimental and statistical analyses presented here, we have shown that our Respiration and 
Circulation Monitor has the potential as a viable and accurate respiratory rate monitoring device. It can be used 
as a replacement for the belt device, which requires the expertise of an experienced medical consultant for its 
use. In contrast, our contactless device is a compelling alternative for the estimation of respiratory rate, especially 
when direct contact with the subject should be limited.

The monitor has potential applications in cardiopulmonary monitoring. In situations of mass illness, such 
as the COVID-19 pandemic, it can be used for: monitoring quarantined and asymptomatic patients residing 
at home; diagnosis in specialist clinics, especially those with an internal medicine focus; diagnosis in hospital 
emergency departments for cases with indications for hospital admission; hospitalized patients where minimal 
contact with hospital staff and equipment is required to detect clinical deterioration, indications for mechanical 
ventilation, or assessment of the possibility of discharge from the intensive care unit are required. In non-pan-
demic situations, it can be used for diagnosing and monitoring patients with heart failure after stroke (including 
at home); improved assessment of abnormal breathing during sleep (including at home); research on respira-
tory rhythms and patterns and respiratory and cardiovascular regulation, and with large cohorts; and improved 
monitoring of patients participating in clinical trials.

Received: 9 November 2021; Accepted: 19 August 2022
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