ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER

Włodzimierz Ulatowski

Communicated by Mirko Horňák

Abstract. Let G = (V, E) be a graph with no isolated vertices. A set $S \subseteq V$ is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number $\gamma_p(G)$ of G is defined to be the minimum cardinality of a paired-domination get of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks **32** (1998), 199–206] Haynes and Slater described graphs G with $\gamma_p(G) = n$ and also graphs with $\gamma_p(G) = n - 1$. In this paper we show all graphs for which $\gamma_p(G) = n - 2$.

Keywords: paired-domination, paired-domination number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops, multiple edges and isolated vertices. Let G = (V, E) be a graph with the vertex set V and the edge set E. Then we use the convention V = V(G) and E = E(G). Let G and G' be two graphs . If $V(G) \subseteq V(G')$ and $E(G) \subseteq E(G')$ then G is a subgraph of G' (and G' is a supergraph of G), written as $G \subseteq G'$. The number of vertices of Gis called the order of G and is denoted by n(G). When there is no confusion we use the abbreviation n(G) = n. Let C_n and P_n denote the cycle and the path of order n, respectively. The open neighborhood of a vertex $v \in V$ in G is denoted $N_G(v) = N(v)$ and defined by $N(v) = \{u \in V : vu \in E\}$ and the closed neighborhood N[v] of v is $N[v] = N(v) \cup \{v\}$. For a set S of vertices the open neighborhood N(S) is defined as the union of open neighborhoods N(v) of vertices $v \in S$, the closed neighborhood N[S] of S is $N[S] = N(S) \cup S$. The degree $d_G(v) = d(v)$ of a vertex v in G is the number of edges incident to v in G; by our definition of a graph, this is equal to |N(v)|.

© AGH University of Science and Technology Press, Krakow 2013

A *leaf* in a graph is a vertex of degree one. A *subdivided star* $K_{1,t}^*$ is a star $K_{1,t}$, where each edge is subdivided exactly once.

In the present paper we continue the study of paired-domination. Problems related to paired-domination in graphs appear in [1–5]. A set M of independent edges in a graph G is called a *matching* in G. A *perfect matching* M in G is a matching in G such that every vertex of G is incident to an edge of M. A set $S \subseteq V$ is a *paired-dominating set*, denoted PDS, of a graph G if every vertex in V - S is adjacent to a vertex in S and the subgraph G[S] induced by S contains a perfect matching M. Therefore, a paired-dominating set S is a dominating set $S = \{u_1, v_1, u_2, v_2, \ldots, u_k, v_k\}$ with matching $M = \{e_1, e_2, \ldots, e_k\}$, where $e_i = u_i v_i$, $i = 1, \ldots, k$. Then we say that u_i and v_i are *paired* in S. Observe that in every graph without isolated vertices the end-vertices of any maximal matching form a PDS. The *paired-domination number* of G, denoted $\gamma_p(G)$, is the minimum cardinality of a PDS of G. We will call a set S a $\gamma_p(G)$ -set if S is a paired-dominating set of cardinality $\gamma_p(G)$. The following statement is an immediate consequence of the definition of PDS.

Observation 1.1 ([4]). If u is adjacent to a leaf of G, then u is in every PDS.

Haynes and Slater [4] show that for a connected graph G of order at least six and with minimum degree $\delta(G) \geq 2$, two-thirds of its order is the bound for $\gamma_p(G)$.

Theorem 1.2 ([4]). If a connected graph G has $n \ge 6$ and $\delta(G) \ge 2$, then

 $\gamma_p(G) \le 2n/3.$

Henning in [5] characterizes the graphs that achieve equality in the bound of Theorem 1.2.

In [4] the authors give the solutions of the graph-equations $\gamma_p(G) = n$ and $\gamma_p(G) = n - 1$, where G is a graph of order n.

Theorem 1.3 ([4]). A graph G with no isolated vertices has $\gamma_p(G) = n$ if and only if G is mK_2 .

Let \mathcal{F} be the collection of graphs C_3 , C_5 , and the subdivided stars $K_{1,t}^*$. Now, we can formulate the following statements.

Theorem 1.4 ([4]). For a connected graph G with $n \ge 3$, $\gamma_p(G) \le n-1$ with equality if and only if $G \in \mathcal{F}$.

Corollary 1.5 ([4]). If G is a graph with $\gamma_p(G) = n - 1$, then $G = H \cup rK_2$ for $H \in \mathcal{F}$ and $r \geq 0$.

