ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER

Włodzimierz Ulatowski

Communicated by Mirko Horñák

Abstract

Let $G=(V, E)$ be a graph with no isolated vertices. A set $S \subseteq V$ is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number $\gamma_{p}(G)$ of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater described graphs G with $\gamma_{p}(G)=n$ and also graphs with $\gamma_{p}(G)=n-1$. In this paper we show all graphs for which $\gamma_{p}(G)=n-2$.

Keywords: paired-domination, paired-domination number.
Mathematics Subject Classification: 05C69.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops, multiple edges and isolated vertices. Let $G=(V, E)$ be a graph with the vertex set V and the edge set E. Then we use the convention $V=V(G)$ and $E=E(G)$. Let G and G^{\prime} be two graphs. If $V(G) \subseteq V\left(G^{\prime}\right)$ and $E(G) \subseteq E\left(G^{\prime}\right)$ then G is a subgraph of G^{\prime} (and G^{\prime} is a supergraph of G), written as $G \subseteq G^{\prime}$. The number of vertices of G is called the order of G and is denoted by $n(G)$. When there is no confusion we use the abbreviation $n(G)=n$. Let C_{n} and P_{n} denote the cycle and the path of order n, respectively. The open neighborhood of a vertex $v \in V$ in G is denoted $N_{G}(v)=N(v)$ and defined by $N(v)=\{u \in V: v u \in E\}$ and the closed neighborhood $N[v]$ of v is $N[v]=N(v) \cup\{v\}$. For a set S of vertices the open neighborhood $N(S)$ is defined as the union of open neighborhoods $N(v)$ of vertices $v \in S$, the closed neighborhood $N[S]$ of S is $N[S]=N(S) \cup S$. The degree $d_{G}(v)=d(v)$ of a vertex v in G is the number of edges incident to v in G; by our definition of a graph, this is equal to $|N(v)|$.

A leaf in a graph is a vertex of degree one. A subdivided star $K_{1, t}^{*}$ is a star $K_{1, t}$, where each edge is subdivided exactly once.

In the present paper we continue the study of paired-domination. Problems related to paired-domination in graphs appear in [1-5]. A set M of independent edges in a graph G is called a matching in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to an edge of M. A set $S \subseteq V$ is a paired-dominating set, denoted PDS, of a graph G if every vertex in $V-S$ is adjacent to a vertex in S and the subgraph $G[S]$ induced by S contains a perfect matching M. Therefore, a paired-dominating set S is a dominating set $S=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}\right\}$ with matching $M=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, where $e_{i}=u_{i} v_{i}, i=1, \ldots, k$. Then we say that u_{i} and v_{i} are paired in S. Observe that in every graph without isolated vertices the end-vertices of any maximal matching form a PDS. The paired-domination number of G, denoted $\gamma_{p}(G)$, is the minimum cardinality of a PDS of G. We will call a set S a $\gamma_{p}(G)$-set if S is a paired-dominating set of cardinality $\gamma_{p}(G)$. The following statement is an immediate consequence of the definition of PDS.

Observation 1.1 ([4]). If u is adjacent to a leaf of G, then u is in every PDS.
Haynes and Slater [4] show that for a connected graph G of order at least six and with minimum degree $\delta(G) \geq 2$, two-thirds of its order is the bound for $\gamma_{p}(G)$.

Theorem 1.2 ([4]). If a connected graph G has $n \geq 6$ and $\delta(G) \geq 2$, then

$$
\gamma_{p}(G) \leq 2 n / 3
$$

Henning in [5] characterizes the graphs that achieve equality in the bound of Theorem 1.2.

In [4] the authors give the solutions of the graph-equations $\gamma_{p}(G)=n$ and $\gamma_{p}(G)=$ $n-1$, where G is a graph of order n.

Theorem 1.3 ([4]). A graph G with no isolated vertices has $\gamma_{p}(G)=n$ if and only if G is $m K_{2}$.

Let \mathcal{F} be the collection of graphs C_{3}, C_{5}, and the subdivided stars $K_{1, t}^{*}$. Now, we can formulate the following statements.

Theorem 1.4 ([4]). For a connected graph G with $n \geq 3, \gamma_{p}(G) \leq n-1$ with equality if and only if $G \in \mathcal{F}$.

