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Almost homoclinic solutions for a certain class
of mixed type functional differential equations

by Joanna Janczewska (Gdańsk)

Abstract. We shall be concerned with the existence of almost homoclinic solutions
for a class of second order functional differential equations of mixed type: q̈(t)+Vq(t, q(t))+
u(t, q(t), q(t − T ), q(t + T )) = f(t), where t ∈ R, q ∈ Rn and T > 0 is a fixed positive
number.

By an almost homoclinic solution (to 0) we mean one that joins 0 to itself and q ≡ 0
may not be a stationary point. We assume that V and u are T -periodic with respect to the
time variable, V is C1-smooth and u is continuous. Moreover, f is non-zero, bounded, con-
tinuous and square-integrable. The main result provides a certain approximative scheme
of finding an almost homoclinic solution.

1. Introduction. In this work, we shall be concerned with the exis-
tence of almost homoclinic solutions for second order functional differential
equations of mixed type (sometimes known as forward-backward differential
equations) of the form

(1.1) q̈(t) + Vq(t, q(t)) + u(t, q(t), q(t− T ), q(t+ T )) = f(t),

where t ∈ R, q ∈ Rn, T > 0 is a fixed positive number, under the following
assumptions:

(H1) V : R× Rn → R is C1-smooth, T -periodic with respect to t,
(H2) u : R× Rn × Rn × Rn → Rn is continuous, T -periodic in t,
(H3) f : R→Rn is non-zero, continuous, bounded and square-integrable.

Here and subsequently, Vq denotes the gradient of V with respect to q.

Definition 1.1. We will say that a solution q : R→ Rn of (1.1) is almost
homoclinic (to 0) if q(t)→ 0 as t→ ±∞.

Let us remark that q ≡ 0 may not satisfy (1.1). That is why we have
decided to call solutions joining 0 to itself almost homoclinic.
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From now on, (·, ·) : Rn×Rn → R stands for the standard inner product
in Rn and | · | : Rn → [0,∞) denotes the induced norm. Let E = W 1,2(R,Rn)
be the Hilbert space of functions from R into Rn under the usual norm

‖q‖2E =
∞�

−∞
(|q(t)|2 + |q̇(t)|2) dt.

For each k ∈ N, let fk : R→ Rn denote a 2kT -periodic extension of f|[−kT,kT )

over R. Remark that fk may not be continuous at kT ± 2kTj, j ∈ Z. Let us
consider a sequence of functional differential equations

(1.2) q̈(t) + Vq(t, q(t)) + u(t, q(t), q(t− T ), q(t+ T )) = fk(t).

Let Ek = W 1,2
2kT (R,Rn) be the Hilbert space of 2kT -periodic functions from

R into Rn with the standard norm

‖q‖2Ek
=

kT�

−kT
(|q(t)|2 + |q̇(t)|2) dt.

Let us denote by C lloc(R,Rn), l ∈ N, the space of functions on R with values
in Rn under the topology of almost uniform convergence of functions and
all derivatives up to order l.

We will prove the following theorem.

Theorem 1.2. Let V , u and f satisfy (H1)–(H3). Assume that for each
k ∈ N there is a solution qk ∈ Ek of (1.2). If the sequence {‖qk‖Ek

}k∈N is
bounded in R then there exist a subsequence {qkj

}j∈N and a function q0 ∈ E
such that

qkj
→ q0 as j →∞

in the topology of C2
loc(R,Rn) and q0 is an almost homoclinic solution of

(1.1).

Recently, differential equations involving both advanced and retarded
arguments have appeared in an increasing number of models originating
from a wide variety of scientific disciplines (see [HVL1, HVL2] and references
given there).

Theorem 1.2 yields a certain approximative scheme of finding an almost
homoclinic solution for (1.1). This method generalizes that of [J] for the
Newtonian systems q̈+Vq(t, q) = f(t), where V and f satisfy (H1) and (H3),
respectively (see also [IJ1, IJ2]). Similar results for a class of Newtonian
systems (with f ≡ 0) have been obtained by Rabinowitz in [R] and for a
family of first order Hamiltonian systems by Tanaka in [T].