In the present paper we consider the graph-equation

$$\gamma_p(G) = n - 2,\tag{1.1}$$

where $n \ge 4$ is the order of a graph G.

Our aim in this paper is to find all graphs G satisfying (1.1). For this purpose we need the following definition and statements.

Definition 1.6. A subgraph G of a graph G' is called a *special subgraph* of G', and G' is a *special supergraph* of G, if either V(G) = V(G') or the subgraph G'[V(G') - V(G)] has a perfect matching.

It is clear that if V(G) = V(G') then the concepts "subgraph" and "special subgraph" are equivalent. Now we can formulate the following fact.

Fact 1.7. Let G be a special subgraph of G'.

- a) If S is a PDS in G then $S' = S \cup (V(G') V(G))$ is a PDS in G'.
- b) If $\gamma_p(G) = n r$ then $\gamma_p(G') \le n' r$, where n = |V(G)|, n' = |V(G')| and $0 \le r \le n 2$.

Proof. a) Assume that

$$S = \{u_1, v_1, u_2, v_2, \dots, u_t, v_t\} \text{ and } V(G') - V(G) = \{u_{t+1}, v_{t+1}, \dots, u_k, v_k\},\$$

where u_i and v_i are paired in S (for i = 1, ..., t) and in V(G') - V(G) (for i = t+1, ..., k). Hence $M = \{e_1, e_2, ..., e_k\}$, where $e_i = u_i v_i$, for i = 1, ..., k, is a perfect matching in G'[S']. By definition of a PDS and by V(G) - S = V(G') - S' we obtain the statement of a).

b) Let S be a γ_p -set in G, thus |V(G) - S| = r. It follows from a) that $S' = S \cup (V(G') - V(G))$ is a PDS in G'. Moreover, we have the equality

$$|S'| = n' - |V(G') - S'| = n' - |V(G) - S| = n' - r.$$

Therefore we obtain $\gamma_p(G') \leq |S'| = n' - r$.

Now assume that G is a connected graph of order $n \ge 4$ satisfying (1.1). Let $S = \{u_1, v_1, u_2, v_2, \ldots, u_k, v_k\}$ be a $\gamma_p(G)$ -set with a perfect matching $M = \{e_1, e_2, \ldots, e_k\}$, where $e_i = u_i v_i$ for $i = 1, 2, \ldots, k$, and $V - S = \{x, y\}$. By letting $\alpha(S)$ denote the minimum cardinality of a subset of S wich dominates V - S, i.e.

$$\alpha(S) = \min\{|S'| : S' \subseteq S, V - S \subseteq N(S')\}.$$

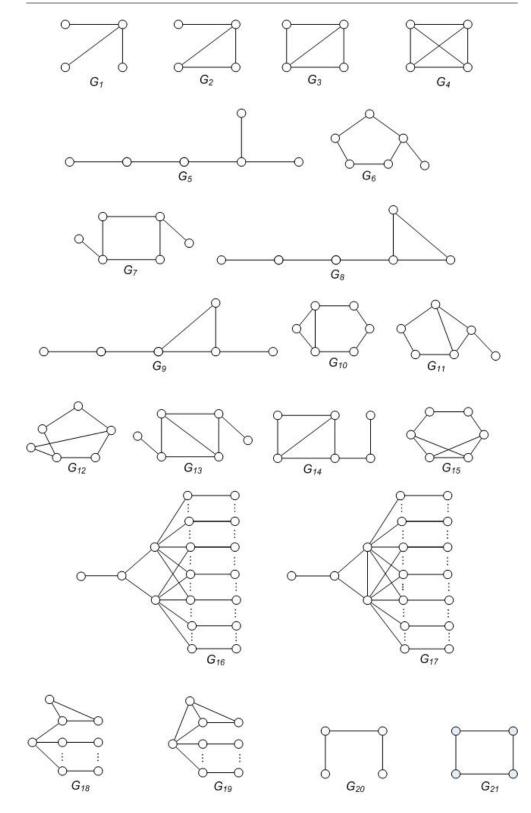
Let S_i be any set of size $\alpha(S)$ such that $S_i \subseteq S$ and $V - S \subseteq N(S_i)$. For S, M and S_i we define a graph H as follows:

$$V(H) = V(G)$$
 and $E(H) = M \cup \{uv : u \in S_i, v \in \{x, y\}\}.$

It is clear that H is a spanning forest of G; we denote it as $G_{sf}(S, M, S_i)$.

2. THE MAIN RESULT

The main purpose of this paper is to construct all graphs G of order n for which $\gamma_p(G) = n-2$. At first consider the family \mathcal{G} of graphs in Fig. 1. We shall show that only the graphs in family \mathcal{G} are connected and satisfy condition (1.1).