Corollary 1.5 ([4]). If G is a graph with $\gamma_{p}(G)=n-1$, then $G=H \cup r K_{2}$ for $H \in \mathcal{F}$ and $r \geq 0$.

In the present paper we consider the graph-equation

$$
\begin{equation*}
\gamma_{p}(G)=n-2, \tag{1.1}
\end{equation*}
$$

where $n \geq 4$ is the order of a graph G.
Our aim in this paper is to find all graphs G satisfying (1.1). For this purpose we need the following definition and statements.

Definition 1.6. A subgraph G of a graph G^{\prime} is called a special subgraph of G^{\prime}, and G^{\prime} is a special supergraph of G, if either $V(G)=V\left(G^{\prime}\right)$ or the subgraph $G^{\prime}\left[V\left(G^{\prime}\right)-V(G)\right]$ has a perfect matching.

It is clear that if $V(G)=V\left(G^{\prime}\right)$ then the concepts "subgraph" and "special subgraph" are equivalent. Now we can formulate the following fact.

Fact 1.7. Let G be a special subgraph of G^{\prime}.
a) If S is a PDS in G then $S^{\prime}=S \cup\left(V\left(G^{\prime}\right)-V(G)\right)$ is a PDS in G^{\prime}.
b) If $\gamma_{p}(G)=n-r$ then $\gamma_{p}\left(G^{\prime}\right) \leq n^{\prime}-r$, where $n=|V(G)|, n^{\prime}=\left|V\left(G^{\prime}\right)\right|$ and $0 \leq r \leq n-2$.

Proof. a) Assume that

$$
S=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{t}, v_{t}\right\} \quad \text { and } \quad V\left(G^{\prime}\right)-V(G)=\left\{u_{t+1}, v_{t+1}, \ldots, u_{k}, v_{k}\right\}
$$

where u_{i} and v_{i} are paired in S (for $i=1, \ldots, t$) and in $V\left(G^{\prime}\right)-V(G)$ (for $i=$ $t+1, \ldots, k)$. Hence $M=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, where $e_{i}=u_{i} v_{i}$, for $i=1, \ldots, k$, is a perfect matching in $G^{\prime}\left[S^{\prime}\right]$. By definition of a PDS and by $V(G)-S=V\left(G^{\prime}\right)-S^{\prime}$ we obtain the statement of a).
b) Let S be a γ_{p}-set in G, thus $|V(G)-S|=r$. It follows from a) that $S^{\prime}=$ $S \cup\left(V\left(G^{\prime}\right)-V(G)\right)$ is a PDS in G^{\prime}. Moreover, we have the equality

$$
\left|S^{\prime}\right|=n^{\prime}-\left|V\left(G^{\prime}\right)-S^{\prime}\right|=n^{\prime}-|V(G)-S|=n^{\prime}-r .
$$

Therefore we obtain $\gamma_{p}\left(G^{\prime}\right) \leq\left|S^{\prime}\right|=n^{\prime}-r$.
Now assume that G is a connected graph of order $n \geq 4$ satisfying (1.1). Let $S=$ $\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}\right\}$ be a $\gamma_{p}(G)$-set with a perfect matching $M=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, where $e_{i}=u_{i} v_{i}$ for $i=1,2, \ldots, k$, and $V-S=\{x, y\}$. By letting $\alpha(S)$ denote the minimum cardinality of a subset of S wich dominates $V-S$, i.e.

$$
\alpha(S)=\min \left\{\left|S^{\prime}\right|: S^{\prime} \subseteq S, V-S \subseteq N\left(S^{\prime}\right)\right\}
$$

Let S_{i} be any set of size $\alpha(S)$ such that $S_{i} \subseteq S$ and $V-S \subseteq N\left(S_{i}\right)$. For S, M and S_{i} we define a graph H as follows:

$$
V(H)=V(G) \quad \text { and } \quad E(H)=M \cup\left\{u v: u \in S_{i}, v \in\{x, y\}\right\}
$$

It is clear that H is a spanning forest of G; we denote it as $G_{s f}\left(S, M, S_{i}\right)$.

2. THE MAIN RESULT

The main purpose of this paper is to construct all graphs G of order n for which $\gamma_{p}(G)=n-2$. At first consider the family \mathcal{G} of graphs in Fig. 1. We shall show that only the graphs in family \mathcal{G} are connected and satisfy condition (1.1).

