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ALL GRAPHS
WITH PAIRED-DOMINATION NUMBER TWO

LESS THAN THEIR ORDER
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Abstract. Let G = (V,E) be a graph with no isolated vertices. A set S ⊆ V is a
paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the
subgraph induced by S contains a perfect matching. The paired-domination number γp(G)
of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be
a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199–206] Haynes
and Slater described graphs G with γp(G) = n and also graphs with γp(G) = n− 1. In this
paper we show all graphs for which γp(G) = n− 2.
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1. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops, multiple
edges and isolated vertices. Let G = (V,E) be a graph with the vertex set V and
the edge set E. Then we use the convention V = V (G) and E = E(G). Let G and
G′ be two graphs . If V (G) ⊆ V (G′) and E(G) ⊆ E(G′) then G is a subgraph of
G′ (and G′ is a supergraph of G), written as G ⊆ G′. The number of vertices of G
is called the order of G and is denoted by n(G). When there is no confusion we use
the abbreviation n(G) = n. Let Cn and Pn denote the cycle and the path of order n,
respectively. The open neighborhood of a vertex v ∈ V in G is denoted NG(v) = N(v)
and defined by N(v) = {u ∈ V : vu ∈ E} and the closed neighborhood N [v] of v is
N [v] = N(v) ∪ {v}. For a set S of vertices the open neighborhood N(S) is defined
as the union of open neighborhoods N(v) of vertices v ∈ S, the closed neighborhood
N [S] of S is N [S] = N(S) ∪ S. The degree dG(v) = d(v) of a vertex v in G is the
number of edges incident to v in G; by our definition of a graph, this is equal to |N(v)|.
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A leaf in a graph is a vertex of degree one. A subdivided star K∗1,t is a star K1,t, where
each edge is subdivided exactly once.

In the present paper we continue the study of paired-domination. Problems related
to paired-domination in graphs appear in [1–5]. A set M of independent edges in a
graph G is called a matching in G. A perfect matching M in G is a matching in G such
that every vertex of G is incident to an edge ofM . A set S ⊆ V is a paired-dominating
set, denoted PDS, of a graph G if every vertex in V − S is adjacent to a vertex in
S and the subgraph G[S] induced by S contains a perfect matching M . Therefore,
a paired-dominating set S is a dominating set S = {u1, v1, u2, v2, . . . , uk, vk} with
matching M = {e1, e2, . . . , ek}, where ei = uivi, i = 1, . . . , k. Then we say that ui
and vi are paired in S. Observe that in every graph without isolated vertices the
end-vertices of any maximal matching form a PDS. The paired-domination number of
G, denoted γp(G), is the minimum cardinality of a PDS of G. We will call a set S a
γp(G)-set if S is a paired-dominating set of cardinality γp(G). The following statement
is an immediate consequence of the definition of PDS.

Observation 1.1 ([4]). If u is adjacent to a leaf of G, then u is in every PDS.

Haynes and Slater [4] show that for a connected graph G of order at least six and
with minimum degree δ(G) ≥ 2, two-thirds of its order is the bound for γp(G).

Theorem 1.2 ([4]). If a connected graph G has n ≥ 6 and δ(G) ≥ 2, then

γp(G) ≤ 2n/3.

Henning in [5] characterizes the graphs that achieve equality in the bound of
Theorem 1.2.

In [4] the authors give the solutions of the graph-equations γp(G) = n and γp(G) =
n− 1, where G is a graph of order n.

Theorem 1.3 ([4]). A graph G with no isolated vertices has γp(G) = n if and only
if G is mK2.

Let F be the collection of graphs C3, C5, and the subdivided stars K∗1,t. Now, we
can formulate the following statements.

Theorem 1.4 ([4]). For a connected graph G with n ≥ 3, γp(G) ≤ n−1 with equality
if and only if G ∈ F .

Corollary 1.5 ([4]). If G is a graph with γp(G) = n − 1, then G = H ∪ rK2 for
H ∈ F and r ≥ 0.

