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All-gather Algorithms Resilient to Imbalanced Process
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Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs)

are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring al-

gorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data

exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Back-

ground Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware

gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast

distributing gathered data to all participating processes. The background of the imbalanced PAP subject is de-

scribed, along with the PAP monitoring and evaluation topics. An experimental evaluation of the algorithms

based on a proposed mini-benchmark is presented. The mini-benchmark was performed over 2,000 times

in a typical HPC cluster architecture with homogeneous compute nodes. The obtained results are analyzed

according to different PATs, data sizes, and process numbers, showing that the proposed optimization works

well for various configurations, is scalable, and can significantly reduce the all-gather elapsed times, in our

case, up to factor 1.9 or 47% in comparison with the best state-of-the-art solution.
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1 INTRODUCTION

Nowadays, the high-performance computing (HPC) is an important, rapidly developing do-
main. Supercomputers help researchers to solve their problems and overcome numerous chal-
lenges in modern science. Virtual experiments performed using such environments are much faster
and usually significantly cheaper. Moreover, sometimes such an approach is the only possible way
to move forward new researches, especially in such subjects as molecular chemistry or quantum
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41:2 J. Proficz

Fig. 1. Example of an all-gather collective operation. Cooperating processes are denoted as p0,p1,p2.

physics. Thus, any improvements in the underlying HPC systems can accelerate the development
of many non-strictly ICT-related science fields.

A typical supercomputer is usually based on a cluster architecture, where each node has its
own operating system (e.g., Linux CentOS). It consists of a set of hundreds or even thousands
of compute nodes interconnected by a fast network, usually InfiniBand [5] and/or Ethernet. The
workload management is based on a queue system (e.g., SLURM [27]), in which jobs queued by
users are scheduled and consecutively forwarded to the execution. Each job can consist of a number
of processes, which in turn can contain their own threads cooperating by means of shared memory
mechanisms, such as OpenMP [16]. The processes can be placed on different compute nodes and
they usually use message-passing paradigm for data transfer and synchronization purposes, often
supported by a number of MPI (Message Passing Interface) [14] implementations, such as open
source OpenMPI [17], MPICH [15], or vendor locked ones, e.g., Intel MPI [7]. An example of such
an HPC environment is Tryton supercomputer [9], located in Centre of Informatics—Tricity

Academic Supercomputer & networK (CI TASK) at Gdansk University of Technology, where
the research presented in this article was performed.

In such an HPC environment, the interconnected nodes are de facto separated servers, having
their own operating systems, non-synchronized schedulers, and resource allocators, as well as
different positions and distance in the network topology (e.g., in a tree). Thus, the start time and
the ongoing performance of each process can differ, usually introducing significant noise into the
time dependencies, and when a communication operation is executed, especially a collective one,
each process can have different time of arrival (process arrival time, PAT), which in turn can create
an imbalanced process arrival pattern (PAP).

We can distinguish two kinds of communication operations: the individual ones when only two
processes take part in data transfer, simply sending a message, and the collective ones when, in
a non-trivial case, three or more parties are involved performing more complicated functionality
such as a data reduction or broadcast. In this article, we consider an all-gather collective operation,
which is responsible for gathering processed data from the participants, and then performing the
backward distribution, so all of the cooperating processes are going to have the same complete,
merged data. Figure 1 presents an example of an all-gather collective execution.

In a typical HPC environment, where message-passing paradigm is used (e.g., with an MPI [14]
implementation), the individual communication is usually realized by send-receive operations,
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:3

whereas the collectives are represented by broadcast, reduce, all-reduce, scatter, gather, all-gather,
and others. Each of these group operations can have multiple implementations (optimized for dif-
ferent environment settings) where different algorithms can be used, e.g., the broadcast can be
implemented step-by-step (the root sends messages one by one to the leaves) or using a bino-
mial tree (where the root sends the message to one process, then they both send the messages
simultaneously to the others, and so on, creating a binomial tree structure).

In this article, we focus on the optimization of an all-gather operation in the context of resilience
to imbalanced PAPs in an HPC environment based on homogeneous compute cluster architecture.
Our contribution is as follows:

(1) A description of Background Disseminated Ring (BDR) PAP-aware algorithm based on
the regular parallel ring algorithm often supplied in MPI implementations, which exploits
an auxiliary background thread for early data exchange from faster processes to accelerate
the performed all-gather operation.

(2) A description of Background Sorted Linear synchronized tree with Broadcast

(BSLB) PAP-aware algorithm, built upon an already existing PAP-aware gather algorithm
(Background Sorted Linear Synchronized tree) followed by a regular broadcast distribut-
ing gathered data to all participating processes.

(3) An experimental evaluation of the above algorithms performed in a typical HPC cluster
environment, based on a mini-benchmark executed for larger data sizes (128K or more
floats) followed by the result analysis, showing the acceleration of the all-gather operation
up to factor 1.9 or 47%.

In the next section, we describe background topics covering collective algorithms resilient to
imbalanced PAPs, methods of PAP monitoring and prediction, the used computation model, the
evaluation criteria, and other currently used algorithms implementing all-gather operations. Af-
terwards, in Section 3, we present two novel PAP-aware algorithms: BDR and BSLB, including their
pseudo-code, a detailed description, and an execution example. Then, in Section 4, an experimen-
tal evaluation of the proposed solutions is provided, including a description of mini-benchmark
and the test setup, followed by the result analysis. In the last section, the final remarks and the
perceived future works are provided.

2 BACKGROUND

The study on process arrival patterns (PAPs) in a typical HPC environment, with two ex-
amples of a cluster architecture, was presented in Reference [4]. A PAP is defined as a tuple
(a0,a1, . . . aP−1), where ai is a measured process arrival time (PAT) for process i , while P is
the number of all processes participating in a given collective operation. Similarly, a process exit

pattern (PEP) can be defined as a tuple ( f0, f1, . . . fP−1), where fi is the time when process i
finishes the operation.

An imbalanced PAP is defined as a PAP where the worst case imbalance time:

ω = max
i ∈〈0,P−1〉

(ai ) − min
i ∈〈0,P−1〉

(ai ) (1)

is equal to or greater than the time to communicate one message in the collective operation: τ , thus
ω
τ
≥ 1. Otherwise, in the case when ω

τ
< 1, we define the PAP as balanced. Figure 2 presents an

example of process arrival and exit patterns as well as worst imbalance time of a single collective
operation.

