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Almost homoclinic solutions for a certain class
of mixed type functional differential equations

by JOANNA JANCZEWSKA (Gdansk)

Abstract. We shall be concerned with the existence of almost homoclinic solutions
for a class of second order functional differential equations of mixed type: ¢(t)+Vq (¢, ¢(t))+
u(t,q(t),q(t = T),qt +T)) = f(t), where t € R, ¢ € R™ and T > 0 is a fixed positive
number.

By an almost homoclinic solution (to 0) we mean one that joins 0 to itself and ¢ = 0
may not be a stationary point. We assume that V' and u are T-periodic with respect to the
time variable, V is C''-smooth and u is continuous. Moreover, f is non-zero, bounded, con-
tinuous and square-integrable. The main result provides a certain approximative scheme
of finding an almost homoclinic solution.

1. Introduction. In this work, we shall be concerned with the exis-
tence of almost homoclinic solutions for second order functional differential
equations of mixed type (sometimes known as forward-backward differential
equations) of the form

(L.1) G(t) + Vo(t, q(t)) + ult, q(t),q(t = T),q(t + 1)) = f(t),
where t € R, g € R™, T > 0 is a fixed positive number, under the following
assumptions:

(H1) V:R x R" — R is C'-smooth, T-periodic with respect to t,
(H2) u: R x R™ x R™ x R" — R™ is continuous, T-periodic in ¢,
(H3) f: R—R"isnon-zero, continuous, bounded and square-integrable.

Here and subsequently, V, denotes the gradient of V' with respect to g.

DEFINITION 1.1. We will say that a solution ¢: R — R” of (|1.1)) is almost
homoclinic (to 0) if ¢(t) — 0 as t — *oo.

Let us remark that ¢ = 0 may not satisfy (1.1). That is why we have
decided to call solutions joining 0 to itself almost homoclinic.
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From now on, (-,-): R” x R"™ — R stands for the standard inner product
in R"” and |-|: R"® — [0, 00) denotes the induced norm. Let E = W12(R,R")
be the Hilbert space of functions from R into R™ under the usual norm

o0
lallz = | (a@®))* + 1)) dt.
—00
For each k € N, let fz: R — R" denote a 2kT-periodic extension of fj_pr k1)
over R. Remark that f; may not be continuous at k7T + 2kTj, j € Z. Let us
consider a sequence of functional differential equations

(1.2) G(t) + Va(t, q(t)) + ult, q(t),q(t = T),q(t + T)) = fi(t).

Let Ep = WQI,;%(R, R™) be the Hilbert space of 2kT-periodic functions from
R into R™ with the standard norm
kT
lals, = | (a(®) + 1) 2) d.
—kT

Let us denote by C’foc(R, R™), I € N, the space of functions on R with values
in R™ under the topology of almost uniform convergence of functions and
all derivatives up to order I.

We will prove the following theorem.

THEOREM 1.2. Let V, u and f satisfy (H1)-(H3). Assume that for each
k € N there is a solution g, € Ey of (L.2). If the sequence {||qx| E, }ren is
bounded in R then there exist a subsequence {qy,}jen and a function qo € E

such that '
Qr; — g0 asj — 00

i the topology of C’I%C(R,R”) and qo is an almost homoclinic solution of
).

Recently, differential equations involving both advanced and retarded
arguments have appeared in an increasing number of models originating
from a wide variety of scientific disciplines (see [HVLI1, [HVL2| and references
given there).

Theorem yields a certain approximative scheme of finding an almost
homoclinic solution for (I.1)). This method generalizes that of [J] for the
Newtonian systems §+V, (¢, q) = f(t), where V and f satisfy (H1) and (H3),
respectively (see also [LJ1), IJ2]). Similar results for a class of Newtonian
systems (with f = 0) have been obtained by Rabinowitz in [R] and for a
family of first order Hamiltonian systems by Tanaka in [T].