In the present paper we consider the graph-equation

γp(G) = n− 2, (1.1)

where n ≥ 4 is the order of a graph G.
Our aim in this paper is to find all graphs G satisfying (1.1). For this purpose we

need the following definition and statements.
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All graphs with paired-domination number two less than their order 765

Definition 1.6. A subgraph G of a graph G′ is called a special subgraph of G′, and G′
is a special supergraph of G, if either V (G) = V (G′) or the subgraph G′[V (G′)−V (G)]
has a perfect matching.

It is clear that if V (G) = V (G′) then the concepts “subgraph” and “special sub-
graph” are equivalent. Now we can formulate the following fact.

Fact 1.7. Let G be a special subgraph of G′.

a) If S is a PDS in G then S′ = S ∪ (V (G′)− V (G)) is a PDS in G′.
b) If γp(G) = n − r then γp(G

′) ≤ n′ − r, where n = |V (G)|, n′ = |V (G′)| and
0 ≤ r ≤ n− 2.

Proof. a) Assume that

S = {u1, v1, u2, v2, . . . , ut, vt} and V (G′)− V (G) = {ut+1, vt+1, . . . , uk, vk},

where ui and vi are paired in S (for i = 1, . . . , t) and in V (G′) − V (G) (for i =
t+1, . . . , k). HenceM = {e1, e2, . . . , ek}, where ei = uivi, for i = 1, . . . , k, is a perfect
matching in G′[S′]. By definition of a PDS and by V (G)− S = V (G′)− S′ we obtain
the statement of a).

b) Let S be a γp-set in G, thus |V (G) − S| = r. It follows from a) that S′ =
S ∪ (V (G′)− V (G)) is a PDS in G′. Moreover, we have the equality

|S′| = n′ − |V (G′)− S′| = n′ − |V (G)− S| = n′ − r.

Therefore we obtain γp(G′) ≤ |S′| = n′ − r.

Now assume that G is a connected graph of order n ≥ 4 satisfying (1.1). Let S =
{u1, v1, u2, v2, . . . , uk, vk} be a γp(G)-set with a perfect matchingM = {e1, e2, . . . , ek},
where ei = uivi for i = 1, 2, . . . , k, and V − S = {x, y}. By letting α(S) denote the
minimum cardinality of a subset of S wich dominates V − S, i.e.

α(S) = min{|S′| : S′ ⊆ S, V − S ⊆ N(S′)}.

Let Si be any set of size α(S) such that Si ⊆ S and V − S ⊆ N(Si). For S, M and
Si we define a graph H as follows:

V (H) = V (G) and E(H) =M ∪ {uv : u ∈ Si, v ∈ {x, y}}.

It is clear that H is a spanning forest of G; we denote it as Gsf (S,M, Si).

2. THE MAIN RESULT

The main purpose of this paper is to construct all graphs G of order n for which
γp(G) = n− 2. At first consider the family G of graphs in Fig. 1. We shall show that
only the graphs in family G are connected and satisfy condition (1.1).
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All graphs with paired-domination number two less than their order 767

Fig. 1. Graphs in family G

Theorem 2.1. Let G be a connected graph of order n ≥ 4. Then γp(G) = n − 2 if
and only if G ∈ G.

Proof. Our aim is to construct all connected graphs G for which (1.1) holds. Let G
be a connected graph of order n ≥ 4 satisfying (1.1). We shall prove that G ∈ G.

Let us consider the following cases.
Case 1. There exists a γp(G)-set S such that α(S) = 1.
Case 1.1. k = 1. Then we have the graphs shown in Fig. 2. It is clear that the graphs
Hi satisfy (1.1) and Hi = Gi for i = 1, 2, 3, 4.

Fig. 2. The graphs for Case 1.1.

Figure 2 illustrates the graphs Hi, where the shaded vertices form a γp-set. We
shall continue to use this convention in our proof.