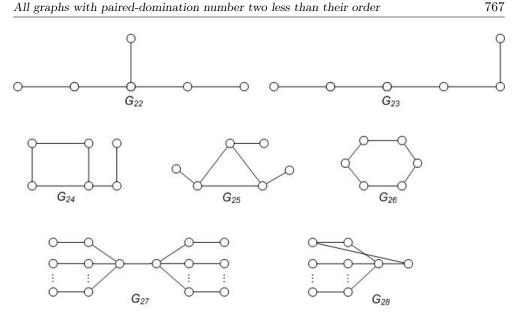


Fig. 1. Graphs in family \mathcal{G}

Theorem 2.1. Let G be a connected graph of order $n \ge 4$. Then $\gamma_p(G) = n - 2$ if and only if $G \in \mathcal{G}$.

Proof. Our aim is to construct all connected graphs G for which (1.1) holds. Let Gbe a connected graph of order $n \geq 4$ satisfying (1.1). We shall prove that $G \in \mathcal{G}$.

Let us consider the following cases.

Case 1. There exists a $\gamma_p(G)$ -set S such that $\alpha(S) = 1$.

Case 1.1. k = 1. Then we have the graphs shown in Fig. 2. It is clear that the graphs H_i satisfy (1.1) and $H_i = G_i$ for i = 1, 2, 3, 4.

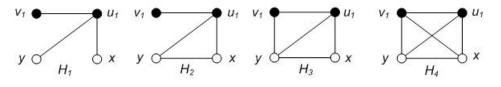


Fig. 2. The graphs for Case 1.1.

Figure 2 illustrates the graphs H_i , where the shaded vertices form a γ_p -set. We shall continue to use this convention in our proof.

At present for $k \geq 2$ we shall find all connected graphs G satisfying (1.1) and having a $\gamma_p(G)$ -set S with $\alpha(S) = 1$. It is clear that in Case 1 any graph $G_{sf}(S, M, S_i)$ is independent of the choice of S, M and S_i , so we can write $G_{sf}(S, M, S_i) = G_{sf}$. The spanning forest G_{sf} consists of k components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)} = K_{1,3}$ with $V(K_{1,3}) = \{x, y, u_1, v_1\}$, where u_1 is the central vertex, while $G^{(i)} = K_2$ for $i = 2, \ldots, k$ (see Fig. 3). Now by adding suitable edges to G_{sf} we are able to reconstruct G.

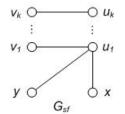


Fig. 3. The spanning forest of G

Case 1.2. k = 2. Now we start with the graph H_5 (Fig. 4). In our construction of the

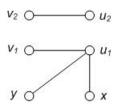


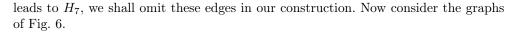
Fig. 4. The spanning forest H_5

desired connected graphs we add one or more edges to H_5 . Thus, let us consider the following cases regarding the number of these edges.

Case 1.2.1. One edge (Fig. 5). One can see that $H_6 = G_5$ satisfies (1.1) but H_7 does not.

Fig. 5. The graphs obtained by adding one edge to H_5

Case 1.2.2. Two edges. For H_7 we have $\gamma_p(H_7) = 6 - 4 = |V(H_7)| - 4$. Thus, by Fact 1.7 b) for any special supergraph G' of H_7 we obtain $\gamma_p(G') \leq |V(G')| - 4$. Hence, we deduce that it suffices to add one edge to H_6 . Since adding the edges u_1u_2 or u_1v_2



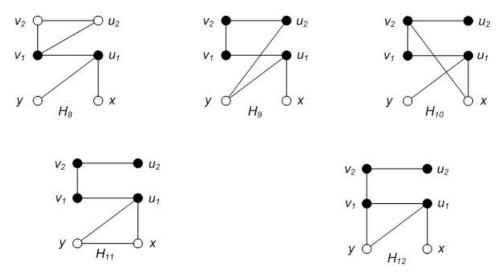


Fig. 6. Adding a new edge to H_6

Certainly, $\gamma_p(H_8) = n - 4$, $\gamma_p(H_i) = n - 2$ and $H_i = G_{i-3}$ for $i = 9, \ldots, 12$. Using the above argument for H_8 we do not take v_1u_2 . Let us consider the following cases. *Case 1.2.3. Three edges.* It follows from Fact 1.7 b) that it suffices to add one edge to H_i for $i = 9, \ldots, 12$.