The paper is organized as follows. Theorem[I.2] will be proved in Section 2
by means of the Ascoli-Arzela lemma. In Section 3, some applications of this
theorem will be given for certain problems of variational nature.
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2. Proof of Theorem For each k € N, let L37-(R,R™) denote the
space of 2kT-periodic essentially bounded measurable functions from R into
R"™ with the norm

lallog, = esssup{la(t)|: ¢ € [~kT, KT1}.

Fact 2.1. There is C > 0, independent of k € N, such that

(2.1) lallzssy, < Cllalle, — for all q € Ey.

2T —
The proof of this fact may be found in [LJ1].
LEMMA 2.2. Let V, u and f satisfy (H1)~(H3). Assume that for each

k € N there is a solution g, € Ey, of (1.2). If the sequence {||qx|| £, }ren s
bounded in R then there exist a subsequence {qkj }ien and a function qo € E

such that qi; — qo as j — oo in the topology of CL.(R,R").
Proof. There is M > 0 such that for each k € N,

(22) larll e, < M.
Combining ([2.2) with (2.1), we get
(2.3) gkl g, < CM.

Since g is a solution of (1.2)), from (H1)-(H3) and (2.3) it follows that
there is M7 > 0, independent of k € N, such that
(2.4) lGkllLgy, < M.

Fix ke Nandt € R. If n =1 (i.e. ¢4: R — R) then there is s; € (t — 1,¢)
such that

dr(sk) = | dr(s)ds = qu(t) — qu(t — 1)
and

dr(t) =\ Gir(s) ds + Gi(sk)-
Consequently, k
t
e ()] < | ld(s)|ds + lgr(t) — gr(t — 1)| < My +2CM = M.
t—1
Hence, if n > 1, we have

(2.5) ldkllLgo,. < V/nMa.
To finish the proof, it suffices to show that {qx }reny and {g }ren are equicon-
tinuous. For each k € N and ¢, s € R, we have

4(t) = ()| = |Jan(r) dr| < Vidaft o,
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by (2.5), and
|G(t) — qr(s)| < Mt — s,
by (2.4). Applying now the Ascoli-Arzela lemma, we get the claim. m

Fact 2.3. Let g: R — R" be a continuous mapping. If a weak derivative
G: R — R™ is continuous at tg € R, then q is differentiable at ty and

q(t) —q(to) .
Ji = O = §(to).

Let L2 (R, R") be the space of functions from R into R™ that are locally
square-integrable.

FACT 2.4. Let q: R — R™ be a continuous map such that ¢ € L (R, R").
Then for each t € R,
t41/2

(26) a0 <va( | a)P + lats)?)ds)

t—1/2
The proofs of Facts and can be found in [LJ1].
LEMMA 2.5. Let V, u and f satisfy (H1)-(H3). If {qx, }jen and qo are

given by Lemma then qo is an almost homoclinic solution of (L.1)) and
qk; — qo as j — oo in the topology of C2 . (R,R™).

Proof. Fix a,b € R such that a < b. There is jp € N such that [a,b] C
[—k;T, k;T) for all j > jo. Thus
G, (t) = f(t) = Vot ar; (1) — ult, qr,; (t), g, (t = T), qi; (t +T))

for all ¢ € [a,b] and j > jo. Hence, if j > jo then the restriction of gx; onto
[a, b] is continuous. From Fact it follows that g, is a derivative of gy, in
(a,b) for all j > jo. Since qx; — qo and ¢x; — o almost uniformly on R,

G, (t) — f(t) = Vq(t, qo(t)) — u(t, qo(t),q0(t = T),q0(t +T'))
uniformly on [a, b]. Consequently,

Go(t) = f(t) = Vg(t, qo(t)) — u(t, qo(t), go(t — T), qo(t + 1))
in (a,b). By the above, we conclude that ¢ is a solution of (|1.1)) and Qk; — 90
as j — oo in the topology of CZ (R, R").