The analysis of a number of existing applications—benchmarks, which used extensively MPI
collective communication [4], showed a ubiquity of imbalance PAP occurrence and their high
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41:4 J. Proficz

Fig. 2. Example of a process arrival pattern: (a0,a1,a2), a process exit pattern: ( f0, f1, f2), a run time r =
f1 − a0, and worst case imbalance time: ω = a1 − a0, where y-axis labels: 〈0, 1, 2〉 indicate process identifiers

(P = 3),ai , fi , and ei = fi − ai are, respectively, arrival, exit, and elapsed times of a process i for the performed

collective communication operation. In this case average elapsed time can be derived as: ē = e0+e1+e2
3 .

influence on the overall performance. Moreover, the further investigation into the sources of such
behavior indicated that this phenomenon usually cannot be controlled directly by programmers,
and the imbalances are going to occur in any typical HPC environment.

In the related works, we can distinguish two main approaches for improving performance of the
parallel applications suffering by imbalanced PAPs’ occurrences. The first one is based on intro-
duction a self-tuning platform with a library of various collective algorithms, where the platform
selects the most proper one according to its measured run time. Such solution was used in a STAR-
MPI framework [4], where the performance of all-to-all operation was significantly improved. The
second one is based on a direct algorithm design, where new PAP-aware algorithms are proposed
for every specific collective operation.

2.1 Algorithms Resilient to Imbalanced PAPs in the Related Works

In Reference [18], Patarasuk et al. presented two PAP-aware broadcast algorithms dedicated for
large messages, one for the non-blocking model of message-passing (arrival_nb) and the other
for the blocking one (arrival_b). They performed a theoretical analysis and experimental re-
search, both showing better performance of the proposed algorithms in comparison to the existing
ones.

In Reference [26], Qian et al. presented three algorithms resilient to imbalanced PAPs, for all-
to-all (PAP_Direct, PAP_Shm_Direct) and all-gather (PAP_Direct) collective operations. They
are dedicated and strongly dependent on the underlying hardware, namely, on the InfiniBand [5]
interconnecting network. They were based on the Direct and the SMP-aware algorithms proposed
in Reference [25] and utilized specific RDMA mechanisms for early process arrival notification.
The performed experiments showed the advantage of the new algorithms over their regular coun-
terparts achieving an acceleration of factor 1.44.
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:5

Table 1. State-of-the-art Algorithms Resilient

to Imbalanced PAPs

Operation Algorithms

All-gather PAP_Direct [26]
All-reduce adaptive tree [11], PRR, SLT [20]
All-to-all PAP_Direct, PAP_Shm_Direct [26]
Barrier adaptive tree [11]
Broadcast arrival_b, arrival_nb [18]
Gather SLS, BSLS, SBN, BSBN [21]
Reduce local redirect [12], Clairvoyant [13, 23]
Scatter SLN, BSLN, SBN, BSBN [21]

Similarly to the above, Mamidala et al. presented [11] barrier and all-reduce PAP-aware algo-
rithms based on hardware support provided by an InfiniBand [5] network with multicast and
RDMA operations. Both algorithms are based on adaptive tree gather/reduce followed by broad-
cast, where a special token is placed in the tree root and can be moved to other processes in
the case of their late arrival. The approach shows the best results when only one leaf process is
delayed.

Two reduce algorithms resilient to imbalanced PAPs were presented in References [12] and [13];
both are based on the binomial tree approach, with the logarithmic complexity. The former (local
redirect) was used for data vectors requiring atomicity and the latter (Clairvoyant) for the ones
that can be split into segments, and their exchange can be scheduled before the network trans-
fer. In both cases the theoretical analysis and experimental results showed the advantage of the
newer approach. Recently, in Reference [23], we presented a new version of Clairvoyant algorithm,
including a set of performance and usability improvements.

In Reference [20], we proposed two new PAP-aware algorithms for all-reduce collective oper-
ation. The first one extended typical linear tree approach: Sorted Linear Tree (SLT), while the
other was based on parallel ring: Pre-Reduced Ring (PRR). In the experiments, PRR showed
better performance in comparison to SLT as well as the regular algorithms used in typical MPI
implementations. In Reference [24], PRR was tested in a geographically distributed compute clus-
ter where two sets of nodes were connected by a 900-kilometer-long, fast (100 Gbps), optical fiber
network. The results showed performance improvements for the PAP-aware algorithm; however,
it was outperformed by hierarchical solutions typical for this type of environments.

Finally, in Reference [21], we presented a collection of eight algorithms resilient to imbal-
anced PAPs: (Background) Sorted LiNear (BSLS/SLS) tree for scatter, (Background) Sorted

Linear Synchronized tree (SLS/BSLS) for gather, and (Background) Sorted BiNomial tree

(SBN/BSBN) for both: scatter and gather operations. They were based on communication trees
constructed according to the process arrival times (PATs) and optionally were supported by
auxiliary background communication performed in anticipation of the group operation behavior.
Similarly to the previous results, the experiments showed the advantage of the proposed approach
in imbalanced PAPs’ environment.

Table 1 summarizes state-of-the-art algorithms designed for addressing imbalanced PAPs. We
can notice the lack of the all-gather hardware independent solution (PAP_Direct [26] is based on
InfiniBand [5] built-in mechanisms), which we attempt to cover in this article.

2.2 PAP Monitoring and Model of Processing

All of the aforementioned algorithms require some a priori knowledge about arrival times of the
cooperating processes (see Table 2). Some of them [12, 18] gather PAP-related data during its
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41:6 J. Proficz

Table 2. Approaches for PAP On-line Estimation

PAP detector Operation–algorithms

Its own messaging—part of the
algorithm

Broadcast: arrival_b, arrival_nb [18]
Reduce: local redirect [12]

Hardware support (InfiniBand [5]) All-gather: PAP_Direct [26]
All-reduce: adaptive tree [11]
All-to-all: PAP_Direct, PAP_Shm_Direct [26]

Auxiliary background thread All-reduce: SLT, PRR [20]
Gather: SLS, BSLS, SBN, BSBN [21]
Reduce: Clairvoyant [23]
Scatter: SLN, BSLN, SBN, BSBN [21]

Static analysis or SMA (suggestion) Reduce: Clairvoyant [13]

Fig. 3. Visualization of an iterative processing model.

execution with additional messaging at the beginning of the communication. The others [11, 26]
use the network hardware support, particularly InfiniBand built-in mechanisms, to resolve which
counterpart process has already arrived. In Reference [13], we can find suggestion that the PAP
characteristics for each process are stable during the program run time, thus a static analysis of
the source code or some statistical methods like simple moving averages (SMA) can be used for
PATs estimation.