G_{1}
Cols

Fig. 1. Graphs in family \mathcal{G}

Theorem 2.1. Let G be a connected graph of order $n \geq 4$. Then $\gamma_{p}(G)=n-2$ if and only if $G \in \mathcal{G}$.

Proof. Our aim is to construct all connected graphs G for which (1.1) holds. Let G be a connected graph of order $n \geq 4$ satisfying (1.1). We shall prove that $G \in \mathcal{G}$.

Let us consider the following cases.
Case 1. There exists a $\gamma_{p}(G)$-set S such that $\alpha(S)=1$.
Case 1.1. $k=1$. Then we have the graphs shown in Fig. 2. It is clear that the graphs H_{i} satisfy (1.1) and $H_{i}=G_{i}$ for $i=1,2,3,4$.

Fig. 2. The graphs for Case 1.1.

Figure 2 illustrates the graphs H_{i}, where the shaded vertices form a γ_{p}-set. We shall continue to use this convention in our proof.

At present for $k \geq 2$ we shall find all connected graphs G satisfying (1.1) and having a $\gamma_{p}(G)$-set S with $\alpha(S)=1$. It is clear that in Case 1 any graph $G_{s f}\left(S, M, S_{i}\right)$ is independent of the choice of S, M and S_{i}, so we can write $G_{s f}\left(S, M, S_{i}\right)=G_{s f}$. The spanning forest $G_{s f}$ consists of k components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)}=K_{1,3}$
with $V\left(K_{1,3}\right)=\left\{x, y, u_{1}, v_{1}\right\}$, where u_{1} is the central vertex, while $G^{(i)}=K_{2}$ for $i=2, \ldots, k$ (see Fig. 3). Now by adding suitable edges to $G_{s f}$ we are able to reconstruct G.

Fig. 3. The spanning forest of G

Case 1.2. $k=2$. Now we start with the graph H_{5} (Fig. 4). In our construction of the

Fig. 4. The spanning forest H_{5}
desired connected graphs we add one or more edges to H_{5}. Thus, let us consider the following cases regarding the number of these edges.
Case 1.2.1. One edge (Fig. 5). One can see that $H_{6}=G_{5}$ satisfies (1.1) but H_{7} does not.

Fig. 5. The graphs obtained by adding one edge to H_{5}

Case 1.2.2. Two edges. For H_{7} we have $\gamma_{p}\left(H_{7}\right)=6-4=\left|V\left(H_{7}\right)\right|-4$. Thus, by Fact 1.7 b) for any special supergraph G^{\prime} of H_{7} we obtain $\gamma_{p}\left(G^{\prime}\right) \leq\left|V\left(G^{\prime}\right)\right|-4$. Hence, we deduce that it suffices to add one edge to H_{6}. Since adding the edges $u_{1} u_{2}$ or $u_{1} v_{2}$
leads to H_{7}, we shall omit these edges in our construction. Now consider the graphs of Fig. 6.

Fig. 6. Adding a new edge to H_{6}

Certainly, $\gamma_{p}\left(H_{8}\right)=n-4, \gamma_{p}\left(H_{i}\right)=n-2$ and $H_{i}=G_{i-3}$ for $i=9, \ldots, 12$. Using the above argument for H_{8} we do not take $v_{1} u_{2}$. Let us consider the following cases.
Case 1.2.3. Three edges. It follows from Fact 1.7 b) that it suffices to add one edge to H_{i} for $i=9, \ldots, 12$.
Case 1.2.3.1. H_{9}. Observe that $H_{i}=G_{i-3}, i=13,14,15$, satisfy (1.1). Moreover, the graphs depicted in Fig. 7 are the unique graphs for which (1.1) holds in this case. Indeed, the edge $v_{2} y$ leads to a supergraph of H_{8}, and joining u_{2} to x we have H_{15}.

Fig. 7. $H_{9}+e$

Case 1.2.3.2. H_{10}. Then we obtain a supergraph of H_{7} by means of edge $v_{2} y$, a supergraph of H_{8} by means of $x y, u_{2} x$, instead by adding $u_{2} y$ we return to H_{15}. Therefore, it remains to research the graph of Fig. 8. It obvious that (1.1) holds for $H_{16}=G_{13}$.