To finish the proof, we have to show that gy is an almost homoclinic
solution. Take [ € N. There is jo € N such that [—IT,!T] C [—k;T, k;T] for

all] > jO' By " for all] > jO we get
T
V (law, 0 + 1w, (8)) dt < M.
=T
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Letting j — oo, we obtain
IT
J (lao()I” + ldo(t)[*) dt < M.
—IT

Finally, since [ is an arbitrary positive integer,

V (ao®)1 + ldo(t)[?) dt < M,
which implies
(2.7) V(a0 (®)F + [do(t)]?) dt — 0
[t|>r

as r — oo. Combining (2.7)) with (2.6)), we get go(t) — 0 as ¢t — +oo. m

3. Applications. In this section some applications of Theorem [1.2] are
indicated. Let assumptions (H1)-(H3) hold. From now on, we will also
assume that

(H4) there is a Cl-map U: R x R® x R® — R of variables (¢,x,%),
T-periodic in t € R such that

u(t,q(t),q(t=T),q(t+T)) = Ux(t,q(t), q(t=T))+Uy(t, q(t+T),q(t)),

where U, and U, denote the gradients of U with respect to x and y, respec-
tively.
For each k € N, let I;,: Fx, — R be given by
kT

(o) = | (Gla0F - Vie.a(0) - Vet at - 1) ) at
—kT
kT
] (el att)ar.
—kT

The functional I is differentiable on Ej and it is easy to check that
kT
I(ap = | 1(4(8),p(t) = (Va(t,a(t)), p(1))) dt

—kT
kT

- S [(U;B(tv Q(t)a Q(t - T))vp(t)) + (Uy(t7 Q(t + T)7 Q(t))7p(t))] dt
—kT
kT

+ ) (fr(0),p(1)) dt,

—kT
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and by (H4),
kT
L(@p=| [(d),p() — (Valt,a(t)), p()] dt
—kT
kT kT
- S (u(tv Q(t)7 Q(t - T)v q(t + T))vp(t>) dt + S (fk(t>7p(t)) dt.
—kT —kT

Moreover, by the Fundamental Lemma (see [MW]), for a fixed k € N the
critical points of I} are 2kT-periodic solutions of (1.2]).

EXAMPLE 1. Let us consider second order functional differential equa-
tions of mixed type of the form

(3.1) G(t) + ult, q(t),q(t = T),q(t +T)) = f(1),
where t € R, ¢ € R™ and T > 0 is a fixed positive number. Suppose that
(H2)—(H4) hold, and furthermore,

(H5) there are a,b > 0 such that for all t € R and z,y € R",

—U(t,x,y) > —U(t,0,0) + alz[* + bly|?,
T
(H6) | U(,0,0)dt = 0.
0
THEOREM 3.1. Under assumptions (H2)-(H6), there is an almost ho-
moclinic solution qo: R — R™ of (3.1) such that ¢o(t) — 0 as t — +oo.

An approximative sequence of functional differential equations for (3.1
is as follows:

where fp: R — R" is a 2kT-periodic extension of f|_xrr7) onto R. In this
case, I: Er — R is given by

kT
33 L@ = | (Hqu)r?—U(t,q<t>,q<t—T>>+<fk<t>,q<t>>) di

—kT 5
and
kT kT
(34)  IL@p= | @@),p0)dt— | (Uslt,q(t),q(t = T)),p(t)) dt
—kT —kT
kT kT
— | Uyt qt + 1), q(t).p@®) dt + | (fr(t), p(t)) dt.
—kT —kT

For each k € N, let L%kT(R,R") denote the Hilbert space of 2kT-periodic
functions on R with values in R™ under the norm
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kT
2, = 2 dt
||C]||Lng lq(t)|” dt.
—kT

Applying (H3), (H5) and (H6), we get

kT 1
35 1= | (FUOF+ ada)? + (0. ) a
—kT
kT
> min{1/2.a} | (00 + la(O) dt — 1 fulzz, el
—kT

> Allgll, — Blldllz,
where A = min{1/2,a} and B = || f||L2(r rn)-

LEMMA 3.2. Under (H2)-(H6), I}, defined by (3.3) satisfies the Palais—
Smale condition.