In our previous works [20, 21, 23, 24], as well as in this article, we assume an iterative model of

the processing, i.e., the parallel program executes consecutively iterations and each iteration con-
sists of two phases: computations, where the processes perform calculations, and communication,
with the data containing results of the computation phase being exchanged by the cooperating
processes. The former causes heavy CPU load, in opposition to the latter when the network is
intensively used.

Moreover, as it is presented in Figure 3, we postulate that each process consists of a number of
concurrent threads, which cooperate with each other using shared memory mechanisms. Thus, the
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:7

internode parallelism is implemented by processes and the intranode parallelism by the threads.
Furthermore, we assume that each process is executed by only one node and each compute node
hosts only one process. We can generalize the model, releasing the last assumption, and allow
to assign more processes to the same node. However, in such case, we would need to provide a
solution considering non-unified send-receive times between processes (e.g., by the introduction
of a process hierarchy, similar to Reference [24]), yet we consider it a separate problem, out of the
scope of this article, that we plan to cover in future works.

Thus, for the PAP monitoring and prediction purposes, we use an auxiliary background thread
(in this and our previous works implemented as an additional pThread [19] instance), mainly ac-
tive in the computation phase when the application code does not utilize the network interfaces.
The thread uses the unloaded network to exchange progress data, distributing information about
other processes arrival times over the collaborating processes. Moreover, it is also possible to em-
ploy the thread to do additional, network-related activities to improve the overall efficiency of the
processing, e.g., exchange preliminary collective data [21] or “warm up” the connections between
the processes [20]. The solution presented in this article uses such a thread to support the proposed
all-gather algorithms, including preliminary data exchange within so-called pre-steps performing
typical MPI communication.

2.3 Algorithm Evaluation Criteria

In the related works, we can distinguish two different approaches to evaluate the proposed PAP-
aware algorithms. The first one is related to a performance assessment of a real application being
optimized using the proposed solution. However, in the real world, the applications differ in many
aspects of their execution and sometimes improvement to one parallel program can cause perfor-
mance degradation in another one. Thus, in such a situation it is necessary to provide some other
means to be used for the evaluation.

The other approach is based on performing some mini-benchmark that emulates a whole range
of possible configurations with various process numbers, data sizes, and randomly generated or
fixed delays in PATs. The collective operations are executed consecutively multiple times and the
measurements of communication time are performed. After the experiments, the results are com-
pared and the algorithms are evaluated according to a specific criterion. We can distinguish the
following evaluation criteria, provided in the previous researches:

• average elapsed time [4]: It is the average time, in which all the cooperating processes stay
in the collective operation (see an example in Figure 2):

ē =
1

P

P−1∑

i=0

ei =
1

P

P−1∑

i=0

fi − ai . (2)

• run time [13]: It is a period from the first process arrival till the last one leaving the evaluated
collective operation (see an example in Figure 2):

r = max
i ∈〈0,P−1〉

( fi ) − min
i ∈〈0,P−1〉

(ai ). (3)

• absorption time [13], representing the absorbed part of the imbalance, mitigated by the
evaluated algorithm:

A = r ′ − r + ω, (4)

where r ′ is a run time of the evaluated algorithm for perfectly balanced (flat) PAP, i.e.,
(0, 0, . . . , 0), r is the run time (see Equation (3)), and ω is the worst case imbalance time (see
Equation (1)).
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It can be noted, that for asymmetric operations, e.g., broadcast, where one of the processes is
emphasized, usually called a root, the run time (see Equation (3)) or even the root process elapsed
time seems to be appropriate criteria for the algorithm estimation. However, for symmetrical op-
erations, e.g., all-gather, where all processes are equal, the elapsed time (see Equation (2)) seems
to more correlated with the total application execution time. Thus, similarly to Reference [20] in
this article, we use the elapsed time measurements for the algorithm evaluation.

2.4 Regular All-gather Algorithms in Use

We are going to focus on larger data sizes (at least 128K of floats or 0.5 MB) and for such an assump-
tion, the most popular open source MPI implementations: OpenMPI [17] and MPICH [15], whose
source code we analyzed, use the following algorithms: neighbor exchange (NEX), parallel ring

(RING), and additionally, a linear gather with broadcast (LNBC).
The NEX algorithm [1] is used by OpenMPI for even numbers of the collaborating processes,

where each process exchanges its data repetitively with the right and left neighbor, consecutively
increasing the data size. In the case of MPICH and for OpenMPI when there is the odd process
number, a RING algorithm is used, where each process sends its data to the next neighbor, but
in this case the size of the sent messages is fixed. Additionally, for the reference purposes, we
utilize LNBC algorithm, which is implemented by a regular gather operation, based on a linear
tree algorithm, combined with a consecutive broadcast.

There is a number of other all-gather algorithms based on a binomial tree, e.g., Bruck algo-
rithm [28]; however, the aforementioned MPI implementations typically use them for smaller data
sizes, and in general, these algorithms seem to be ineffective for the larger ones; thus, we do not
take them into consideration in this research.

Moreover, recently there are some other works related to optimization of all-gather algorithms,
where the additional, specific constraints are considered, e.g., in Reference [8], Kang et al. provided
a solution for intergroup cooperation, rapidly accelerating data gathering between two disjointed
process sets; in Reference [29], Zhou et al. analyzed and improved all-gather behavior for multi-
/many-core processor in compute clusters; in Reference [2], Cho el al. presented an efficient com-
munication library, with an all-gather implementation, for distributed deep learning that is highly
optimized for popular GPU-based platforms. Our work extends this filed with imbalanced PAP re-
lated study, where similarly to these researches the all-gather is the mainly considered collective
operation.

3 PROPOSED SOLUTION

In this article, we propose two novel algorithms implementing an all-gather collective operation,
optimizing its performance in an imbalanced PAP environment based on a compute, homogeneous
cluster architecture. As we mentioned in Section 2.2, both of them work under the assumption
of the iterative processing model and use the auxiliary, background thread to perform some
additional actions on their behalf, even before the all-gather operation is called from the main
program.