The paper is organized as follows. Theorem 1.2 will be proved in Section 2
by means of the Ascoli–Arzelà lemma. In Section 3, some applications of this
theorem will be given for certain problems of variational nature.
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Almost homoclinic solutions for MFDEs 15

2. Proof of Theorem 1.2. For each k ∈ N, let L∞2kT (R,Rn) denote the
space of 2kT -periodic essentially bounded measurable functions from R into
Rn with the norm

‖q‖L∞2kT
= ess sup{|q(t)| : t ∈ [−kT, kT ]}.

Fact 2.1. There is C > 0, independent of k ∈ N, such that

(2.1) ‖q‖L∞2kT
≤ C‖q‖Ek

for all q ∈ Ek.

The proof of this fact may be found in [IJ1].

Lemma 2.2. Let V , u and f satisfy (H1)–(H3). Assume that for each
k ∈ N there is a solution qk ∈ Ek of (1.2). If the sequence {‖qk‖Ek

}k∈N is
bounded in R then there exist a subsequence {qkj

}j∈N and a function q0 ∈ E
such that qkj

→ q0 as j →∞ in the topology of C1
loc(R,Rn).

Proof. There is M > 0 such that for each k ∈ N,

(2.2) ‖qk‖Ek
≤M.

Combining (2.2) with (2.1), we get

(2.3) ‖qk‖L∞2kT
≤ CM.

Since qk is a solution of (1.2), from (H1)–(H3) and (2.3) it follows that
there is M1 > 0, independent of k ∈ N, such that

(2.4) ‖q̈k‖L∞2kT
≤M1.

Fix k ∈ N and t ∈ R. If n = 1 (i.e. qk : R → R) then there is sk ∈ (t − 1, t)
such that

q̇k(sk) =
t�

t−1

q̇k(s) ds = qk(t)− qk(t− 1)

and

q̇k(t) =
t�

sk

q̈k(s) ds+ q̇k(sk).

Consequently,

|q̇k(t)| ≤
t�

t−1

|q̈k(s)| ds+ |qk(t)− qk(t− 1)| ≤M1 + 2CM ≡M2.

Hence, if n ≥ 1, we have

(2.5) ‖q̇k‖L∞2kT
≤
√
nM2.

To finish the proof, it suffices to show that {qk}k∈N and {q̇k}k∈N are equicon-
tinuous. For each k ∈ N and t, s ∈ R, we have

|qk(t)− qk(s)| =
∣∣∣t�
s

q̇k(τ) dτ
∣∣∣ ≤ √nM2|t− s|,
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16 J. Janczewska

by (2.5), and
|q̇k(t)− q̇k(s)| ≤M1|t− s|,

by (2.4). Applying now the Ascoli–Arzelà lemma, we get the claim.

Fact 2.3. Let q : R→ Rn be a continuous mapping. If a weak derivative
q̇ : R→ Rn is continuous at t0 ∈ R, then q is differentiable at t0 and

lim
t→t0

q(t)− q(t0)
t− t0

= q̇(t0).

Let L2
loc(R,Rn) be the space of functions from R into Rn that are locally

square-integrable.

Fact 2.4. Let q : R→ Rn be a continuous map such that q̇ ∈ L2
loc(R,Rn).

Then for each t ∈ R,

(2.6) |q(t)| ≤
√

2
(t+1/2�

t−1/2

(|q(s)|2 + |q̇(s)|2) ds
)1/2

.

The proofs of Facts 2.3 and 2.4 can be found in [IJ1].

Lemma 2.5. Let V , u and f satisfy (H1)–(H3). If {qkj
}j∈N and q0 are

given by Lemma 2.2 then q0 is an almost homoclinic solution of (1.1) and
qkj
→ q0 as j →∞ in the topology of C2

loc(R,Rn).