Case 1.2.3.1. H_9 . Observe that $H_i = G_{i-3}$, i = 13, 14, 15, satisfy (1.1). Moreover, the graphs depicted in Fig. 7 are the unique graphs for which (1.1) holds in this case. Indeed, the edge v_2y leads to a supergraph of H_8 , and joining u_2 to x we have H_{15} .

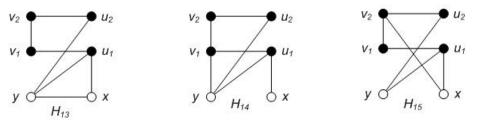


Fig. 7. $H_9 + e$

Case 1.2.3.2. H_{10} . Then we obtain a supergraph of H_7 by means of edge v_2y , a supergraph of H_8 by means of xy, u_2x , instead by adding u_2y we return to H_{15} . Therefore, it remains to research the graph of Fig. 8. It obvious that (1.1) holds for $H_{16} = G_{13}$.

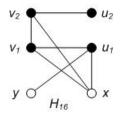


Fig. 8. The graph obtained from H_{10} by adding an edge

Case 1.2.3.3. H_{11} . Then it suffices to consider the graph of Fig. 9. Really, edges v_2x , v_2y lead to a supergraph of H_8 and u_2x , u_2y lead to H_{13} . Observe that for $H_{17} = G_{14}$ equality (1.1) is true.

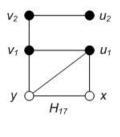


Fig. 9. $H_{11} + e$

Case 1.2.3.4. H_{12} . Here we do not obtain any new graph satisfying (1.1). Indeed, we obtain: a supergraph of H_7 (by adding v_1x), a supergraph of H_8 (by v_2x), H_{13} (by u_2x), H_{14} (by u_2y) and H_{16} (by v_2y).

Case 1.2.4. Four edges.

Case 1.2.4.1. H_{13} . Let G be a graph obtained by adding a new edge e to H_{13} . If $e = v_1 y$ then $H_7 \subseteq G$; if $e = v_2 y, v_2 x$, then $H_8 \subseteq G$ and for $e = v_1 x, u_2 x$ we have the graph $G_{15} \in \mathcal{G}$ (Fig. 10).

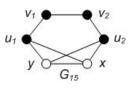


Fig. 10. $H_{15} + e$

Case 1.2.4.2. H_{14} . Keeping the above convention we note: if e = xy then $H_7 \subseteq G$; if $e = v_2 y, v_2 x, u_2 x$ then $H_8 \subseteq G$.

Case 1.2.4.3. H_{15} . If $e = v_2 y$ then $H_7 \subseteq G$; if $e = xy, v_1 y, u_2 x$ then $H_8 \subseteq G$; if $e = v_1 x$ then $G = G_{15}$. It is easy to see that (1.1) is true for G_{15} .

Case 1.2.4.4. H_{16} . In this case we conclude: if e = xy then $H_7 \subseteq G$; if $e = v_2y, u_2x$ then $H_8 \subseteq G$; if $e = u_2y$ then $G = G_{15}$.

Case 1.2.4.5. H_{17} . Then we obtain the following results: if $e = v_1 x, v_2 y, u_2 y$ then $H_7 \subseteq G$; if $e = v_2 x$ then $H_8 \subseteq G$; if $e = u_2 x$ then we have the graph H_{18} depicted in Fig. 11. It is clear that $H_{18} = G_{15}$.

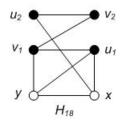


Fig. 11. $H_{17} + e$, where $e = u_2 x$

Case 1.2.5. Five edges.

Case 1.2.5.1. G_{15} . Then it suffices to consider the following: if $e = v_1 y$ then $H_7 \subseteq G$; if $e = v_1 x$ then $H_8 \subseteq G$. Therefore, Case 1.2 is complete.

For case $k \geq 3$ we only consider graphs satisfying the condition $G[S'] = G_{sf}[S'] = K_{1,3}$ for $S' = \{x, y, u_1, v_1\}$. In other words, G contains the induced star $K_{1,3}$, where $V(K_{1,3}) = \{x, y, u_1, v_1\}$ and u_1 is the central vertex.

Case 1.3. k = 3. Then we start with the basic graph of Fig. 12. To obtain connected graphs we add two or more edges to H_{19} and investigate whether (1.1) holds for the resulting graphs. At first we find a forbidden subgraph $H \subseteq G$ i.e. such that $\gamma_p(H) = n - 4$. We have already shown two forbidden special subgraphs H_7 , H_8 , and we now present the other one in Fig. 13. For a while we return to the general case $k \geq 3$. The forbidden special subgraphs H_7 and H_{20} determine a means of construction of graphs G from G_{sf} .