The proposed approach to the PAP monitoring and the PAT prediction requires certain methods
for checking the progress of the computations. For this purpose, we introduced three special func-
tions: PAT_ProcessingStart(), PAT_ProcessingEnd(), and PAT_Edge() to be called back and
report the progress of the computations. PAT_ProcessingStart() and PAT_ProcessingEnd()
invocations signal the beginning and the end of the performed computation phase in a given pro-
cess, respectively. While a PAT_Edge() call indicates an intermediate milestone, marked by a given
percentage of the elapsed computations.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 41. Publication date: July 2021.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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Listing 1 presents the auxiliary background thread pseudo-code. While working, the thread
waits for the PAT_Edge() call (line 5), and along with the computation phase start time
provided by the main program during PAT_ProcessingStart() function call and stored in vari-
able processinдStart , the thread is able to calculate the current and estimate the end processing
times (lines 6–7). The current time is indicated by the standard MPI function: MPI_Wtime(). In-
ternally, the approximation is made using a linear extrapolation; however, in future works, a
different approach can be used, e.g., a solution based on EMA (exponential moving averages) over
consecutive iterations, even without the necessity of providing the exact progress value. After-
wards, the PAT estimations are exchanged between the cooperating processes (line 8).

LISTING 1: Pseudo-code of the auxiliary, background thread

1: variables:

2: workinд �true as long as the process is operating
3: processinдStart �set to the start time of the computation phase

4: while workinд do

5: wait for PAT_Edge() function call
6: calculate time since processing start as MPI_Wtime()-processingStart
7: estimate the PAT for the current process
8: exchange PATs with other processes
9: perform additional algorithm-related activities

10: end while

Apart of the above monitoring-related activities, the auxiliary thread can be used to perform
additional algorithm-specific actions (line 9) that are grouped in the algorithms’ pseudo-code as
background blocks, in opposition to foreground blocks, which are executed in the main program
thread as a result of the corresponding collective operation calls.

3.1 Background Disseminated Ring

The first proposed algorithm: Background Disseminated Ring (BDR), presented in Listing 2,
is based on a regular parallel ring (RING) approach with additional operations performed in the
background within a scope of the auxiliary thread, even before the all-gather call. The idea of the
algorithm is to use the background thread to prepare a schedule of exchanging messages (lines
22–46) and execute the pre-steps (lines 47–52), and then, after calling all-gather operation by the
main application code, the rest of the communication is performed in the foreground (lines 56–67).

Each process provides its own part of data, i.e., a segment, denoted as inp (line 5), which are
going to be transferred to the other ones. We assume that the transfer time (point-to-point send-
receive) of such a segment over the network, between any two processes, is constant and equals τ ,
can be measured or estimated before the algorithm execution and provided as an input parameter
(line 6). In a full-duplex network, every process can send and receive data at the same time; thus,
we can split the algorithm execution into steps in which a process can send or receive one segment.
We define the steps performed between arrivals of the first and the last process as pre-steps.

The pre-steps part of the schedule enables dissemination of the data provided by the faster
processes (with earlier PATs) and is going to be finished when the last process arrives. In the first
loop (lines 22–33), the segments from the faster processes are scheduled to be disseminated to the
other processes, possibly the ones still in the computation phase. In case more sending processes
are going to transfer a segment to the same destination, the slower one is preferred in the inner
loop (lines 23).
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41:10 J. Proficz

LISTING 2: Pseudo-code of background disseminated ring (BDR) algorithm

1: input:

2: P �number of processes/nodes (one process per node)
3: ar �arrival time of process r
4: id �id of the current process (rank)
5: inp �data (one segment) to be sent by the current process, available in the foreground
6: τ �period of time in which transfer of one data segment is performed
7: output:

8: outr �entire data (all segments) to be gathered, where r is the source process id
9: variables:

10: pai �process ids, initially sorted (descending) according to the arrival time: ai

11: psNoq �number of pre-steps of process q, initially set to �maxr (ar )−aq

τ
�

12: prevSentr �number of processes to which process r already sent its data, initially 0
13: rscheds

r �schedule: receive operation to be performed by process r in step s , initially ∅
14: sscheds

r �schedule: send operation to be performed by process r in step s , initially ∅
15: rstepr �last step in rsched for process r
16: sstepr �last step in ssched for process r
17: rc �receiver process id
18: seд �origin process id of the data segment to be transferred
19: s �step of the communication

20: background:

21: �setting up the schedule
22: for s = 0 to (maxq psNoq ) − 1 do � schedule the pre-steps
23: for ∀r ∈ pa do � iterate over processes from the slowest one
24: rc = (r − 1 − prevSentr + P ) mod P
25: if {psNor ≥ (maxq psNoq ) − s} ∧ {prevSentr < P − 1} ∧ {rscheds

rc = ∅} then

26: schedule send(inp, rc) to sscheds
r

27: sstepr = s
28: schedule outr =recv(r ) to rscheds

rc

29: rsteprc = s
30: prevSentr = prevSentr + 1
31: end if

32: end for

33: end for

34: for i = 0 to P − 1 do � schedule the ring
35: rc = (i + 1) mod P
36: for j = 0 to P − 1 do

37: seд = (i − j + P ) mod P
38: if prevSentseд + j < P − 1 then

39: schedule send(outseд , rc) to sscheds+j
i

40: sstepr = s + j

41: schedule outseд=recv(i) to rscheds+j
r c

42: rsteprc = s + j
43: end if

44: end for

45: end for
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:11

46: �perform the background part of the schedule
47: s = 0
48: while sscheds

id
= ∅ do

49: execute recv from rscheds
id

as a blocking operation
50: s = s + 1
51: end while

52: foreground:

53: outid = inp � set up the output for the current process
54: wait to finish the background operations
55: �perform the rest operations from the schedule
56: while {s ≤ sstepid } ∨ {s ≤ rstepid } do

57: if rscheds
id
� ∅ then

58: execute recv from rscheds
id

as a non-blocking operation
59: end if

60: if sscheds
id
� ∅ then

61: execute send from sscheds
id

as a blocking operation
62: end if

63: if rscheds
id
� ∅ then

64: wait for recv from rscheds
id

to be finished
65: end if

66: s = s + 1
67: end while

The receivers are assigned in id descending order, one-by-one, beginning from sending process
id − 1 with modulo P wrapping (line 24). A segment is going to be disseminated if the following
conditions are met (line 25): (i) it is already available in the sending process, (ii) there is at least one
process that the segment was not already sent to, and (iii) the destination process does not have
scheduled any receive operation from another process in the actual step. The schedule is split into
two independent send and receive parts: ssched and rsched , respectively, and is filled in greedy
manner—no adjustments are made after the operation is scheduled (lines 26–29).