Fig. 8. The graph obtained from H_{10} by adding an edge

Case 1.2.3.3. H_{11}. Then it suffices to consider the graph of Fig. 9. Really, edges $v_{2} x$, $v_{2} y$ lead to a supergraph of H_{8} and $u_{2} x, u_{2} y$ lead to H_{13}. Observe that for $H_{17}=G_{14}$ equality (1.1) is true.

Fig. 9. $H_{11}+e$

Case 1.2.3.4. H_{12}. Here we do not obtain any new graph satisfying (1.1). Indeed, we obtain: a supergraph of H_{7} (by adding $v_{1} x$), a supergraph of H_{8} (by $v_{2} x$), $H_{13}\left(\right.$ by $\left.u_{2} x\right), H_{14}\left(\right.$ by $\left.u_{2} y\right)$ and $H_{16}\left(\right.$ by $\left.v_{2} y\right)$.
Case 1.2.4. Four edges.
Case 1.2.4.1. H_{13}. Let G be a graph obtained by adding a new edge e to H_{13}. If $e=v_{1} y$ then $H_{7} \subseteq G$; if $e=v_{2} y, v_{2} x$, then $H_{8} \subseteq G$ and for $e=v_{1} x, u_{2} x$ we have the $\operatorname{graph} G_{15} \in \mathcal{G}$ (Fig. 10).

Fig. 10. $H_{15}+e$

Case 1.2.4.2. H_{14}. Keeping the above convention we note: if $e=x y$ then $H_{7} \subseteq G$; if $e=v_{2} y, v_{2} x, u_{2} x$ then $H_{8} \subseteq G$.

Case 1.2.4.3. H_{15}. If $e=v_{2} y$ then $H_{7} \subseteq G$; if $e=x y, v_{1} y, u_{2} x$ then $H_{8} \subseteq G$; if $e=v_{1} x$ then $G=G_{15}$. It is easy to see that (1.1) is true for G_{15}.
Case 1.2.4.4. H_{16}. In this case we conclude: if $e=x y$ then $H_{7} \subseteq G$; if $e=v_{2} y, u_{2} x$ then $H_{8} \subseteq G$; if $e=u_{2} y$ then $G=G_{15}$.
Case 1.2.4.5. H_{17}. Then we obtain the following results: if $e=v_{1} x, v_{2} y, u_{2} y$ then $H_{7} \subseteq G$; if $e=v_{2} x$ then $H_{8} \subseteq G$; if $e=u_{2} x$ then we have the graph H_{18} depicted in Fig. 11. It is clear that $H_{18}=G_{15}$.

Fig. 11. $H_{17}+e$, where $e=u_{2} x$

Case 1.2.5. Five edges.
Case 1.2.5.1. G_{15}. Then it suffices to consider the following: if $e=v_{1} y$ then $H_{7} \subseteq G$; if $e=v_{1} x$ then $H_{8} \subseteq G$. Therefore, Case 1.2 is complete.
For case $k \geq 3$ we only consider graphs satisfying the condition $G\left[S^{\prime}\right]=G_{s f}\left[S^{\prime}\right]=$ $K_{1,3}$ for $S^{\prime}=\left\{x, y, u_{1}, v_{1}\right\}$. In other words, G contains the induced star $K_{1,3}$, where $V\left(K_{1,3}\right)=\left\{x, y, u_{1}, v_{1}\right\}$ and u_{1} is the central vertex.
Case 1.3. $k=3$. Then we start with the basic graph of Fig. 12. To obtain connected graphs we add two or more edges to H_{19} and investigate whether (1.1) holds for the resulting graphs. At first we find a forbidden subgraph $H \subseteq G$ i.e. such that $\gamma_{p}(H)=n-4$. We have already shown two forbidden special subgraphs H_{7}, H_{8}, and we now present the other one in Fig. 13. For a while we return to the general case $k \geq 3$. The forbidden special subgraphs H_{7} and H_{20} determine a means of construction of graphs G from $G_{s f}$.

Fig. 12. The spanning forest $G_{s f}=H_{19}$

Fig. 13. The forbidden special subgraph

Claim 1. Let G be a connected graph satisfying (1.1) and obtained from $G_{s f}=H_{19}$. Then vertex u_{i} or $v_{i}, i=2, \ldots, k$, can be adjacent to the vertices v_{1}, x, y, only.

Now we add at least two edges to H_{19}. We consider the following cases.
Case 1.3.1. Two edges. Then we obtain the graphs H_{21} and H_{22} for which (1.1) holds (Fig. 14).