At present for k ≥ 2 we shall find all connected graphs G satisfying (1.1) and hav-
ing a γp(G)-set S with α(S) = 1. It is clear that in Case 1 any graph Gsf (S,M, Si) is
independent of the choice of S, M and Si, so we can write Gsf (S,M, Si) = Gsf . The
spanning forest Gsf consists of k components G(1), G(2), . . . , G(k), where G(1) = K1,3
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with V (K1,3) = {x, y, u1, v1}, where u1 is the central vertex, while G(i) = K2 for
i = 2, . . . , k (see Fig. 3). Now by adding suitable edges to Gsf we are able to recon-
struct G.

Fig. 3. The spanning forest of G

Case 1.2. k = 2. Now we start with the graph H5 (Fig. 4). In our construction of the

Fig. 4. The spanning forest H5

desired connected graphs we add one or more edges to H5. Thus, let us consider the
following cases regarding the number of these edges.
Case 1.2.1. One edge (Fig. 5). One can see that H6 = G5 satisfies (1.1) but H7 does
not.

Fig. 5. The graphs obtained by adding one edge to H5

Case 1.2.2. Two edges. For H7 we have γp(H7) = 6− 4 = |V (H7)| − 4. Thus, by Fact
1.7 b) for any special supergraph G′ of H7 we obtain γp(G′) ≤ |V (G′)|− 4. Hence, we
deduce that it suffices to add one edge to H6. Since adding the edges u1u2 or u1v2
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All graphs with paired-domination number two less than their order 769

leads to H7, we shall omit these edges in our construction. Now consider the graphs
of Fig. 6.

Fig. 6. Adding a new edge to H6

Certainly, γp(H8) = n− 4, γp(Hi) = n− 2 and Hi = Gi−3 for i = 9, . . . , 12. Using the
above argument for H8 we do not take v1u2. Let us consider the following cases.
Case 1.2.3. Three edges. It follows from Fact 1.7 b) that it suffices to add one edge
to Hi for i = 9, . . . , 12.
Case 1.2.3.1. H9. Observe that Hi = Gi−3, i = 13, 14, 15, satisfy (1.1). Moreover, the
graphs depicted in Fig. 7 are the unique graphs for which (1.1) holds in this case.
Indeed, the edge v2y leads to a supergraph of H8, and joining u2 to x we have H15.

Fig. 7. H9 + e

Case 1.2.3.2. H10. Then we obtain a supergraph of H7 by means of edge v2y, a
supergraph of H8 by means of xy, u2x, instead by adding u2y we return to H15.
Therefore, it remains to research the graph of Fig. 8. It obvious that (1.1) holds for
H16 = G13.
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Fig. 8. The graph obtained from H10 by adding an edge

Case 1.2.3.3. H11. Then it suffices to consider the graph of Fig. 9. Really, edges v2x,
v2y lead to a supergraph of H8 and u2x, u2y lead to H13. Observe that for H17 = G14

equality (1.1) is true.

Fig. 9. H11 + e

Case 1.2.3.4. H12. Here we do not obtain any new graph satisfying (1.1). Indeed,
we obtain: a supergraph of H7 (by adding v1x), a supergraph of H8 (by v2x),
H13 (by u2x), H14 (by u2y) and H16 (by v2y).
Case 1.2.4. Four edges.
Case 1.2.4.1. H13. Let G be a graph obtained by adding a new edge e to H13. If
e = v1y then H7 ⊆ G; if e = v2y, v2x, then H8 ⊆ G and for e = v1x, u2x we have the
graph G15 ∈ G (Fig. 10).

Fig. 10. H15 + e

Case 1.2.4.2. H14. Keeping the above convention we note: if e = xy then H7 ⊆ G; if
e = v2y, v2x, u2x then H8 ⊆ G.
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All graphs with paired-domination number two less than their order 771

Case 1.2.4.3. H15. If e = v2y then H7 ⊆ G; if e = xy, v1y, u2x then H8 ⊆ G; if e = v1x
then G = G15. It is easy to see that (1.1) is true for G15.
Case 1.2.4.4. H16. In this case we conclude: if e = xy then H7 ⊆ G; if e = v2y, u2x
then H8 ⊆ G; if e = u2y then G = G15.
Case 1.2.4.5. H17. Then we obtain the following results: if e = v1x, v2y, u2y then
H7 ⊆ G; if e = v2x then H8 ⊆ G; if e = u2x then we have the graph H18 depicted in
Fig. 11. It is clear that H18 = G15.