In the second loop (lines 34–45), executed after all pre-steps are planned, the pending segments
are scheduled to be distributed basing on the RING algorithm. The outer loop (line 34) iterates
over the processes where receivers are assigned in id ascending order, one-by-one beginning from
sending process id + 1 with modulo P wrapping (line 35), while the inner loop (lines 36–44) sched-
ules the concrete segments. The main difference to the RING algorithm is that the segment trans-
mission finishes earlier for processes with the already disseminated segments (the condition in
line 38). The implementation of the above scheduling procedure (lines 21–45) includes additional
performance optimization, skipped in the pseudo-code for the sake of simplicity, causing the empty
steps without any operation to be performed, not to be included into the schedule.

The final schedule is executed in two parts, the first one (lines 47–51) in the background, before
the input data inp is available for the current process, and the other (lines 56–67) in the foreground
as a part of the all-gather operation call made by the main computing program. Thus, the back-
ground part finishes when the schedule indicates the first send operation (line 48) and is continued
after the input data is assigned as a part of the result (line 53). The full-duplex transmission is ex-
ploited, with the blocking send (line 61) and the receive operation split into two parts: the actual
call (line 58) and wait for its finish (line 64). Unfortunately, the necessity of sending just-received
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41:12 J. Proficz

Fig. 4. Impact of an imbalanced PAP (delayed process 0 by 2τ ) on ring based all-gather algorithm executions:

(a) regular parallel ring (RING), (b) background disseminated ring (BDR). An arrow represents a segment

transfer, and a dot indicates segment data being delivered.

data segment, a feature inherited from the regular parallel ring algorithm, prevents us from more
advanced optimization, where more non-blocking receive operations would be collected for one
wait call (MPI_Waitall() in the MPI implementation).

The computational complexity of the scheduling depends on two factors: the number of the
cooperating process P , and the maximal number of pre-steps over all processes, which can be
calculated as: S = �ω

τ
� (note that ω

τ
is the imbalance factor definition [4]). Thus, after the evaluation

of the scheduling loops (lines 22–33 and 34–45), the complexity can be estimated as O (SP + P2).
An example of the BDR execution is presented in Figure 4(b), where the process 0 is delayed

by a0 = 2τ , while the others arrived at the same time a1−3 = 0. This enables the processes 1–3
to perform 2 pre-steps, which are used to disseminate their input data. Therefore, the segments
from processes 1 and 2 are available for process 0 at the moment the all-gather is called (t = 2τ );
and the process finishes this operation in just one step. In comparison to RING (see Figure 4(a)),
where processes 1–3 spend e1−3 = 5τ and process 0 spends e0 = 3τ periods of time in the call, the
BSLS decrease them to e0 = 1τ for process 0 and e2 = 4τ for process 2. What can be denoted by the
average elapsed time (ē) decreasing from 5τ to 4τ (the reduction of 20%).

Let us consider a situation when the PAT estimation would go totally wrong; this means the
slowest process would be perceived as the first one arrived. In such a case, the BDR algorithm
would prevent the data transfer until the delayed process arrives, which could be a reason for
extending the time of the operation for the pre-steps execution. Thus, in comparison to the regular
parallel ring, the average elapsed times could increase up to (P − 2) × τ .

3.2 Background Sorted Linear Synchronized Tree with Broadcast

In general, an all-gather operation can be implemented using a combination of a simple gather,
where the whole data is collected by an arbitrary selected root process, and a consecutive
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:13

broadcast, which disseminates the gathered data from the root to other processes. Usually this
approach is less effective than specific all-gather focused algorithms, e.g., NEX or RING; however,
in some cases, unexpectedly, it can work faster than such solutions. Thus, the second proposed
algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), presented
in Listing 3, is based on the existing Background Sorted Linear Synchronized tree (BSLS)

gather-only algorithm (line 8), which we proposed in Reference [21], followed by a regular broad-
cast algorithm (line 9) provided by the used MPI implementation.

In BSLS tree gather algorithm, a non-root process splits its data vector into two segments, where
the first one is significantly smaller. Then, such a process waits for a signal from the root, which
is used to trigger the transmission of this short segment to inform back that the rest of the data
is ready to send. The root process sends the signals to the processes according to their PAT order.
Thus, the faster processes can start the transmission ahead of the later ones, and additionally this
procedure can decrease the risk of the network contingency. Moreover, the receiving of the data is
performed by the root process in the background, using the auxiliary thread, even before the main
program finishes the computations, which increases the resilience of the algorithm to the delays
in this process.

Thus, similarly to the previous algorithm, BSLS uses the auxiliary thread during the computation
phase and is split into background and foreground parts. The thread is used to notify the partner
processes, which are structured into an arrival time-based binomial tree and receive their data
even before the computation phase is finished. However, in opposition to BDR, the algorithm is
based on sorting of the processes according to their arrival times, without each segment to be pre-
scheduled. Therefore, it does not need additional information about the transfer time of a single
segment: τ .

LISTING 3: Pseudo-code of Background Sorted Linear synchronized tree with Broadcast (BSLB)
algorithm

1: input:

2: P �number of processes/nodes (one process per node)
3: ar �arrival time of process r
4: id �id of the current process (rank)
5: inp �data (one segment) to be sent by the current process, available in the foreground
6: output:

7: outr �the data (all segments) gathered from the processes, where r is process rank

8: call BSLS gather with P , ar , id , inp and 0 as root process
9: call MPI BCast with P , rank , 0 as root process and BSLS result as input data

Let us consider a situation when the PAT estimation would go totally wrong; this means the
slowest process would be perceived as the first one arrived. In such a case, the BSLS part of
the algorithm could have worse performance than its counterpart: a regular binomial tree, and in
the worst case, it could cause the elapsed times to be longer up to loд2 (P ) × τ . More details about
this algorithm, including the complexity analysis and an example, can be found in Reference [21].