Fig. 14. Adding two edges to H_{19}

Case 1.3.2. Three edges. At present it suffices to add one edge in H_{21}, H_{22}. This way we obtain the graphs depicted in Figure 15.
Observe that (1.1) fails for H_{24} since $H_{20} \subseteq H_{24}$. Thus, H_{23} satisfies (1.1) but H_{i}, $i=24,25,26$, do not.
Case 1.3.3. Four edges. By adding one edge to H_{23} we obtain the unique graph for which (1.1) holds (see Fig. 16). One can verify that in the remaining options we have special supergraphs of $H_{7}, H_{8}, H_{20}, H_{25}$ or H_{26}.
Case 1.3.4. Five edges. Each new edge in H_{27} leads to a special supergraph of H_{7}, H_{8}, H_{20}, H_{25} or H_{26}. But the following statement is obvious.
Claim 2. The graphs $H_{7}, H_{8}, H_{20}, H_{25}$ and H_{26} are forbidden special subgraphs for (1.1).

Fig. 15. $H_{21}+e$ and $H_{22}+e$

Fig. 16. The graph obtained from H_{23} by adding one edge

We now study a generalization of the case $k=3$. We keep our earlier assumption regarding the induced star $K_{1,3}$ with vertex set $\left\{u_{1}, v_{1}, x, y\right\}$.
Case 1.4. $k \geq 3$. Then we give one property of graphs satisfying (1.1).
Claim 3. Let G be a connected graph for which (1.1) holds and $k \geq 3$. If G contains the induced star $K_{1,3}$ with $V\left(K_{1,3}\right)=\left\{x, y, u_{1}, v_{1}\right\}$ then at least one vertex of $K_{1,3}$ is a leaf in G.

Proof. Consider some cases.
Case A. $k=3$. It follows from our earlier investigations that H_{21}, H_{22}, H_{23} and H_{27} are the unique connected graphs satisfying (1.1) in this case. Thus, we have the desired result.
Case $B . k \geq 4$. Claim 1 and Fact 1.7 b) imply that a special subgraph $G[S]$ induced by $S=\left\{x, y, u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}\right\}$ is connected and satisfies (1.1), i.e. it must be one of the graphs $H_{21}, H_{22}, H_{23}, H_{27}$.
Case B.1. $G[S]=H_{21}$. We show that x is a leaf in G. Suppose not and let x be adjacent to v_{i}, where $i \geq 4$. Then we obtain the graph H_{28} in Fig. 17, for which (1.1) does not hold.

Fig. 17. x is adjacent to v_{i} for $i \geq 4$

Case B.2. $G[S]=H_{22}$.
Case B.2.1. Suppose that in G vertex $v_{i}, i \geq 4$, is adjacent to x and y. Then for graph H_{29} depicted in Fig. 18 equality (1.1) is false since $H_{20} \subseteq H_{29}$.

Fig. 18. v_{i}, for $i \geq 4$, is adjacent to x and y

Case B.2.2. Assume that in G vertices v_{i} and $u_{i}, i \geq 4$ are adjacent to x and y, respectively (see Fig. 19). In this way we obtain graph H_{30} which does not satisfy (1.1) since $H_{26} \subseteq H_{30}$.

Case B.2.3. Now, in G let vertices v_{i} and $u_{j}, 4 \leq i<j$, be adjacent to x and y, respectively (Fig. 20). As can be seen, (1.1) fails for H_{31}, furthermore u_{j} is paired with y, u_{i} with v_{i}, u_{3} with v_{3} and v_{1} with v_{2}. It follows from the above consideration that we omit the cases: $G[S]=H_{23}$ and $G[S]=H_{27}$, since H_{21}, H_{22} are subgraphs of H_{23}, H_{27}. In all cases we obtain special subgraphs of G for which (1.1) fails, therefore G does not satisfy (1.1), a contradiction.

Fig. 19. v_{i} is adjacent to x and u_{i} to y, where $i \geq 4$

Fig. 20. v_{i} is adjacent to x and u_{j} to y for $4 \leq i<j$

We are now in a position to construct the desired graphs for $k \geq 3$. Let G be a connected graph satisfying the following conditions:
a) (1.1) holds,
b) $k \geq 3$,
c) G contains the induced $K_{1,3}$ with $V\left(K_{1,3}\right)=\left\{x, y, u_{1}, v_{1}\right\}$.