Proof. Fix a, b ∈ R such that a < b. There is j0 ∈ N such that [a, b] ⊂
[−kjT, kjT ) for all j > j0. Thus

q̈kj
(t) = f(t)− Vq(t, qkj

(t))− u(t, qkj
(t), qkj

(t− T ), qkj
(t+ T ))

for all t ∈ [a, b] and j > j0. Hence, if j > j0 then the restriction of q̈kj
onto

[a, b] is continuous. From Fact 2.3 it follows that q̈kj
is a derivative of q̇kj

in
(a, b) for all j > j0. Since qkj

→ q0 and q̇kj
→ q̇0 almost uniformly on R,

q̈kj
(t)→ f(t)− Vq(t, q0(t))− u(t, q0(t), q0(t− T ), q0(t+ T ))

uniformly on [a, b]. Consequently,

q̈0(t) = f(t)− Vq(t, q0(t))− u(t, q0(t), q0(t− T ), q0(t+ T ))

in (a, b). By the above, we conclude that q0 is a solution of (1.1) and qkj
→ q0

as j →∞ in the topology of C2
loc(R,Rn).

To finish the proof, we have to show that q0 is an almost homoclinic
solution. Take l ∈ N. There is j0 ∈ N such that [−lT, lT ] ⊂ [−kjT, kjT ] for
all j > j0. By (2.2), for all j > j0 we get

lT�

−lT
(|qkj

(t)|2 + |q̇kj
(t)|2) dt ≤M2.
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Almost homoclinic solutions for MFDEs 17

Letting j →∞, we obtain
lT�

−lT
(|q0(t)|2 + |q̇0(t)|2) dt ≤M2.

Finally, since l is an arbitrary positive integer,
∞�

−∞
(|q0(t)|2 + |q̇0(t)|2) dt ≤M2,

which implies

(2.7)
�

|t|>r

(|q0(t)|2 + |q̇0(t)|2) dt→ 0

as r →∞. Combining (2.7) with (2.6), we get q0(t)→ 0 as t→ ±∞.

3. Applications. In this section some applications of Theorem 1.2 are
indicated. Let assumptions (H1)–(H3) hold. From now on, we will also
assume that

(H4) there is a C1-map U : R × Rn × Rn → R of variables (t, x, y),
T -periodic in t ∈ R such that

u(t, q(t), q(t−T ), q(t+T )) = Ux(t, q(t), q(t−T ))+Uy(t, q(t+T ), q(t)),

where Ux and Uy denote the gradients of U with respect to x and y, respec-
tively.

For each k ∈ N, let Ik : Ek → R be given by

Ik(q) =
kT�

−kT

(
1
2
|q̇(t)|2 − V (t, q(t))− U(t, q(t), q(t− T ))

)
dt

+
kT�

−kT
(fk(t), q(t)) dt.

The functional Ik is differentiable on Ek and it is easy to check that

I ′k(q)p =
kT�

−kT
[(q̇(t), ṗ(t))− (Vq(t, q(t)), p(t))] dt

−
kT�

−kT
[(Ux(t, q(t), q(t− T )), p(t)) + (Uy(t, q(t+ T ), q(t)), p(t))] dt

+
kT�

−kT
(fk(t), p(t)) dt,
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18 J. Janczewska

and by (H4),

I ′k(q)p =
kT�

−kT
[(q̇(t), ṗ(t))− (Vq(t, q(t)), p(t))] dt

−
kT�

−kT
(u(t, q(t), q(t− T ), q(t+ T )), p(t)) dt+

kT�

−kT
(fk(t), p(t)) dt.

Moreover, by the Fundamental Lemma (see [MW]), for a fixed k ∈ N the
critical points of Ik are 2kT -periodic solutions of (1.2).

Example 1. Let us consider second order functional differential equa-
tions of mixed type of the form

(3.1) q̈(t) + u(t, q(t), q(t− T ), q(t+ T )) = f(t),

where t ∈ R, q ∈ Rn and T > 0 is a fixed positive number. Suppose that
(H2)–(H4) hold, and furthermore,

(H5) there are a, b > 0 such that for all t ∈ R and x, y ∈ Rn,

−U(t, x, y) ≥ −U(t, 0, 0) + a|x|2 + b|y|2,

(H6)
T�

0

U(t, 0, 0) dt = 0.