4 EXPERIMENTAL EVALUATION

The proposed algorithms were implemented using open-source MPI [14] implementation: Open-
MPI [17]. Their evaluation is based on average elapsed time measurements using a specially pre-
pared mini-benchmark executed in a controlled experimental HPC environment.
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41:14 J. Proficz

4.1 Mini-benchmark

Listing 4 presents the pseudo-code of a mini-benchmark measuring the algorithm’s average
elapsed time. The input parameters consist of the total size of gathered data: N , number of it-
erations to be performed during the test: itNo, maximum delay of a process, indicating a possible
range of the PATs: maxDelay, the alдorithm to be evaluated: NEX, LNBC, BSLB, BDR, RING, the
number of cooperating processes: P and an id of the current process, equal to the MPI rank value.

LISTING 4: Pseudo-code of the mini-benchmark

1: input:

2: N �number of elements (floats) in the gathered data
3: itNo �number of iterations
4: maxDelay �maximal delay of the processes
5: alдorithm �tested algorithm, one of NEX, LNBC, BSLB, BDR, RING
6: P �number of processes/nodes
7: id �process id of the current process (rank): 0. . .P − 1
8: output:

9: avдET �average elapsed time measured for the given algorithm
10: variables:

11: hal f Time �50% of the emulated computation time
12: myET �elapsed time measured in one iteration for the current process
13: sumET �sum of the elapsed times over the iterations and processes, initially 0.0

14: MPI_Init()
15: PAT_Init()
16: PAT_UseAlg(alдorithm)
17: for i = 1 to itNo do � repeat itNo times
18: data = generateRandomData( N

P
)

19: hal f Time = 100ms+random(0 . . .maxDelay)/2
20: MPI_Barrier() � double barrier for process synchronization
21: MPI_Barrier()
22: PAT_ProcessingStart()
23: usleep(hal f Time)
24: PAT_Edge(50%)
25: usleep(hal f Time)
26: PAT_ProcessingEnd()
27: startTime =MPI_Wtime()
28: makeOperation(alдorithm, data) � call all-gather to be tested
29: endTime =MPI_Wtime()
30: checkCorrectness(data)
31: myET = endTime − startTime
32: MPI_Allreduce(sumET ,myET , MPI_SUM. . . )
33: end for

34: PAT_Finalize()
35: MPI_Finalize()
36: avдET = sumET

P×it N o
� measured final result

At the beginning each process initiates MPI and PAT libraries by calling MPI_Init() and
PAT_Init(), respectively (lines 14–15). Then, the used algorithm needs to be indicated in
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All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns 41:15

Fig. 5. Example of an iteration execution of the mini-benchmark for 3 processes (P = 3) including function

calls, and process arrival and exit time measurement points: ai , fi , where i = 0, 1, . . . P − 1.

function PAT_UseAlg() (line 16) and the tests can be performed in the main loop (lines 17–33),
which is repeated itNo times.

During each iteration, new data and the PAT are randomly generated (lines 18–19), and similarly
to Intel Benchmark [6] and Reference [13], two MPI_Barrier() calls are consecutively invoked
to synchronize the physical times of the cooperating processes (lines 20–21). Therefore, the start
of the computation phase is indicated to the algorithm implementation, with the execution of the
PAT_ProcessingStart() function (line 22), and the first part of computations (50%) is mocked
by the usleep() system call (line 23).

The period of the computations depends directly on a maxDelay input parameter, which in-
dicates a maximum time difference between the PATs, and the actual delay is pseudo-randomly
generated using the uniform distribution. Afterwards, the internal milestone is marked by calling
PAT_Edge() function (line 24), enabling the auxiliary, background thread to perform its activities,
including the interprocess PATs’ estimation. Next, the second half of the computations is mocked
and finished with the PAT_ProcessingEnd() function call (lines 25-26).

Afterwards, the communication phase is performed with the evaluated all-gather algo-
rithm implementation invoked along with the times measurement using MPI_Wtime() function
(lines 27–29). Finally, each iteration is finished by checking the result correctness in function
checkCorrectness() (line 30) and determining the sum of elapsed times calculated and dis-
tributed over all benchmarked processes (lines 31–32). Figure 5 presents an example of one itera-
tion execution of the mini-benchmark including performed function calls.

After performing the benchmark iterations, both PAT and MPI libraries are notified about fin-
ishing the program (lines 34–35) and the final mini-benchmark result: The average elapsed time
is calculated.

4.2 Test Configuration

The experimental evaluation was performed in a special laboratory, which is an isolated partition
of the supercomputer Tryton [9]. We decided to separate one rack case with 48 compute nodes to
keep the network noise on the lowest possible level. This approach enabled us to control the pro-
cess delays according to the desired PATs, thus the experiments were able to emulate the assumed
PAP conditions. We use Ethernet intraconnect without any hardware acceleration mechanisms
so the results and the final conclusions could be as general as possible. The compute nodes were
equipped with 2 × Xeon E5-2670 v3 @2.3 GHz CPUs, 128 GB of RAM, and operated under Linux

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 41. Publication date: July 2021.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


41:16 J. Proficz

Fig. 6. Mini-benchmark results’ distribution over the maximum delay (left-hand side) and the data size

(right-hand side) factors. Each bar visualizes the performed experiments, where the tested algorithms’ im-

plementations had the shortest average elapsed times.

CentOS v. 6.10 with kernel v. 2.6. The mini-benchmark along with the algorithms was implemented
in C language, compiled in 64-bit mode with GCC v. 7.3.0, and linked with OpenMPI v. 3.0.

The aforementioned mini-benchmark was executed for all evaluated algorithms: NEX, LNBC,
BSLB, BDR, RING, various PATs, with the randomly generated delays, with maximum ranges:
maxDelay = 0, 1, 5, 10, 50, 100, 500 milliseconds, different gathered data vector sizes: N = 128K,
256K, 512K, 1M, 2M of floats and incremented number of compute nodes/processes: P = 4, 8,
12 . . . 44, 48. All these combinations resulted in 2,100 experiments, each one with itNo = 256 mea-
surement iterations.

4.3 Result Analysis

Tables 3 and 4 present the experimental results of the mini-benchmark execution. For each test
case the fastest algorithm is indicated, and when it is one of the proposed PAP-aware algorithms,
the acceleration in comparison to the next, best regular algorithm (one of NEX, RING, the ones
used in OpenMPI implementation, and LNBC) is provided. According to the assumption presented
in Section 2.3, we use the average elapsed time to perform this comparison.