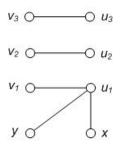


Fig. 12. The spanning forest $G_{sf} = H_{19}$

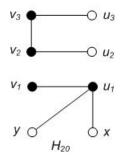


Fig. 13. The forbidden special subgraph

Claim 1. Let G be a connected graph satisfying (1.1) and obtained from $G_{sf} = H_{19}$. Then vertex u_i or v_i , i = 2, ..., k, can be adjacent to the vertices v_1, x, y , only.

Now we add at least two edges to H_{19} . We consider the following cases. Case 1.3.1. Two edges. Then we obtain the graphs H_{21} and H_{22} for which (1.1) holds (Fig. 14).

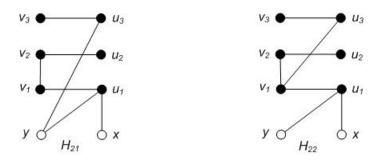


Fig. 14. Adding two edges to H_{19}

Case 1.3.2. Three edges. At present it suffices to add one edge in H_{21} , H_{22} . This way we obtain the graphs depicted in Figure 15.

Observe that (1.1) fails for H_{24} since $H_{20} \subseteq H_{24}$. Thus, H_{23} satisfies (1.1) but H_i , i = 24, 25, 26, do not.

Case 1.3.3. Four edges. By adding one edge to H_{23} we obtain the unique graph for which (1.1) holds (see Fig. 16). One can verify that in the remaining options we have special supergraphs of H_7 , H_8 , H_{20} , H_{25} or H_{26} .

Case 1.3.4. Five edges. Each new edge in H_{27} leads to a special supergraph of H_7 , H_8 , H_{20} , H_{25} or H_{26} . But the following statement is obvious.

Claim 2. The graphs H_7 , H_8 , H_{20} , H_{25} and H_{26} are forbidden special subgraphs for (1.1).

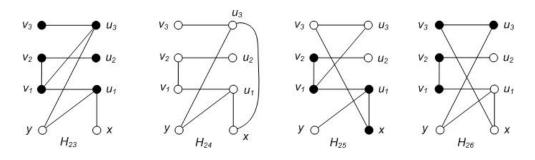


Fig. 15. $H_{21} + e$ and $H_{22} + e$

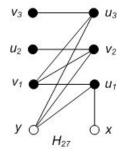


Fig. 16. The graph obtained from H_{23} by adding one edge

We now study a generalization of the case k = 3. We keep our earlier assumption regarding the induced star $K_{1,3}$ with vertex set $\{u_1, v_1, x, y\}$.

Case 1.4. $k \geq 3$. Then we give one property of graphs satisfying (1.1).

Claim 3. Let G be a connected graph for which (1.1) holds and $k \ge 3$. If G contains the induced star $K_{1,3}$ with $V(K_{1,3}) = \{x, y, u_1, v_1\}$ then at least one vertex of $K_{1,3}$ is a leaf in G.

Proof. Consider some cases.

Case A. k = 3. It follows from our earlier investigations that H_{21} , H_{22} , H_{23} and H_{27} are the unique connected graphs satisfying (1.1) in this case. Thus, we have the desired result.

Case B. $k \ge 4$. Claim 1 and Fact 1.7 b) imply that a special subgraph G[S] induced by $S = \{x, y, u_1, v_1, u_2, v_2, u_3, v_3\}$ is connected and satisfies (1.1), i.e. it must be one of the graphs $H_{21}, H_{22}, H_{23}, H_{27}$.

Case B.1. $G[S] = H_{21}$. We show that x is a leaf in G. Suppose not and let x be adjacent to v_i , where $i \ge 4$. Then we obtain the graph H_{28} in Fig. 17, for which (1.1) does not hold.

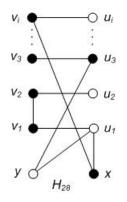


Fig. 17. x is adjacent to v_i for $i \ge 4$

Case B.2. $G[S] = H_{22}$. Case B.2.1. Suppose that in G vertex v_i , $i \ge 4$, is adjacent to x and y. Then for graph H_{29} depicted in Fig. 18 equality (1.1) is false since $H_{20} \subseteq H_{29}$.