Theorem 3.1. Under assumptions (H2)–(H6), there is an almost ho-
moclinic solution q0 : R→ Rn of (3.1) such that q̇0(t)→ 0 as t→ ±∞.

An approximative sequence of functional differential equations for (3.1)
is as follows:

(3.2) q̈(t) + u(t, q(t), q(t− T ), q(t+ T )) = fk(t),

where fk : R → Rn is a 2kT -periodic extension of f|[−kT,kT ) onto R. In this
case, Ik : Ek → R is given by

(3.3) Ik(q) =
kT�

−kT

(
1
2
|q̇(t)|2 − U(t, q(t), q(t− T )) + (fk(t), q(t))

)
dt

and

I ′k(q)p =
kT�

−kT
(q̇(t), ṗ(t)) dt−

kT�

−kT
(Ux(t, q(t), q(t− T )), p(t)) dt(3.4)

−
kT�

−kT
(Uy(t, q(t+ T ), q(t)), p(t)) dt+

kT�

−kT
(fk(t), p(t)) dt.

For each k ∈ N, let L2
2kT (R,Rn) denote the Hilbert space of 2kT -periodic

functions on R with values in Rn under the norm
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Almost homoclinic solutions for MFDEs 19

‖q‖2L2
2kT

=
kT�

−kT
|q(t)|2 dt.

Applying (H3), (H5) and (H6), we get

Ik(q) ≥
kT�

−kT

(
1
2
|q̇(t)|2 + a|q(t)|2 + (fk(t), q(t))

)
dt(3.5)

≥ min{1/2, a}
kT�

−kT
(|q̇(t)|2 + |q(t)|2) dt− ‖fk‖L2

2kT
‖q‖Ek

≥ A‖q‖2Ek
−B‖q‖Ek

,

where A = min{1/2, a} and B = ‖f‖L2(R,Rn).

Lemma 3.2. Under (H2)–(H6), Ik defined by (3.3) satisfies the Palais–
Smale condition.

Proof. Let {pj}j∈N ⊂ Ek be a sequence such that {Ik(pj)}j∈N is bounded
and I ′k(pj)→ 0 as j →∞. We have to show that {pj}j∈N has a convergent
subsequence. From (3.5) it follows that {pj}j∈N is bounded in the Hilbert
space Ek. Therefore, along a subsequence, {pj}j∈N converges weakly in Ek
and strongly in L∞2kT (R,Rn) to p0 ∈ Ek. Hence, passing to a subsequence if
necessary, we have pj → p0 in L2

2kT (R,Rn), (I ′k(pj)− I ′k(p0))(pj − p0)→ 0,

kT�

−kT
(Ux(t, pj(t), pj(t− T ))− Ux(t, p0(t), p0(t− T )), pj(t)− p0(t)) dt→ 0

and
kT�

−kT
(Uy(t, pj(t+ T ), pj(t))− Uy(t, p0(t+ T ), p0(t)), pj(t)− p0(t)) dt→ 0

as j →∞. By (3.4), we get

kT�

−kT
|ṗj(t)− ṗ0(t)|2 dt

=
kT�

−kT
(Ux(t, pj(t), pj(t− T ))− Ux(t, p0(t), p0(t− T )), pj(t)− p0(t)) dt

+
kT�

−kT
(Uy(t, pj(t+ T ), pj(t))− Uy(t, p0(t+ T ), p0(t)), pj(t)− p0(t)) dt

+ (I ′k(pj)− I ′k(p0))(pj − p0),
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20 J. Janczewska

which implies
	kT
−kT |ṗj(t)− ṗ0(t)|2 dt→ 0 as j →∞. Consequently, pj → p0

in Ek as j →∞.

Proof of Theorem 3.1. By Ekeland’s Variational Principle (see Theorems
4.1 and 4.2 in [MW]) and Lemma 3.2, for each k ∈ N there is qk ∈ Ek such
that Ik(qk) = infq∈Ek

Ik(q) and I ′k(qk) = 0. From (3.3) and (H6) it follows
that Ik(qk) ≤ 0 = Ik(0).