As we could expect, the PAP-aware algorithms outperform the regular (state-of-the-art) ones for
configurations affected by imbalanced PAPs. The best relative results were recorded for medium
delay values (50 ms) and larger data sizes (over 256K of floats); see Figure 6. The best case when
the BDR was faster than the best regular algorithm by factor 1.9 or 47% was observed for 28
nodes/processes, 5 ms maximum delay, and the data size set to 256K of floats.

Figure 7 presents the results of mini-benchmark executions for a wide range of the gathered
vector sizes on 36 compute nodes, and the PAT maximum delay equals 100 ms. We can notice that
for all algorithms the larger data size causes the increase of the all-gather elapsed times. However,
for such conditions, either of the PAP-aware algorithms outperforms regular implementations,
with BDR better working for smaller and BSLB for larger data sizes.

Figure 8 presents the experimental results showing the influence of the increasing maximum
delay on average run times of the tested algorithms. The chart is drawn up for 32 compute
nodes/processes and relatively small data size: 256K of floats. We can observe that for such condi-
tions our PAP-aware BDR outperforms BSLB and regular all-gather algorithms in the whole range
of delays.

In comparison to the above case, Figure 9 shows the chart of mini-benchmark results for 48
compute nodes/processes and for a large data size: 2M of floats. In this case, for maximum delays
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Table 3. Mini-benchmark Results, Part 1/2

MD→ 0 1 5 10 50 100 500
Size ↓ Process/node number: 4
128 RING RING BDR1.15 BDR1.17 BDR1.10 BDR1.07 BDR1.02
256 RING RING BDR1.05 BDR1.11 BDR1.14 BDR1.09 BDR1.03
512 BDR1.01 RING RING BDR1.07 BDR1.16 BDR1.14 BDR1.04
1,024 RING RING RING RING BDR1.12 BDR1.17 BDR1.07
2,048 RING RING RING RING BDR1.07 BDR1.09 BDR1.09
Size ↓ Process/node number: 8
128 BSLB1.02 BSLB1.01 BSLB1.06 BSLB1.07 BDR1.02 BDR1.04 BDR1.01
256 RING RING BSLB1.11 BSLB1.16 BDR1.13 BDR1.10 BDR1.03
512 RING RING BDR1.03 BDR1.07 BDR1.10 BDR1.13 BDR1.04
1,024 RING RING RING RING BDR1.06 BDR1.11 BDR1.08
2,048 RING BDR1.01 BDR1.01 BDR1.02 BDR1.08 BDR1.12 BDR1.12
Size ↓ Process/node number: 12
128 RING RING BDR1.36 BDR1.23 BDR1.07 BDR1.02 RING
256 RING RING BDR1.07 BDR1.07 BDR1.13 BDR1.09 BDR1.03
512 RING RING RING BDR1.06 BSLB1.04 BDR1.14 BDR1.04
1,024 RING RING RING BDR1.03 BDR1.11 BDR1.13 BDR1.07
2,048 BDR1.03 BDR1.02 BDR1.01 BDR1.02 BDR1.07 BDR1.03 BDR1.11
Size ↓ Process/node number: 16
128 RING RING BDR1.43 BDR1.32 BDR1.09 BDR1.02 RING
256 LNBC BSLB1.02 BSLB1.09 BSLB1.15 BSLB1.01 BSLB1.01 LNBC
512 LNBC LNBC BSLB1.05 BSLB1.35 BSLB1.17 BSLB1.09 BSLB1.02
1,024 RING RING BDR1.02 RING BSLB1.37 BSLB1.23 BSLB1.05
2,048 BDR1.02 BDR1.01 RING BDR1.03 BDR1.04 RING BDR1.10
Size ↓ Process/node number: 20
128 NEX NEX NEX BDR1.01 BDR1.01 BDR1.01 NEX
256 RING RING BDR1.84 BDR1.61 BDR1.18 BDR1.03 BDR1.01
512 LNBC LNBC BSLB1.17 BSLB1.30 BSLB1.14 BSLB1.10 BSLB1.02
1,024 RING RING BDR1.02 BDR1.03 BSLB1.30 BSLB1.24 BSLB1.05
2,048 BDR1.01 BDR1.01 RING BDR1.01 BDR1.04 RING BDR1.10
Size ↓ Process/node number: 24
128 NEX NEX NEX NEX BDR1.01 BDR1.01 NEX
256 RING RING BDR1.74 BDR1.74 BDR1.21 BDR1.04 BDR1.01
512 RING RING BDR1.03 BSLB1.13 BSLB1.26 BSLB1.15 BSLB1.04
1,024 RING RING BDR1.02 BDR1.03 BSLB1.40 BSLB1.24 BSLB1.05
2,048 RING RING BDR1.01 BDR1.02 BSLB1.17 BSLB1.23 BSLB1.11

The columns indicate maximum delays (MD) provided in milliseconds for a given experiment, the gathered data sizes

(Size) are presented in the rows, and denoted in K of floats. The table is split into sections related to the size of the

laboratory cluster used for the evaluation: 4, 8...24 nodes/processes. For each experiment configuration, the fastest

algorithm is presented, and in the case of the PAP-aware ones, the speedup factor is additionally shown in comparison

to the best regular algorithm execution.

larger than 10 ms, BSLB is the most efficient solution. These results are consistent with the previ-
ous observation indicating that BSLB performs better for larger data sizes. The rapid performance
boost observed formaxDelay ≥ 50 ms can be explained by an additional optimization of network
communication, where the strict ordering of the exchanged messages decreases the network
contingency causing faster data delivery.
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Table 4. Mini-benchmark Results, Part 2/2