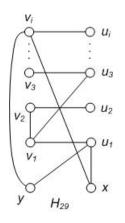


Fig. 18. v_i , for $i \ge 4$, is adjacent to x and y

Case B.2.2. Assume that in G vertices v_i and u_i , $i \ge 4$ are adjacent to x and y, respectively (see Fig. 19). In this way we obtain graph H_{30} which does not satisfy (1.1) since $H_{26} \subseteq H_{30}$.

Case B.2.3. Now, in G let vertices v_i and u_j , $4 \le i < j$, be adjacent to x and y, respectively (Fig. 20). As can be seen, (1.1) fails for H_{31} , furthermore u_j is paired with y, u_i with v_i , u_3 with v_3 and v_1 with v_2 . It follows from the above consideration that we omit the cases: $G[S] = H_{23}$ and $G[S] = H_{27}$, since H_{21} , H_{22} are subgraphs of H_{23} , H_{27} . In all cases we obtain special subgraphs of G for which (1.1) fails, therefore G does not satisfy (1.1), a contradiction.

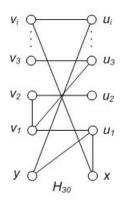


Fig. 19. v_i is adjacent to x and u_i to y, where $i \ge 4$

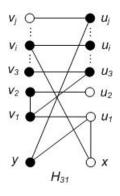


Fig. 20. v_i is adjacent to x and u_j to y for $4 \le i < j$

We are now in a position to construct the desired graphs for $k \ge 3$. Let G be a connected graph satisfying the following conditions:

- a) (1.1) holds,
- b) $k \ge 3$,

c) G contains the induced $K_{1,3}$ with $V(K_{1,3}) = \{x, y, u_1, v_1\}$.

According to Claims 1–3 we can reconstruct G based on G_{sf} . By Claim 3, at least one vertex of $K_{1,3}$, say x, is a leaf in G. Hence, by Claim 1, a vertex u_i or v_i , $i = 2, \ldots, k$, can be adjacent to v_1, y , only. Observe that one vertex among u_i, v_i , for $i = 2, \ldots, k$ is a leaf. Indeed, if $v_i y$ and $u_i y$ ($v_i v_1$ and $u_i v_1$) are edges of G then H_8 is a special subgraph of G, but if $v_i y, u_i v_1 \in E(G)$ then H_{25} is a special subgraph of G(Fig. 21). From the above investigations we obtain the desired graph in Fig. 22. One can see that (1.1) holds for $H_{32} = G_{16}$. We emphasize that the numbers of edges yw_i or v_1w_i, yp_j, v_1z_m can be zero here.

Fig. 21. Impossible edges in G

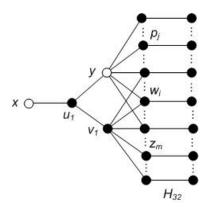


Fig. 22. The family G_{16}

Note that the graphs H_{21} , H_{22} , H_{23} and H_{27} are particular instances of H_{32} . We next describe desired graphs G based on H_{32} . We now discard the assumption concerning the induced star $K_{1,3}$ i.e. edges joining x, y, v_1 are allowable. At first we add the edge yv_1 to H_{32} and obtain graph $H_{33} = G_{17}$ which satisfies (1.1) (Fig. 23). We now consider the following exhaustive cases (Fig. 24). It easy to see that (1.1) is true for $H_{34} = G_{18}$ and $H_{35} = G_{19}$ but is false for $H_i, i = 36, \ldots, 39$. *Case 2.* Each $\gamma_p(G)$ -set S satisfies $\alpha(S) = 2$.

Case 2.1. There exists a set S containing vertices u, v that dominate $\{x, y\}$ such that u is paired with v in some perfect matching M of S. Without loss of generality we may assume that $u = u_1, v = v_1$.

Case 2.1.1. k = 1. Then the unique graphs $H_{40} = G_{20}$ and $H_{41} = G_{21}$ satisfying (1.1) are depicted in Fig. 25.

Now for a connected graph G with $k \ge 2$ the spanning forest $G_{sf}(S, M, S_i) = G_{sf}$ for $S_i = \{u, v\}$ is the sum of components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)} = P_4$ and $G^{(i)} = K_2$ for $i = 2, \ldots, k$ (Fig. 26).

Case 2.1.2. k = 2. Now we start with the spanning forest of Fig. 27. In our construction of the desired connected graphs we add at least one edge to the graph H_{42} . Therefore, consider the following cases.