Set

% =
B +

√
B2 + 4A
2A

.

(3.5) implies that if ‖q‖Ek
≥ % then Ik(q) ≥ 1. Hence ‖qk‖Ek

< % for each
k ∈ N. By Theorem 1.2, we conclude that (3.1) has an almost homoclinic
solution q0 ∈ E.

To finish the proof of Theorem 3.1, we have to show that q̇0(t) → 0 as
t→ ±∞. From Fact 2.4 it follows that for each t ∈ R,

|q̇0(t)|2 ≤ 2
t+1/2�

t−1/2

(|q̇0(s)|2 + |q̈0(s)|2) ds.

By (2.7), it suffices to prove that
r+1�

r

|q̈0(s)|2 ds→ 0

as r → ±∞. Since q0 satisfies (3.1), we get
r+1�

r

|q̈0(s)|2 ds ≤ 2
r+1�

r

|f(s)|2 ds

+ 2
r+1�

r

|u(s, q0(s), q0(s− T ), q0(s+ T ))|2 ds.

From (H4) and (H5) we have u(t, 0, 0, 0) = 0 for each t ∈ R. From this and
(H2) we deduce that

r+1�

r

|u(s, q0(s), q0(s− T ), q0(s+ T ))|2 ds→ 0 as r → ±∞.

Finally, by (H3),
r+1�

r

|f(s)|2 ds→ 0 as r → ±∞.

Example 2. Consider now second order functional differential equations
of mixed type

(3.6) q̈(t)− Vq(t, q(t)) + u(t, q(t), q(t− T ), q(t+ T )) = f(t),
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Almost homoclinic solutions for MFDEs 21

where V : R×Rn → R, u : R×Rn ×Rn ×Rn → Rn and f : R→ Rn satisfy
assumptions (H1)–(H4), and moreover,

(H7) there exist constants b1, b2 > 0 such that for all t ∈ R and q ∈ Rn,

b1|q|2 ≤ V (t, q) ≤ b2|q|2,

(H8) for all t ∈ R and q ∈ Rn,

V (t, q) ≤ (q, Vq(t, q)) ≤ 2V (t, q),

(H9) there is µ > 2 such that for all t ∈ R and (x, y) ∈ Rn×Rn\{(0, 0)},

0 < µU(t, x, y) ≤ (Ux(t, x, y), x) + (Uy(t, x, y), y),

(H10) the gradient of U with respect to (x, y) is equal to o(
√
|x|2 + |y|2)

as |x|2 + |y|2 → 0 uniformly in t.

Let us remark that (H9)–(H10) imply that U(t, x, y) = o(|x|2 + |y|2) as
|x|2 + |y|2 → 0 uniformly in t.

Set

Ū = sup{U(t, x, y) : |x|2 + |y|2 = 1, t ∈ [0, T ]}, b̄1 = min{2b1, 1}

and suppose that

(H11) b̄1 > 4Ū and ‖f‖L2(R,Rn) <
√

2
4C (b̄1 − 4Ū), where C is the positive

constant given by (2.1).

Theorem 3.3. If (H1)–(H4) and (H7)–(H11) are satisfied, then (3.6)
has an almost homoclinic solution q0 : R → Rn. Moreover, q̇0(t) → 0 as
t→ ±∞.

We will study an approximative sequence of functional differential equa-
tions for (3.6) given by

(3.7) q̈(t)− Vq(t, q(t)) + u(t, q(t), q(t− T ), q(t+ T )) = fk(t),

where fk : R → Rn is a 2kT -periodic extension of f|[−kT,kT ) onto R. Now,
Ik : Ek → R is defined by

Ik(q) =
kT�

−kT

(
1
2
|q̇(t)|2 + V (t, q(t))− U(t, q(t), q(t− T ))

)
dt(3.8)

+
kT�

−kT
(fk(t), q(t)) dt
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22 J. Janczewska

and

I ′k(q)p =
kT�

−kT
[(q̇(t), ṗ(t)) + (Vq(t, q(t)), p(t))] dt(3.9)

−
kT�

−kT
(Ux(t, q(t), q(t− T )), p(t)) dt

−
kT�

−kT
(Uy(t, q(t+ T ), q(t)), p(t)) dt

+
kT�

−kT
(fk(t), p(t)) dt.