Fig. 11. H17 + e, where e = u2x

Case 1.2.5. Five edges.
Case 1.2.5.1. G15. Then it suffices to consider the following: if e = v1y then H7 ⊆ G;
if e = v1x then H8 ⊆ G. Therefore, Case 1.2 is complete.
For case k ≥ 3 we only consider graphs satisfying the condition G[S′] = Gsf [S

′] =
K1,3 for S′ = {x, y, u1, v1}. In other words, G contains the induced star K1,3, where
V (K1,3) = {x, y, u1, v1} and u1 is the central vertex.
Case 1.3. k = 3. Then we start with the basic graph of Fig. 12. To obtain connected
graphs we add two or more edges to H19 and investigate whether (1.1) holds for
the resulting graphs. At first we find a forbidden subgraph H ⊆ G i.e. such that
γp(H) = n− 4. We have already shown two forbidden special subgraphs H7, H8, and
we now present the other one in Fig. 13. For a while we return to the general case
k ≥ 3. The forbidden special subgraphsH7 andH20 determine a means of construction
of graphs G from Gsf .

Fig. 12. The spanning forest Gsf = H19
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Fig. 13. The forbidden special subgraph

Claim 1. Let G be a connected graph satisfying (1.1) and obtained from Gsf = H19.
Then vertex ui or vi, i = 2, . . . , k, can be adjacent to the vertices v1, x, y, only.

Now we add at least two edges to H19. We consider the following cases.
Case 1.3.1. Two edges. Then we obtain the graphs H21 and H22 for which (1.1) holds
(Fig. 14).

Fig. 14. Adding two edges to H19

Case 1.3.2. Three edges. At present it suffices to add one edge in H21, H22. This way
we obtain the graphs depicted in Figure 15.
Observe that (1.1) fails for H24 since H20 ⊆ H24. Thus, H23 satisfies (1.1) but Hi,
i = 24, 25, 26, do not.
Case 1.3.3. Four edges. By adding one edge to H23 we obtain the unique graph for
which (1.1) holds (see Fig. 16). One can verify that in the remaining options we have
special supergraphs of H7, H8, H20, H25 or H26.
Case 1.3.4. Five edges. Each new edge in H27 leads to a special supergraph of H7,
H8, H20, H25 or H26. But the following statement is obvious.
Claim 2. The graphs H7, H8, H20, H25 and H26 are forbidden special subgraphs for
(1.1).
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Fig. 15. H21 + e and H22 + e

Fig. 16. The graph obtained from H23 by adding one edge

We now study a generalization of the case k = 3. We keep our earlier assumption
regarding the induced star K1,3 with vertex set {u1, v1, x, y}.

Case 1.4. k ≥ 3. Then we give one property of graphs satisfying (1.1).

Claim 3. Let G be a connected graph for which (1.1) holds and k ≥ 3. If G contains
the induced star K1,3 with V (K1,3) = {x, y, u1, v1} then at least one vertex of K1,3 is
a leaf in G.

Proof. Consider some cases.

Case A. k = 3. It follows from our earlier investigations that H21, H22, H23 and
H27 are the unique connected graphs satisfying (1.1) in this case. Thus, we have the
desired result.
Case B. k ≥ 4. Claim 1 and Fact 1.7 b) imply that a special subgraph G[S] induced
by S = {x, y, u1, v1, u2, v2, u3, v3} is connected and satisfies (1.1), i.e. it must be one
of the graphs H21, H22, H23, H27.
Case B.1. G[S] = H21. We show that x is a leaf in G. Suppose not and let x be
adjacent to vi, where i ≥ 4. Then we obtain the graph H28 in Fig. 17, for which (1.1)
does not hold.
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Fig. 17. x is adjacent to vi for i ≥ 4

Case B.2. G[S] = H22.
Case B.2.1. Suppose that in G vertex vi, i ≥ 4, is adjacent to x and y. Then for graph
H29 depicted in Fig. 18 equality (1.1) is false since H20 ⊆ H29.