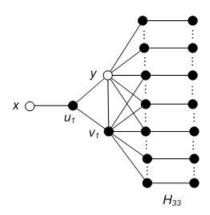


Fig. 23. The family G_{17}

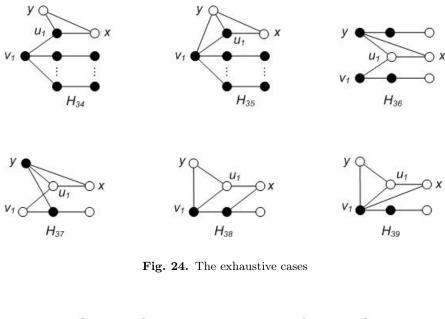


Fig. 25. The case for k = 1

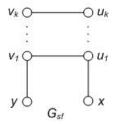


Fig. 26. The spanning forest of G

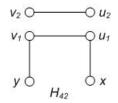


Fig. 27. The graph G_{sf} for k = 2

Case 2.1.2.1. One edge (Fig. 28). Then we have $H_{43} = G_{22}$ and $H_{44} = G_{23}$ satisfy (1.1).

Fig. 28. $H_{42} + e$

Case 2.1.2.2. Two edges. Now by adding one edge to H_{43} and H_{44} we obtain some graphs by exhaustion (Fig. 29). Observe (1.1) fails for H_{45} , H_{46} and holds for $H_{47} = G_{24}$, $H_{48} = G_{25}$ and $H_{49} = G_{26}$. Moreover graphs H_i for i = 50, 51, 52 are discussed in Case 1.

Case 2.1.2.3. Three edges. Then it suffices to add one edge to H_i , i = 47, 48, 49. One resulting graph is the graph H_{53} depicted in Fig. 30, which does not satisfy (1.1). One can verify that the remaining graphs in this case are supergraphs of H_{45} , H_{46} or are graphs discussed in Case 1.

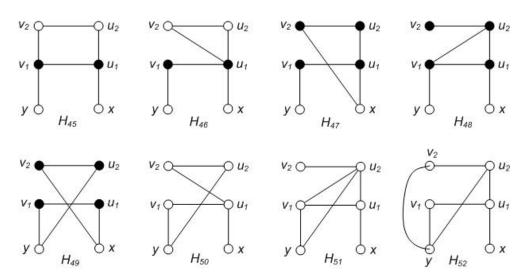


Fig. 29. $H_{43} + e$ and $H_{44} + e$

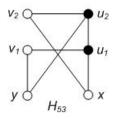


Fig. 30. $H_i + e$ for i = 47, 48, 49

Case 2.1.3. $k \ge 3$. At first we show some graphs for which (1.1) does not hold (Fig. 31). For H_i , $i = 54, \ldots, 57$, (1.1) is false; in H_{54} the vertex u_1 is paired with u_2 and v_1 with u_3 .

Now we start with the spanning forest depicted in Fig. 32.

Taking account of the forbidden special subgraphs H_i , $i = 54, \ldots, 57$, we can reconstruct G based on G_{sf} . By the connectedness of G it is necessary to join vertices of both the edges $u_i v_i$, $u_j v_j$ with at least one vertex among u_1, v_1, x, y . Thus we consider the following cases (without loss of generality we take the vertices u_i and u_j of the above edges). If $u_i u_1 \in E(G)$ then we have two options: $u_j u_1 \in E(G)$ or $u_j x \in E(G)$. Instead, if $u_i x \in E(G)$ then we have the following options: $u_j x \in E(G)$ or $u_j u_1 \in E(G)$. Replace u_1 by v_1 and x by y we obtain analogous results. This way we construct the desired graph $G = H_{58}$ for which (1.1) holds (Fig. 33). Note that $H_{58} = G_{27}$. We end this case with adding new edges in H_{58} . At first, if $u_i z \in E(G)$ and $v_i z \in E(G)$, where $2 \le i \le k$, $z = u_1, v_1, x, y$, then we return to Case 1. Therefore, let us consider all possible cases, which are depicted in Fig. 34. Then we obtain that (1.1) is true for $H_{60} = G_{28}$ but is false for H_{59} and H_{61} .

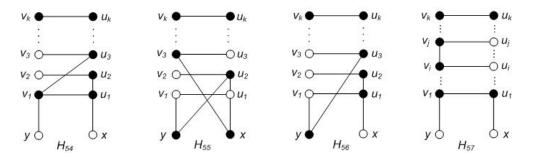


Fig. 31. The forbidden graphs

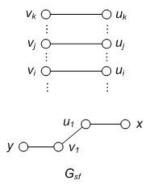
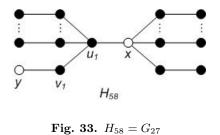


Fig. 32. The spanning forest for $k \ge 3$, where $2 \le i < j \le k$



Case 2.2. For each S and for all vertices $u, v \in S$ that dominate $\{x, y\}$ the vertex u is not paired with v in any perfect matching of S. In this case the spanning forest $G_{sf}(S, M, S_i) = G_{sf}$, for each M and $S_i = \{u, v\}$, is depicted in Fig. 35.