MD→ 0 1 5 10 50 100 500
Size ↓ Process/node number: 28
128 NEX NEX NEX NEX BDR1.01 BDR1.01 NEX
256 RING RING BDR1.90 BDR1.74 BDR1.24 BDR1.04 BDR1.01
512 RING RING BDR1.04 BSLB1.06 BSLB1.25 BSLB1.16 BSLB1.03
1,024 RING RING BDR1.02 BDR1.04 BSLB1.24 BSLB1.21 BSLB1.05
2,048 RING RING BDR1.01 BDR1.02 BSLB1.16 BSLB1.23 BSLB1.12
Size ↓ Process/node number: 32
128 NEX NEX NEX NEX BDR1.01 BDR1.01 NEX
256 RING BDR1.01 BDR1.58 BDR1.66 BDR1.23 BDR1.04 BDR1.01
512 LNBC LNBC BSLB1.13 BSLB1.12 BSLB1.03 LNBC BSLB1.01
1,024 RING RING BDR1.02 BDR1.04 BSLB1.31 BSLB1.20 BSLB1.05
2,048 RING RING BDR1.01 BDR1.01 BSLB1.19 BSLB1.16 BSLB1.13
Size ↓ Process/node number: 36
128 NEX NEX NEX NEX BDR1.01 NEX NEX
256 NEX NEX NEX NEX BDR1.02 BDR1.01 NEX
512 RING RING BDR1.40 BDR1.60 BDR1.40 BDR1.08 BDR1.01
1,024 RING RING BDR1.02 BDR1.03 BSLB1.32 BSLB1.19 BSLB1.05
2,048 RING RING BDR1.01 RING BSLB1.32 BSLB1.48 BSLB1.17
Size ↓ Process/node number: 40
128 NEX NEX NEX NEX NEX NEX NEX
256 NEX NEX NEX NEX BDR1.01 BDR1.01 NEX
512 RING RING BDR1.40 BDR1.36 BDR1.41 BDR1.09 BDR1.01
1,024 RING RING BDR1.02 BDR1.03 BSLB1.25 BSLB1.19 BSLB1.06
2,048 RING RING RING BDR1.01 BSLB1.33 BSLB1.25 BSLB1.18
Size ↓ Process/node number: 44
128 NEX NEX NEX NEX NEX NEX NEX
256 NEX NEX NEX NEX BDR1.01 BDR1.01 NEX
512 RING BDR1.02 BSLB1.31 BDR1.43 BDR1.40 BDR1.11 BDR1.01
1,024 LNBC BSLB1.02 BSLB1.17 BSLB1.17 BSLB1.05 BSLB1.04 BSLB1.01
2,048 RING RING BDR1.01 BDR1.01 BSLB1.53 BSLB1.48 BSLB1.15
Size ↓ Process/node number: 48
128 NEX NEX NEX NEX NEX NEX NEX
256 NEX NEX NEX NEX NEX BDR1.01 NEX
512 RING BDR1.04 BDR1.28 BDR1.39 BDR1.37 BDR1.12 BDR1.01
1,024 RING RING BDR1.02 BDR1.03 BSLB1.67 BSLB1.41 BSLB1.12
2,048 RING RING BDR1.01 BDR1.01 BSLB1.52 BSLB1.46 BSLB1.20

The columns indicate maximum delays (MD) provided in milliseconds for a given experiment, the gathered data

sizes (Size) are presented in the rows, and denoted in K of floats. The table is split into sections related to the size

of the laboratory cluster used for the evaluation: 28, 32...48 nodes/processes. For each experiment configuration,

the fastest algorithm is presented, and in the case of the PAP-aware ones, the speedup factor is additionally shown

in comparison to the best regular algorithm execution.

Finally, Figure 10 presents the results of the experiments in the context of scalability, with the
experiments performed for 100 ms maximum PAT delay and medium data size: 512K of floats. We
can draw a conclusion that the PAP-aware algorithms work better for larger sets of nodes. This
is especially noticeable for BDR, which inherited this behavior from its ancestor: parallel ring
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Fig. 7. Mini-benchmark results showing influence of the increasing gathered data size on average elapsed

times of the tested algorithms. The experiments were performed on 36 nodes, and the maximum delay of the

arrival times equal 100 ms. The error bars are set to±σ (68% of the measurements for the normal distribution).

Fig. 8. Mini-benchmark results showing influence of the increasing maximum delay on average elapsed

times of the tested algorithms. The experiments were performed on 32 nodes and the message size equal to

256K of floats. The error bars are set to ±σ (68% of the measurements for the normal distribution).

algorithm (RING), which we assume to be caused by the decrease of the data segment size, with
the increasing process number, and thus the lowered network load and contingency.

From the statistical point of view, the results seem to be stable, with a small standard deviation
in comparison to the measured values. The exceptions can be noticed for smaller PAT delays and
data vector sizes, when tree-based algorithms, both the regular and PAP-aware ones, have more
volatile elapsed times (see Figure 9).

We can conclude the result analysis with the remark that the PAP-aware algorithm works well
for larger compute node/process numbers and significant PAT delays. The BDR is better for smaller
and BSLB for larger data sizes, with both having the advantage over the regular algorithms.

5 FINAL REMARKS

In this article, we presented two novel all-gather algorithms resilient to the imbalanced PAPs.
They were tested and evaluated using a typical for HPC compute cluster architecture with the
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Fig. 9. Mini-benchmark results showing influence of the increasing maximum delay on average elapsed

times of the tested algorithms. The experiments were performed on 48 nodes for the message size equal to

2M of floats. The error bars are set to ±σ (68% of the measurements for the normal distribution).

Fig. 10. Mini-benchmark scalability results, showing influence of the increasing number of processes/nodes

on average elapsed times of the tested algorithms. The experiments were performed for the maximum delay

of the arrival times equal to 100 ms and 512K of floats gathered data size. The error bars are set to ±σ (68%

of the measurements for the normal distribution).

homogeneous nodes connected by 1 Gbps Ethernet interconnect. This comprehensive verification
was based on a proposed mini-benchmark, which was executed over 2,000 times to perform an
experimental comparison with the regular solutions widely used in the state-of-the-art open source
MPI implementations.

The performed tests proved that both of the proposed algorithms present good results in the
imbalanced PAP environment, showing a significant reduction of the all-gather elapsed times up
to factor 1.9 or 47%. As we could expect, the proposed solution not only optimizes the performance
for more imbalanced PAPs, but also works better with the larger data sizes. Finally, we can observe
that the algorithms are well scalable with the increasing numbers of the compute nodes. Similarly
to our previous works [20, 21, 23, 24], this approach can be directly used for HPC applications
supported by iterative process model, such as various scientific simulations.
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Our future works of the imbalanced PAP subject will cover the following topics:

• design of PAP-aware algorithms dedicated for specific architectures, e.g., hierarchical or
long-distance distributed compute clusters [24],

• research on the PAP-aware solutions optimized for energy consumption factors [10],
• introduction of the proposed approach into a larger set of applications, especially in HPC

environments,
• the evaluation of the ultra-scale HPC environments for imbalanced PAPs using advanced

models and simulation tools, e.g., References [3, 22].

We strongly believe that the rapidly developing parallel systems require PAP-aware solutions
to improve their performance and scalability.
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