Proof. Let {p;}jen C Ej, be a sequence such that {I;(p;)};en is bounded
and I} (pj) — 0 as j — co. We have to show that {p;};en has a convergent
subsequence. From it follows that {p;} en is bounded in the Hilbert
space Ej. Therefore, along a subsequence, {p;};jcn converges weakly in Ej,
and strongly in L3%,(R,R™) to pg € Ej. Hence, passing to a subsequence if
necessary, we have p; — po in Lp(R, R"), (I (p;) — I (p0)) (95 — po) — 0,

kT
| (U(t,pi(#),pi(t = T)) = Uslt, po(t), po(t — T)), p;(t) — po(t)) dt — 0
kT
and
kT
V (Ut p(t+T),pj (1) = Uy(t, po(t + T), po(t)), p;(t) — po(t)) dt — 0
—kT

as j — o00. By (3.4), we get
kT
V 155(t) — po(t)] at

—kT
kT

= | (Uat,pj (1), ps(t = T)) = U(t, po(t), po(t — T)), p;(t) — po(t)) dt
—kT
kT

+ | Wyt ps(t +T),05(8) = Uyt po(t + 1), po(t)), p;(8) — po(t)) dt
—kT

+ (It (pj) = I1.(po)) (P; — Po),
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which implies Slﬁ;T Ip;(t) — po(t)|*> dt — 0 as j — oo. Consequently, p; — po
in B, asj —o0. m

Proof of Theoremm By Ekeland’s Variational Principle (see Theorems
4.1 and 4.2 in [MW]) and Lemma for each k € N there is g, € Ej such
that I1(gqx) = infycp, Ir(¢) and I;(gx) = 0. From and (H6) it follows
that I(gx) < 0 = I1(0).

Set
B+ VB?+4A

¢= 24

implies that if ||¢||g, > o then Ij(¢) > 1. Hence ||qx||E, < o for each
k € N. By Theorem we conclude that has an almost homoclinic
solution qg € E.

To finish the proof of Theorem [3.1} we have to show that go(t) — 0 as
t — too. From Fact it follows that for each ¢ € R,

t4+1/2
do®)1> <2 | (do(s)[* + ldio(s)[*) ds.
t—1/2
By (12.7)), it suffices to prove that
r+1

| ldo(s)* ds — 0
as r — +00. Since qq satisfies (3.1]), we get
r+1 r+1
| ldo(s)Pds <2 | [£(s)* ds

T T
r+1
+2 | Ju(s, q0(s), qo(s = T), qo(s + T))[* ds.
.
From (H4) and (H5) we have u(t¢,0,0,0) = 0 for each ¢ € R. From this and
(H2) we deduce that
r+1
S lu(s, qo(s),q0(s — T),qo(s + T))[>ds — 0 as r — Fo0.
.
Finally, by (H3),
r+1
S If(s)?ds -0 asr— +oo. m
T
ExXAMPLE 2. Consider now second order functional differential equations
of mixed type

(3.6) G(t) = Vy(t,q(t)) + ult, q(t), q(t = T),q(t +T)) = f(1),
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where V: R X R" - R, u: Rx R?" x R" x R* — R"” and f: R — R" satisfy
assumptions (H1)—(H4), and moreover,

(HT7) there exist constants by, by > 0 such that for all t € R and ¢ € R",
bilal* < V(¢ q) < bafal?,
(H8) for allt € R and ¢ € R",

V(t,q) < (q,Vg(t,q)) <2V (¢, q),
(H9) thereis > 2 such that for all ¢ € R and (z,y) € R"xR™\{(0,0)},

0<pU(t,z,y) < (Ug(t,z,y),z) + (Uy(t,z,y),y),

(H10) the gradient of U with respect to (z,y) is equal to o(r/|x|2 + |y|?)
as |z|? + |y|> — 0 uniformly in ¢.