Fig. 18. vi, for i ≥ 4, is adjacent to x and y

Case B.2.2. Assume that in G vertices vi and ui, i ≥ 4 are adjacent to x and y,
respectively (see Fig. 19). In this way we obtain graph H30 which does not satisfy
(1.1) since H26 ⊆ H30.
Case B.2.3. Now, in G let vertices vi and uj , 4 ≤ i < j, be adjacent to x and y,
respectively (Fig. 20). As can be seen, (1.1) fails for H31, furthermore uj is paired
with y, ui with vi, u3 with v3 and v1 with v2. It follows from the above consideration
that we omit the cases: G[S] = H23 and G[S] = H27, since H21, H22 are subgraphs of
H23, H27. In all cases we obtain special subgraphs of G for which (1.1) fails, therefore
G does not satisfy (1.1), a contradiction.
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Fig. 19. vi is adjacent to x and ui to y, where i ≥ 4

Fig. 20. vi is adjacent to x and uj to y for 4 ≤ i < j

We are now in a position to construct the desired graphs for k ≥ 3. Let G be a
connected graph satisfying the following conditions:

a) (1.1) holds,
b) k ≥ 3,
c) G contains the induced K1,3 with V (K1,3) = {x, y, u1, v1}.

According to Claims 1–3 we can reconstruct G based on Gsf . By Claim 3, at
least one vertex of K1,3, say x, is a leaf in G. Hence, by Claim 1, a vertex ui or vi,
i = 2, . . . , k, can be adjacent to v1, y, only. Observe that one vertex among ui, vi, for
i = 2, . . . , k is a leaf. Indeed, if viy and uiy (viv1 and uiv1) are edges of G then H8 is
a special subgraph of G, but if viy, uiv1 ∈ E(G) then H25 is a special subgraph of G
(Fig. 21). From the above investigations we obtain the desired graph in Fig. 22. One
can see that (1.1) holds for H32 = G16. We emphasize that the numbers of edges ywi

or v1wi, ypj , v1zm can be zero here.
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Fig. 21. Impossible edges in G

Fig. 22. The family G16

Note that the graphs H21, H22, H23 and H27 are particular instances of H32.
We next describe desired graphs G based on H32. We now discard the assumption
concerning the induced star K1,3 i.e. edges joining x, y, v1 are allowable. At first we
add the edge yv1 to H32 and obtain graph H33 = G17 which satisfies (1.1) (Fig. 23).
We now consider the following exhaustive cases (Fig. 24). It easy to see that (1.1) is
true for H34 = G18 and H35 = G19 but is false for Hi, i = 36, . . . , 39.
Case 2. Each γp(G)-set S satisfies α(S) = 2.
Case 2.1. There exists a set S containing vertices u,v that dominate {x, y} such that
u is paired with v in some perfect matching M of S. Without loss of generality we
may assume that u = u1, v = v1.
Case 2.1.1. k = 1. Then the unique graphs H40 = G20 and H41 = G21 satisfying (1.1)
are depicted in Fig. 25.
Now for a connected graph G with k ≥ 2 the spanning forest Gsf (S,M, Si) = Gsf

for Si = {u, v} is the sum of components G(1), G(2), . . . , G(k), where G(1) = P4 and
G(i) = K2 for i = 2, . . . , k (Fig. 26).
Case 2.1.2. k = 2. Now we start with the spanning forest of Fig. 27. In our construction
of the desired connected graphs we add at least one edge to the graph H42. Therefore,
consider the following cases.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


All graphs with paired-domination number two less than their order 777

Fig. 23. The family G17

Fig. 24. The exhaustive cases

Fig. 25. The case for k = 1
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Fig. 26. The spanning forest of G

Fig. 27. The graph Gsf for k = 2

Case 2.1.2.1. One edge (Fig. 28). Then we have H43 = G22 and H44 = G23

satisfy (1.1).