According to Claims 1-3 we can reconstruct G based on $G_{s f}$. By Claim 3, at least one vertex of $K_{1,3}$, say x, is a leaf in G. Hence, by Claim 1, a vertex u_{i} or v_{i}, $i=2, \ldots, k$, can be adjacent to v_{1}, y, only. Observe that one vertex among u_{i}, v_{i}, for $i=2, \ldots, k$ is a leaf. Indeed, if $v_{i} y$ and $u_{i} y\left(v_{i} v_{1}\right.$ and $\left.u_{i} v_{1}\right)$ are edges of G then H_{8} is a special subgraph of G, but if $v_{i} y, u_{i} v_{1} \in E(G)$ then H_{25} is a special subgraph of G (Fig. 21). From the above investigations we obtain the desired graph in Fig. 22. One can see that (1.1) holds for $H_{32}=G_{16}$. We emphasize that the numbers of edges $y w_{i}$ or $v_{1} w_{i}, y p_{j}, v_{1} z_{m}$ can be zero here.

Fig. 21. Impossible edges in G

Fig. 22. The family G_{16}

Note that the graphs H_{21}, H_{22}, H_{23} and H_{27} are particular instances of H_{32}. We next describe desired graphs G based on H_{32}. We now discard the assumption concerning the induced star $K_{1,3}$ i.e. edges joining x, y, v_{1} are allowable. At first we add the edge $y v_{1}$ to H_{32} and obtain graph $H_{33}=G_{17}$ which satisfies (1.1) (Fig. 23). We now consider the following exhaustive cases (Fig. 24). It easy to see that (1.1) is true for $H_{34}=G_{18}$ and $H_{35}=G_{19}$ but is false for $H_{i}, i=36, \ldots, 39$.
Case 2. Each $\gamma_{p}(G)$-set S satisfies $\alpha(S)=2$.
Case 2.1. There exists a set S containing vertices u, v that dominate $\{x, y\}$ such that u is paired with v in some perfect matching M of S. Without loss of generality we may assume that $u=u_{1}, v=v_{1}$.
Case 2.1.1. $k=1$. Then the unique graphs $H_{40}=G_{20}$ and $H_{41}=G_{21}$ satisfying (1.1) are depicted in Fig. 25.
Now for a connected graph G with $k \geq 2$ the spanning forest $G_{s f}\left(S, M, S_{i}\right)=G_{s f}$ for $S_{i}=\{u, v\}$ is the sum of components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)}=P_{4}$ and $G^{(i)}=K_{2}$ for $i=2, \ldots, k$ (Fig. 26).
Case 2.1.2. $k=2$. Now we start with the spanning forest of Fig. 27. In our construction of the desired connected graphs we add at least one edge to the graph H_{42}. Therefore, consider the following cases.

Fig. 23. The family G_{17}

Fig. 25. The case for $k=1$

Fig. 26. The spanning forest of G

Fig. 27. The graph $G_{s f}$ for $k=2$

Case 2.1.2.1. One edge (Fig. 28). Then we have $H_{43}=G_{22}$ and $H_{44}=G_{23}$ satisfy (1.1).

Fig. 28. $H_{42}+e$

Case 2.1.2.2. Two edges. Now by adding one edge to H_{43} and H_{44} we obtain some graphs by exhaustion (Fig. 29). Observe (1.1) fails for H_{45}, H_{46} and holds for $H_{47}=$ $G_{24}, H_{48}=G_{25}$ and $H_{49}=G_{26}$. Moreover graphs H_{i} for $i=50,51,52$ are discussed in Case 1.
Case 2.1.2.3. Three edges. Then it suffices to add one edge to $H_{i}, i=47,48,49$. One resulting graph is the graph H_{53} depicted in Fig. 30, which does not satisfy (1.1). One can verify that the remaining graphs in this case are supergraphs of H_{45}, H_{46} or are graphs discussed in Case 1.

Fig. 29. $H_{43}+e$ and $H_{44}+e$

Fig. 30. $H_{i}+e$ for $i=47,48,49$

Case 2.1.3. $k \geq 3$. At first we show some graphs for which (1.1) does not hold (Fig. 31). For $H_{i}, i=54, \ldots, 57,(1.1)$ is false; in H_{54} the vertex u_{1} is paired with u_{2} and v_{1} with u_{3}.