Let us remark that (H9)-(H10) imply that U(t,z,y) = o(|z]* + |y|?) as
|| + |y|?> — 0 uniformly in .
Set

U=sup{U(t,z,y): |z|>+ |y|> =1,t€[0,T]}, by =min{2by,1}
and suppose that

(H11) by > 40U and || fl| 2@ gy < }{—3(51 — 4U), where C is the positive
constant given by (2.1

THEOREM 3.3. If (H1)(H4) and (HT7)-(H11) are satisfied, then ({3.6))
has an almost homoclinic solution qy: R — R™. Moreover, qo(t) — 0 as
t — +oo.

We will study an approximative sequence of functional differential equa-

tions for given by
(3'7) q(t) - V;l(t7 q(t)) + u(t7 q(t)7 q(t - T>7 q(t + T)) - fk(t>7

where f: R — R" is a 2kT-periodic extension of f|_prr7) onto R. Now,
I.: B — R is defined by

kT
38 h= | (GlOF+ Vo) - Ula.at 1)) d
—kT
kT

+ ) (fr(t),q(t)) dt

—kT
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and
kT
(3.9) I(ap = | (@), p(6) + (Vy(t, (1)), p(t))] dt
—kT
kT
- S (Ur(t7Q(t)>Q(t_T))ap(t))dt
—kT
kT
-V Ut alt+T),q4(t)),p(1)) dt
—kT
kT

+ | (), p(o)) .

—kT

LEMMA 3.4. Let assumptions (H1)-(H4) and (H7)-(H11) hold. Then
Iy, defined by (3.8)) satisfies the Palais—Smale condition.

Proof. Let {p;}jen C E}, be a sequence such that {I;(p;)}en is bounded
and I;(p;) — 0 as j — oco. We have to show that {p;};en has a convergent
subsequence.

There is Cy, > 0 such that |[I;(p;)| < Cj for each j € N. Moreover, there
is jo € N such that ||I}(pj)l|g; < p for all j > jo. Using (3-3), and
(H7)-(H9), we immediately check that

9 kT

214(0) ~ 214loi)0; > (1 - j)blnpjn%k n (2 - H) ()5 (0) di.
—kT

Hence, for all j > jo,

2\; 2
(1 - M)“‘%‘H%k - (2 - M) Iz 1, = 2lpsll, = 2C < 0.

Since p > 2, we conclude that {p;};en is bounded in Ej.
Arguments similar to that in the proof of Lemma [3.2] show that {p;} en
has a convergent subsequence. =

FacT 3.5. For each t € [0,T] and z,y € R™, if |z|? + |y|*> < 1 then
(3.10) Ult,,y) < 0 - (/P + 9P
To prove this fact, it is sufficient to notice that a real-valued function
(0,00) 3 ¢ = U(t, ¢, (T Hy)CH

is non-increasing for ¢ € [0,7] and (z,y) € R™ x R™ \ {(0,0)}. This is a
trivial consequence of (H9).
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Proof of Theorem . Fix k € N. Set o = v/2/(2C), where C is given
by (2.1). Assume 0 < ||q||g, < o. From (2.1 it follows that 0 < [glrg,.
< V2/2. By (B.10), we have

kT kT
1) | Uta.at—T)de<T | (la@)P +la(t — T)2)> dt
—kT —kT
kT
<20 | lq@)P dt < 20]q|%,.
—kT

Using (B8), (H7) and (B11), we get

1- _
(3.12) Ir(q) > 561IIQH%k —20lqll%, — I1fxll 2, llall =,

2kT

by — AU
> THqH%k — 1 £l 2@ rmy gl £, -

Moreover, if ||q||g, = o, then

by —4U V2
(B13) L) >~ — 5plfleeen = a>0=10),

by (H11). Note that both p and « are independent of k. Applying Ekeland’s
Variational Principle and Lemma we obtain a sequence {qi}ren such
that I (qx) = ian‘]”EkSQ It(q) and I} (qx) = 0. By Theorem we conclude
that has an almost homoclinic solution gy € F. Analysis similar to
that in the proof of Theorem (3.1 shows that ¢o(f) — 0 as t — foo. =
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