Lemma 3.4. Let assumptions (H1)–(H4) and (H7)–(H11) hold. Then
Ik defined by (3.8) satisfies the Palais–Smale condition.

Proof. Let {pj}j∈N ⊂ Ek be a sequence such that {Ik(pj)}j∈N is bounded
and I ′k(pj)→ 0 as j →∞. We have to show that {pj}j∈N has a convergent
subsequence.

There is Ck > 0 such that |Ik(pj)| ≤ Ck for each j ∈ N. Moreover, there
is j0 ∈ N such that ‖I ′k(pj)‖E∗k < µ for all j > j0. Using (3.8), (3.9) and
(H7)–(H9), we immediately check that

2Ik(pj)−
2
µ
I ′k(pj)pj ≥

(
1− 2

µ

)
b̄1‖pj‖2Ek

+
(

2− 2
µ

) kT�

−kT
(fk(t), pj(t)) dt.

Hence, for all j > j0,(
1− 2

µ

)
b̄1‖pj‖2Ek

−
(

2− 2
µ

)
‖f‖L2(R,Rn)‖pj‖Ek

− 2‖pj‖Ek
− 2Ck ≤ 0.

Since µ > 2, we conclude that {pj}j∈N is bounded in Ek.
Arguments similar to that in the proof of Lemma 3.2 show that {pj}j∈N

has a convergent subsequence.

Fact 3.5. For each t ∈ [0, T ] and x, y ∈ Rn, if |x|2 + |y|2 ≤ 1 then

(3.10) U(t, x, y) ≤ Ū · (
√
|x|2 + |y|2)µ.

To prove this fact, it is sufficient to notice that a real-valued function

(0,∞) 3 ζ 7→ U(t, ζ−1x, ζ−1y)ζµ

is non-increasing for t ∈ [0, T ] and (x, y) ∈ Rn × Rn \ {(0, 0)}. This is a
trivial consequence of (H9).
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Almost homoclinic solutions for MFDEs 23

Proof of Theorem 3.3. Fix k ∈ N. Set % =
√

2/(2C), where C is given
by (2.1). Assume 0 < ‖q‖Ek

≤ %. From (2.1) it follows that 0 < ‖q‖L∞2kT

≤
√

2/2. By (3.10), we have
kT�

−kT
U(t, q(t), q(t− T )) dt ≤ Ū

kT�

−kT
(|q(t)|2 + |q(t− T )|2)µ/2 dt(3.11)

≤ 2Ū
kT�

−kT
|q(t)|2 dt ≤ 2Ū‖q‖2Ek

.

Using (3.8), (H7) and (3.11), we get

Ik(q) ≥
1
2
b̄1‖q‖2Ek

− 2Ū‖q‖2Ek
− ‖fk‖L2

2kT
‖q‖Ek

(3.12)

≥ b̄1 − 4Ū
2

‖q‖2Ek
− ‖f‖L2(R,Rn)‖q‖Ek

.

Moreover, if ‖q‖Ek
= %, then

(3.13) Ik(q) ≥
b̄1 − 4Ū

4C2
−
√

2
2C
‖f‖L2(R,Rn) ≡ α > 0 = Ik(0),

by (H11). Note that both % and α are independent of k. Applying Ekeland’s
Variational Principle and Lemma 3.4, we obtain a sequence {qk}k∈N such
that Ik(qk) = inf‖q‖Ek

≤% Ik(q) and I ′k(qk) = 0. By Theorem 1.2, we conclude
that (3.6) has an almost homoclinic solution q0 ∈ E. Analysis similar to
that in the proof of Theorem 3.1 shows that q̇0(t)→ 0 as t→ ±∞.
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Gdańsk University of Technology
Narutowicza 11/12
80-233 Gdańsk, Poland
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