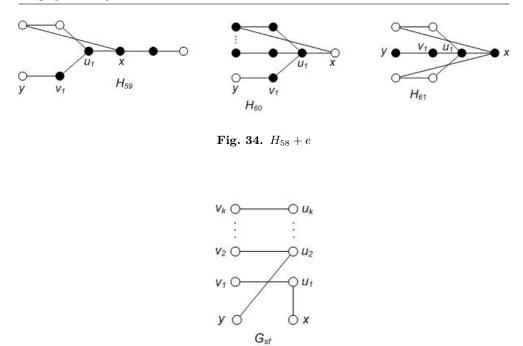


Fig. 35. The spanning forest G_{sf} of a connected graph G

Now we search for connected graphs based on G_{sf} and consider the following cases. Case 2.2.1. k = 2. Then by adding one edge we obtain the three options of Fig. 36: H_{62} does not satisfy (1.1) while $H_{63} = G_5$ and $H_{64} = G_{23}$.

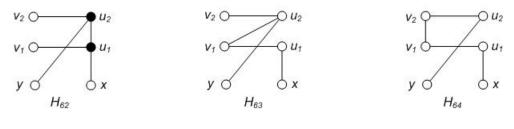


Fig. 36. The case k = 2

Case 2.2.2. k = 3. Now consider the spanning forest depicted in Fig. 37. By joining the vertices u_1, v_1, x to u_2, v_2, y we could obtain H_i , i = 62, 63, 64, or their supergraphs. Hence the obtained graphs do not satisfy (1.1) or belong to Case 1 or Case 2.1. Therefore, it suffices to consider edges joining the above vertices to u_3 or v_3 (Fig. 38). Then H_i , $i = 65, \ldots, 69$, do not satisfy (1.1) but H_{70} belongs to the family G_{16} .

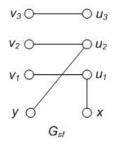


Fig. 37. The spanning forest for k = 3

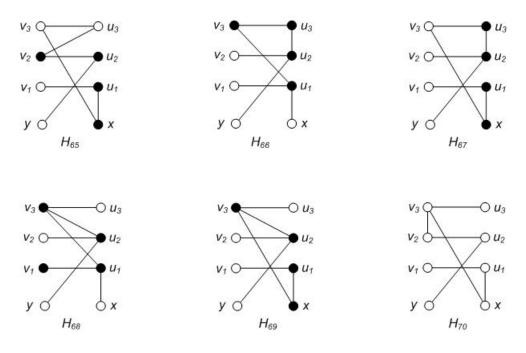


Fig. 38. The case k = 3

Case 2.2.3. k > 3. Then we obtain graphs for which (1.1) fails or graphs belonging to Case 1.

Conversely, let G be any graph of the family \mathcal{G} . It follows from the former investigations that (1.1) holds for G.

We end this paper with the following statement obtained by Theorems 1.3, 1.4, 2.1 and Corollary 1.5.

Corollary 2.2. If G is a graph of order $n \ge 4$, then $\gamma_p(G) = n - 2$ if and only if

- 1) exactly two of the components of G are isomorphic to graphs of the family \mathcal{F} given in Theorem 1.4 and every other component is K_2 or
- 2) exactly one of the components of G is isomorphic to a graph of the family \mathcal{G} given in Theorem 2.1 and every other component is K_2 .

REFERENCES

- M. Chellali, T.W. Haynes, Trees with unique minimum paired-dominating set, Ars Combin. 73 (2004), 3–12.
- [2] S. Fitzpatrick, B. Hartnell, *Paired-domination*, Discuss. Math. Graph Theory 18 (1998), 63–72.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [4] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-206.
- [5] M.A. Henning, Graphs with large paired-domination number, J. Comb. Optim. 13 (2007), 61–78.

Włodzimierz Ulatowski twoulat@mif.pg.gda.pl

Gdańsk University of Technology Department of Technical Physics and Applied Mathematics Narutowicza 11/12, 80–952 Gdańsk, Poland

Received: February 27, 2013. Revised: May 14, 2013. Accepted: May 21, 2013.