Now we start with the spanning forest depicted in Fig. 32.
Taking account of the forbidden special subgraphs $H_{i}, i=54, \ldots, 57$, we can reconstruct G based on $G_{s f}$. By the connectedness of G it is necessary to join vertices of both the edges $u_{i} v_{i}, u_{j} v_{j}$ with at least one vertex among u_{1}, v_{1}, x, y. Thus we consider the following cases (without loss of generality we take the vertices u_{i} and u_{j} of the above edges). If $u_{i} u_{1} \in E(G)$ then we have two options: $u_{j} u_{1} \in E(G)$ or $u_{j} x \in E(G)$. Instead, if $u_{i} x \in E(G)$ then we have the following options: $u_{j} x \in E(G)$ or $u_{j} u_{1} \in E(G)$. Replace u_{1} by v_{1} and x by y we obtain analogous results. This way we construct the desired graph $G=H_{58}$ for which (1.1) holds (Fig. 33). Note that $H_{58}=G_{27}$. We end this case with adding new edges in H_{58}. At first, if $u_{i} z \in E(G)$ and $v_{i} z \in E(G)$, where $2 \leq i \leq k, z=u_{1}, v_{1}, x, y$, then we return to Case 1. Therefore,
let us consider all possible cases, which are depicted in Fig. 34. Then we obtain that (1.1) is true for $H_{60}=G_{28}$ but is false for H_{59} and H_{61}.

Fig. 31. The forbidden graphs

Fig. 32. The spanning forest for $k \geq 3$, where $2 \leq i<j \leq k$

Fig. 33. $H_{58}=G_{27}$

Case 2.2. For each S and for all vertices $u, v \in S$ that dominate $\{x, y\}$ the vertex u is not paired with v in any perfect matching of S. In this case the spanning forest $G_{s f}\left(S, M, S_{i}\right)=G_{s f}$, for each M and $S_{i}=\{u, v\}$, is depicted in Fig. 35.

Fig. 34. $H_{58}+e$

Fig. 35. The spanning forest $G_{s f}$ of a connected graph G

Fig. 36. The case $k=2$

Case 2.2.2. $k=3$. Now consider the spanning forest depicted in Fig. 37.
By joining the vertices u_{1}, v_{1}, x to u_{2}, v_{2}, y we could obtain $H_{i}, i=62,63,64$, or their supergraphs. Hence the obtained graphs do not satisfy (1.1) or belong to Case 1 or Case 2.1. Therefore, it suffices to consider edges joining the above vertices to u_{3} or v_{3} (Fig. 38). Then $H_{i}, i=65, \ldots, 69$, do not satisfy (1.1) but H_{70} belongs to the family G_{16}.

Fig. 37. The spanning forest for $k=3$

Fig. 38. The case $k=3$

Case 2.2.3. $k>3$. Then we obtain graphs for which (1.1) fails or graphs belonging to Case 1.

Conversely, let G be any graph of the family \mathcal{G}. It follows from the former investigations that (1.1) holds for G.

We end this paper with the following statement obtained by Theorems 1.3, 1.4, 2.1 and Corollary 1.5.

Corollary 2.2. If G is a graph of order $n \geq 4$, then $\gamma_{p}(G)=n-2$ if and only if

1) exactly two of the components of G are isomorphic to graphs of the family \mathcal{F} given in Theorem 1.4 and every other component is K_{2} or
2) exactly one of the components of G is isomorphic to a graph of the family \mathcal{G} given in Theorem 2.1 and every other component is K_{2}.

REFERENCES

[1] M. Chellali, T.W. Haynes, Trees with unique minimum paired-dominating set, Ars Combin. 73 (2004), 3-12.
[2] S. Fitzpatrick, B. Hartnell, Paired-domination, Discuss. Math. Graph Theory 18 (1998), 63-72.
[3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-206.
[5] M.A. Henning, Graphs with large paired-domination number, J. Comb. Optim. 13 (2007), 61-78.

Włodzimierz Ulatowski
twoulat@mif.pg.gda.pl
Gdańsk University of Technology
Department of Technical Physics and Applied Mathematics
Narutowicza 11/12, 80-952 Gdańsk, Poland
Received: February 27, 2013.
Revised: May 14, 2013.
Accepted: May 21, 2013.