Fig. 28. H42 + e

Case 2.1.2.2. Two edges. Now by adding one edge to H43 and H44 we obtain some
graphs by exhaustion (Fig. 29). Observe (1.1) fails for H45, H46 and holds for H47 =
G24, H48 = G25 and H49 = G26. Moreover graphs Hi for i = 50, 51, 52 are discussed
in Case 1.
Case 2.1.2.3. Three edges. Then it suffices to add one edge to Hi, i = 47, 48, 49. One
resulting graph is the graph H53 depicted in Fig. 30, which does not satisfy (1.1). One
can verify that the remaining graphs in this case are supergraphs of H45, H46 or are
graphs discussed in Case 1.
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Fig. 29. H43 + e and H44 + e

Fig. 30. Hi + e for i = 47, 48, 49

Case 2.1.3. k ≥ 3. At first we show some graphs for which (1.1) does not hold (Fig. 31).
For Hi, i = 54, . . . , 57, (1.1) is false; in H54 the vertex u1 is paired with u2 and v1
with u3.

Now we start with the spanning forest depicted in Fig. 32.
Taking account of the forbidden special subgraphs Hi, i = 54, . . . , 57, we can

reconstruct G based on Gsf . By the connectedness of G it is necessary to join vertices
of both the edges uivi, ujvj with at least one vertex among u1, v1, x, y. Thus we
consider the following cases (without loss of generality we take the vertices ui and
uj of the above edges). If uiu1 ∈ E(G) then we have two options: uju1 ∈ E(G) or
ujx ∈ E(G). Instead, if uix ∈ E(G) then we have the following options: ujx ∈ E(G)
or uju1 ∈ E(G). Replace u1 by v1 and x by y we obtain analogous results. This way
we construct the desired graph G = H58 for which (1.1) holds (Fig. 33). Note that
H58 = G27. We end this case with adding new edges inH58. At first, if uiz ∈ E(G) and
viz ∈ E(G), where 2 ≤ i ≤ k , z = u1, v1, x, y, then we return to Case 1. Therefore,
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let us consider all possible cases, which are depicted in Fig. 34. Then we obtain that
(1.1) is true for H60 = G28 but is false for H59 and H61.

Fig. 31. The forbidden graphs

Fig. 32. The spanning forest for k ≥ 3, where 2 ≤ i < j ≤ k

Fig. 33. H58 = G27

Case 2.2. For each S and for all vertices u, v ∈ S that dominate {x, y} the vertex u
is not paired with v in any perfect matching of S. In this case the spanning forest
Gsf (S,M, Si) = Gsf , for each M and Si = {u, v}, is depicted in Fig. 35.
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Fig. 34. H58 + e

Fig. 35. The spanning forest Gsf of a connected graph G

Now we search for connected graphs based on Gsf and consider the following cases.
Case 2.2.1. k = 2. Then by adding one edge we obtain the three options of Fig. 36:
H62 does not satisfy (1.1) while H63 = G5 and H64 = G23.

Fig. 36. The case k = 2

Case 2.2.2. k = 3. Now consider the spanning forest depicted in Fig. 37.
By joining the vertices u1, v1, x to u2, v2, y we could obtain Hi, i = 62, 63, 64, or their
supergraphs. Hence the obtained graphs do not satisfy (1.1) or belong to Case 1 or
Case 2.1. Therefore, it suffices to consider edges joining the above vertices to u3 or
v3 (Fig. 38). Then Hi, i = 65, . . . , 69, do not satisfy (1.1) but H70 belongs to the
family G16.
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Fig. 37. The spanning forest for k = 3

Fig. 38. The case k = 3

Case 2.2.3. k > 3. Then we obtain graphs for which (1.1) fails or graphs belonging
to Case 1.

Conversely, let G be any graph of the family G. It follows from the former inves-
tigations that (1.1) holds for G. 2
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We end this paper with the following statement obtained by Theorems 1.3, 1.4,
2.1 and Corollary 1.5.

Corollary 2.2. If G is a graph of order n ≥ 4, then γp(G) = n− 2 if and only if
1) exactly two of the components of G are isomorphic to graphs of the family F given

in Theorem 1.4 and every other component is K2 or
2) exactly one of the components of G is isomorphic to a graph of the family G given

in Theorem 2.1 and every other component is K2.
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